Newspace parameters
Level: | \( N \) | \(=\) | \( 740 = 2^{2} \cdot 5 \cdot 37 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 740.n (of order \(4\), degree \(2\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(5.90892974957\) |
Analytic rank: | \(0\) |
Dimension: | \(216\) |
Relative dimension: | \(108\) over \(\Q(i)\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{4}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
223.1 | −1.41316 | + | 0.0545886i | −0.951440 | + | 0.951440i | 1.99404 | − | 0.154285i | −0.914889 | + | 2.04034i | 1.29260 | − | 1.39647i | −1.13976 | − | 1.13976i | −2.80947 | + | 0.326881i | 1.18953i | 1.18151 | − | 2.93327i | ||
223.2 | −1.41301 | − | 0.0583967i | 0.962036 | − | 0.962036i | 1.99318 | + | 0.165030i | 2.04543 | − | 0.903457i | −1.41554 | + | 1.30318i | −1.74495 | − | 1.74495i | −2.80674 | − | 0.349584i | 1.14897i | −2.94296 | + | 1.15715i | ||
223.3 | −1.41119 | + | 0.0924716i | 0.888719 | − | 0.888719i | 1.98290 | − | 0.260990i | 1.22558 | + | 1.87028i | −1.17197 | + | 1.33633i | 0.0171664 | + | 0.0171664i | −2.77411 | + | 0.551667i | 1.42036i | −1.90247 | − | 2.52599i | ||
223.4 | −1.40602 | − | 0.152053i | −0.119582 | + | 0.119582i | 1.95376 | + | 0.427577i | −1.64048 | + | 1.51948i | 0.186316 | − | 0.149951i | 3.40042 | + | 3.40042i | −2.68200 | − | 0.898254i | 2.97140i | 2.53758 | − | 1.88697i | ||
223.5 | −1.40438 | − | 0.166475i | 2.15691 | − | 2.15691i | 1.94457 | + | 0.467589i | −1.12739 | − | 1.93106i | −3.38820 | + | 2.67006i | 0.558475 | + | 0.558475i | −2.65308 | − | 0.980396i | − | 6.30456i | 1.26181 | + | 2.89963i | |
223.6 | −1.40119 | − | 0.191494i | −1.30753 | + | 1.30753i | 1.92666 | + | 0.536639i | 2.18104 | − | 0.493016i | 2.08247 | − | 1.58171i | 2.86607 | + | 2.86607i | −2.59685 | − | 1.12088i | − | 0.419248i | −3.15046 | + | 0.273152i | |
223.7 | −1.39465 | + | 0.234390i | −0.532261 | + | 0.532261i | 1.89012 | − | 0.653787i | 0.164080 | − | 2.23004i | 0.617563 | − | 0.867076i | −0.702605 | − | 0.702605i | −2.48283 | + | 1.35483i | 2.43340i | 0.293865 | + | 3.14859i | ||
223.8 | −1.39119 | + | 0.254135i | −1.00358 | + | 1.00358i | 1.87083 | − | 0.707102i | −2.22383 | + | 0.233612i | 1.14113 | − | 1.65122i | −3.06916 | − | 3.06916i | −2.42298 | + | 1.45916i | 0.985641i | 3.03441 | − | 0.890154i | ||
223.9 | −1.38440 | − | 0.288867i | −2.33229 | + | 2.33229i | 1.83311 | + | 0.799813i | 1.44400 | − | 1.70729i | 3.90254 | − | 2.55510i | −2.92128 | − | 2.92128i | −2.30672 | − | 1.63678i | − | 7.87919i | −2.49226 | + | 1.94645i | |
223.10 | −1.35300 | − | 0.411587i | 1.00904 | − | 1.00904i | 1.66119 | + | 1.11375i | −2.23607 | 0.000144217i | −1.78053 | + | 0.949915i | −0.740784 | − | 0.740784i | −1.78918 | − | 2.19062i | 0.963694i | 3.02533 | + | 0.920531i | |||
223.11 | −1.34504 | + | 0.436894i | −2.03010 | + | 2.03010i | 1.61825 | − | 1.17528i | −2.00579 | − | 0.988345i | 1.84362 | − | 3.61750i | 2.09201 | + | 2.09201i | −1.66313 | + | 2.28779i | − | 5.24262i | 3.12966 | + | 0.453044i | |
