Newspace parameters
Level: | \( N \) | \(=\) | \( 740 = 2^{2} \cdot 5 \cdot 37 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 740.u (of order \(4\), degree \(2\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(5.90892974957\) |
Analytic rank: | \(0\) |
Dimension: | \(152\) |
Relative dimension: | \(76\) over \(\Q(i)\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{4}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
31.1 | −1.40873 | + | 0.124456i | 3.04334 | 1.96902 | − | 0.350649i | 0.707107 | − | 0.707107i | −4.28724 | + | 0.378763i | 3.54875i | −2.73017 | + | 0.739026i | 6.26194 | −0.908116 | + | 1.08412i | ||||||
31.2 | −1.40814 | − | 0.130950i | 2.09062 | 1.96570 | + | 0.368792i | −0.707107 | + | 0.707107i | −2.94388 | − | 0.273767i | 2.92000i | −2.71969 | − | 0.776720i | 1.37069 | 1.08830 | − | 0.903108i | ||||||
31.3 | −1.40804 | − | 0.132013i | −1.51447 | 1.96515 | + | 0.371758i | −0.707107 | + | 0.707107i | 2.13243 | + | 0.199929i | − | 1.47727i | −2.71792 | − | 0.782873i | −0.706387 | 1.08898 | − | 0.902287i | |||||
31.4 | −1.40327 | − | 0.175606i | −0.390097 | 1.93833 | + | 0.492844i | −0.707107 | + | 0.707107i | 0.547410 | + | 0.0685032i | 0.0448530i | −2.63344 | − | 1.03197i | −2.84782 | 1.11643 | − | 0.868089i | ||||||
31.5 | −1.39860 | − | 0.209573i | −2.88896 | 1.91216 | + | 0.586216i | 0.707107 | − | 0.707107i | 4.04050 | + | 0.605448i | 2.24958i | −2.55149 | − | 1.22062i | 5.34611 | −1.13715 | + | 0.840769i | ||||||
31.6 | −1.39661 | − | 0.222436i | −1.94167 | 1.90104 | + | 0.621313i | 0.707107 | − | 0.707107i | 2.71176 | + | 0.431897i | − | 4.49715i | −2.51682 | − | 1.29059i | 0.770091 | −1.14484 | + | 0.830267i | |||||
31.7 | −1.38578 | − | 0.282160i | 3.03129 | 1.84077 | + | 0.782022i | −0.707107 | + | 0.707107i | −4.20069 | − | 0.855307i | − | 4.17536i | −2.33025 | − | 1.60310i | 6.18869 | 1.17941 | − | 0.780377i | |||||
31.8 | −1.37626 | + | 0.325442i | −0.313272 | 1.78817 | − | 0.895785i | 0.707107 | − | 0.707107i | 0.431143 | − | 0.101952i | − | 0.0788742i | −2.16946 | + | 1.81478i | −2.90186 | −0.743039 | + | 1.20328i | |||||
31.9 | −1.35901 | + | 0.391281i | 0.907469 | 1.69380 | − | 1.06351i | 0.707107 | − | 0.707107i | −1.23326 | + | 0.355075i | − | 4.09672i | −1.88576 | + | 2.10806i | −2.17650 | −0.684286 | + | 1.23764i | |||||
31.10 | −1.34065 | − | 0.450162i | 2.21520 | 1.59471 | + | 1.20702i | 0.707107 | − | 0.707107i | −2.96982 | − | 0.997201i | − | 1.86106i | −1.59459 | − | 2.33608i | 1.90712 | −1.26630 | + | 0.629673i | |||||
31.11 | −1.32904 | + | 0.483377i | 1.02884 | 1.53269 | − | 1.28485i | −0.707107 | + | 0.707107i | −1.36736 | + | 0.497316i | − | 1.37227i | −1.41594 | + | 2.44849i | −1.94150 | 0.597974 | − | 1.28157i | |||||
31.12 | −1.31189 | + | 0.528162i | −3.30999 | 1.44209 | − | 1.38578i | −0.707107 | + | 0.707107i | 4.34233 | − | 1.74821i | − | 5.02019i | −1.15994 | + | 2.57964i | 7.95603 | 0.554177 | − | 1.30111i | |||||
31.13 | −1.29954 | + | 0.557859i | −2.62771 | 1.37759 | − | 1.44991i | −0.707107 | + | 0.707107i | 3.41481 | − | 1.46589i | 5.20761i | −0.981377 | + | 2.65272i | 3.90487 | 0.524445 | − | 1.31338i | ||||||
31.14 | −1.24845 | − | 0.664363i | 0.997645 | 1.11724 | + | 1.65884i | 0.707107 | − | 0.707107i | −1.24551 | − | 0.662798i | 0.344735i | −0.292747 | − | 2.81324i | −2.00470 | −1.35256 | + | 0.413011i | ||||||
31.15 | −1.10727 | − | 0.879744i | −0.686367 | 0.452103 | + | 1.94823i | −0.707107 | + | 0.707107i | 0.759995 | + | 0.603827i | 4.62323i | 1.21334 | − | 2.55496i | −2.52890 | 1.40503 | − | 0.160887i | ||||||
31.16 | −1.08074 | − | 0.912141i | −1.37212 | 0.335997 | + | 1.97157i | 0.707107 | − | 0.707107i | 1.48290 | + | 1.25156i | 1.94978i | 1.43523 | − | 2.43724i | −1.11730 | −1.40918 | + | 0.119217i | ||||||
31.17 | −1.07586 | + | 0.917891i | 3.19932 | 0.314953 | − | 1.97505i | 0.707107 | − | 0.707107i | −3.44203 | + | 2.93663i | − | 1.85618i | 1.47403 | + | 2.41397i | 7.23567 | −0.111702 | + | 1.40980i | |||||
31.18 | −1.07503 | + | 0.918861i | 0.615294 | 0.311387 | − | 1.97561i | 0.707107 | − | 0.707107i | −0.661461 | + | 0.565370i | 3.79949i | 1.48056 | + | 2.40997i | −2.62141 | −0.110429 | + | 1.40990i | ||||||
31.19 | −1.07092 | − | 0.923652i | −2.12677 | 0.293735 | + | 1.97831i | −0.707107 | + | 0.707107i | 2.27760 | + | 1.96440i | − | 1.56565i | 1.51271 | − | 2.38992i | 1.52316 | 1.41037 | − | 0.104134i | |||||
31.20 | −0.987927 | + | 1.01193i | 0.651424 | −0.0480006 | − | 1.99942i | −0.707107 | + | 0.707107i | −0.643559 | + | 0.659195i | − | 2.59929i | 2.07070 | + | 1.92671i | −2.57565 | −0.0169720 | − | 1.41411i | |||||
See next 80 embeddings (of 152 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
4.b | odd | 2 | 1 | inner |
37.d | odd | 4 | 1 | inner |
148.g | even | 4 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 740.2.u.a | ✓ | 152 |
4.b | odd | 2 | 1 | inner | 740.2.u.a | ✓ | 152 |
37.d | odd | 4 | 1 | inner | 740.2.u.a | ✓ | 152 |
148.g | even | 4 | 1 | inner | 740.2.u.a | ✓ | 152 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
740.2.u.a | ✓ | 152 | 1.a | even | 1 | 1 | trivial |
740.2.u.a | ✓ | 152 | 4.b | odd | 2 | 1 | inner |
740.2.u.a | ✓ | 152 | 37.d | odd | 4 | 1 | inner |
740.2.u.a | ✓ | 152 | 148.g | even | 4 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(740, [\chi])\).