Properties

Label 740.2.n
Level $740$
Weight $2$
Character orbit 740.n
Rep. character $\chi_{740}(223,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $216$
Newform subspaces $1$
Sturm bound $228$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 740 = 2^{2} \cdot 5 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 740.n (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 20 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 1 \)
Sturm bound: \(228\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(740, [\chi])\).

Total New Old
Modular forms 236 216 20
Cusp forms 220 216 4
Eisenstein series 16 0 16

Trace form

\( 216 q - 8 q^{6} - 12 q^{8} - 16 q^{10} - 16 q^{12} + 8 q^{16} + 20 q^{20} - 16 q^{21} + 4 q^{22} + 16 q^{26} - 4 q^{28} - 24 q^{30} - 20 q^{32} + 16 q^{33} + 32 q^{36} - 12 q^{38} - 36 q^{40} - 40 q^{42}+ \cdots - 64 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(740, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
740.2.n.a 740.n 20.e $216$ $5.909$ None 740.2.n.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{4}]$

Decomposition of \(S_{2}^{\mathrm{old}}(740, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(740, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(20, [\chi])\)\(^{\oplus 2}\)