223.12 | −1.33397 | + | 0.469611i | 1.90038 | − | 1.90038i | 1.55893 | − | 1.25289i | 2.19518 | + | 0.425649i | −1.64260 | + | 3.42748i | 2.19059 | + | 2.19059i | −1.49119 | + | 2.40341i | − | 4.22286i | −3.12819 | + | 0.463080i | |
223.13 | −1.32143 | − | 0.503803i | −1.04444 | + | 1.04444i | 1.49237 | + | 1.33148i | −1.72951 | − | 1.41732i | 1.90634 | − | 0.853962i | 0.225601 | + | 0.225601i | −1.30126 | − | 2.51132i | 0.818304i | 1.57137 | + | 2.74423i | ||
223.14 | −1.31922 | + | 0.509560i | 0.532040 | − | 0.532040i | 1.48070 | − | 1.34445i | −0.341068 | − | 2.20990i | −0.430773 | + | 0.972985i | 2.43768 | + | 2.43768i | −1.26829 | + | 2.52813i | 2.43387i | 1.57602 | + | 2.74156i | ||
223.15 | −1.31184 | + | 0.528270i | −2.09162 | + | 2.09162i | 1.44186 | − | 1.38601i | 0.921582 | + | 2.03732i | 1.63893 | − | 3.84881i | 0.220841 | + | 0.220841i | −1.15931 | + | 2.57992i | − | 5.74972i | −2.28523 | − | 2.18580i | |
223.16 | −1.26502 | − | 0.632247i | 0.507201 | − | 0.507201i | 1.20053 | + | 1.59960i | 1.27860 | − | 1.83444i | −0.962293 | + | 0.320940i | 2.44835 | + | 2.44835i | −0.507338 | − | 2.78255i | 2.48549i | −2.77727 | + | 1.51221i | ||
223.17 | −1.25796 | + | 0.646169i | 1.96497 | − | 1.96497i | 1.16493 | − | 1.62571i | −1.98542 | + | 1.02864i | −1.20215 | + | 3.74157i | 0.969540 | + | 0.969540i | −0.414954 | + | 2.79782i | − | 4.72224i | 1.83291 | − | 2.57690i | |
223.18 | −1.25640 | − | 0.649201i | −0.333967 | + | 0.333967i | 1.15708 | + | 1.63131i | 1.91259 | + | 1.15845i | 0.636408 | − | 0.202784i | −2.67537 | − | 2.67537i | −0.394699 | − | 2.80075i | 2.77693i | −1.65091 | − | 2.69713i | ||
223.19 | −1.20660 | + | 0.737648i | 1.78917 | − | 1.78917i | 0.911751 | − | 1.78009i | 1.06004 | − | 1.96883i | −0.839029 | + | 3.47858i | −2.99225 | − | 2.99225i | 0.212963 | + | 2.82040i | − | 3.40226i | 0.173260 | + | 3.15753i | |
223.20 | −1.20163 | + | 0.745715i | −1.00581 | + | 1.00581i | 0.887819 | − | 1.79214i | 2.14883 | − | 0.618474i | 0.458562 | − | 1.95866i | −1.33145 | − | 1.33145i | 0.269600 | + | 2.81555i | 0.976691i | −2.12089 | + | 2.34559i | ||
See next 80 embeddings (of 216 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
4.b | odd | 2 | 1 | inner |
5.c | odd | 4 | 1 | inner |
20.e | even | 4 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 740.2.n.a | ✓ | 216 |
4.b | odd | 2 | 1 | inner | 740.2.n.a | ✓ | 216 |
5.c | odd | 4 | 1 | inner | 740.2.n.a | ✓ | 216 |
20.e | even | 4 | 1 | inner | 740.2.n.a | ✓ | 216 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
740.2.n.a | ✓ | 216 | 1.a | even | 1 | 1 | trivial |
740.2.n.a | ✓ | 216 | 4.b | odd | 2 | 1 | inner |
740.2.n.a | ✓ | 216 | 5.c | odd | 4 | 1 | inner |
740.2.n.a | ✓ | 216 | 20.e | even | 4 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(740, [\chi])\).