Properties

Label 740.2.a.e.1.2
Level $740$
Weight $2$
Character 740.1
Self dual yes
Analytic conductor $5.909$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [740,2,Mod(1,740)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("740.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(740, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 740 = 2^{2} \cdot 5 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 740.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(5.90892974957\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.148.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 3x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(2.17009\) of defining polynomial
Character \(\chi\) \(=\) 740.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.539189 q^{3} -1.00000 q^{5} +3.80098 q^{7} -2.70928 q^{9} +2.34017 q^{11} -4.04945 q^{13} +0.539189 q^{15} +6.78765 q^{17} +5.46081 q^{19} -2.04945 q^{21} -4.34017 q^{23} +1.00000 q^{25} +3.07838 q^{27} +7.75872 q^{29} -1.61757 q^{31} -1.26180 q^{33} -3.80098 q^{35} -1.00000 q^{37} +2.18342 q^{39} -3.07838 q^{41} +11.7587 q^{43} +2.70928 q^{45} -2.14116 q^{47} +7.44748 q^{49} -3.65983 q^{51} +14.0989 q^{53} -2.34017 q^{55} -2.94441 q^{57} -7.37629 q^{59} +14.9939 q^{61} -10.2979 q^{63} +4.04945 q^{65} +14.1145 q^{67} +2.34017 q^{69} -13.2618 q^{71} +4.34017 q^{73} -0.539189 q^{75} +8.89496 q^{77} -4.72261 q^{79} +6.46800 q^{81} -2.19902 q^{83} -6.78765 q^{85} -4.18342 q^{87} -16.2557 q^{89} -15.3919 q^{91} +0.872174 q^{93} -5.46081 q^{95} +4.92162 q^{97} -6.34017 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 3 q^{5} + 2 q^{7} - q^{9} - 4 q^{11} + 6 q^{13} + 10 q^{17} + 18 q^{19} + 12 q^{21} - 2 q^{23} + 3 q^{25} + 6 q^{27} - 2 q^{29} + 4 q^{33} - 2 q^{35} - 3 q^{37} + 2 q^{39} - 6 q^{41} + 10 q^{43}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.539189 −0.311301 −0.155650 0.987812i \(-0.549747\pi\)
−0.155650 + 0.987812i \(0.549747\pi\)
\(4\) 0 0
\(5\) −1.00000 −0.447214
\(6\) 0 0
\(7\) 3.80098 1.43664 0.718318 0.695714i \(-0.244912\pi\)
0.718318 + 0.695714i \(0.244912\pi\)
\(8\) 0 0
\(9\) −2.70928 −0.903092
\(10\) 0 0
\(11\) 2.34017 0.705589 0.352794 0.935701i \(-0.385232\pi\)
0.352794 + 0.935701i \(0.385232\pi\)
\(12\) 0 0
\(13\) −4.04945 −1.12311 −0.561557 0.827438i \(-0.689798\pi\)
−0.561557 + 0.827438i \(0.689798\pi\)
\(14\) 0 0
\(15\) 0.539189 0.139218
\(16\) 0 0
\(17\) 6.78765 1.64625 0.823124 0.567862i \(-0.192229\pi\)
0.823124 + 0.567862i \(0.192229\pi\)
\(18\) 0 0
\(19\) 5.46081 1.25280 0.626398 0.779503i \(-0.284528\pi\)
0.626398 + 0.779503i \(0.284528\pi\)
\(20\) 0 0
\(21\) −2.04945 −0.447226
\(22\) 0 0
\(23\) −4.34017 −0.904989 −0.452494 0.891767i \(-0.649466\pi\)
−0.452494 + 0.891767i \(0.649466\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 3.07838 0.592434
\(28\) 0 0
\(29\) 7.75872 1.44076 0.720379 0.693580i \(-0.243968\pi\)
0.720379 + 0.693580i \(0.243968\pi\)
\(30\) 0 0
\(31\) −1.61757 −0.290524 −0.145262 0.989393i \(-0.546402\pi\)
−0.145262 + 0.989393i \(0.546402\pi\)
\(32\) 0 0
\(33\) −1.26180 −0.219650
\(34\) 0 0
\(35\) −3.80098 −0.642484
\(36\) 0 0
\(37\) −1.00000 −0.164399
\(38\) 0 0
\(39\) 2.18342 0.349627
\(40\) 0 0
\(41\) −3.07838 −0.480762 −0.240381 0.970679i \(-0.577272\pi\)
−0.240381 + 0.970679i \(0.577272\pi\)
\(42\) 0 0
\(43\) 11.7587 1.79319 0.896594 0.442853i \(-0.146034\pi\)
0.896594 + 0.442853i \(0.146034\pi\)
\(44\) 0 0
\(45\) 2.70928 0.403875
\(46\) 0 0
\(47\) −2.14116 −0.312320 −0.156160 0.987732i \(-0.549912\pi\)
−0.156160 + 0.987732i \(0.549912\pi\)
\(48\) 0 0
\(49\) 7.44748 1.06393
\(50\) 0 0
\(51\) −3.65983 −0.512478
\(52\) 0 0
\(53\) 14.0989 1.93663 0.968316 0.249727i \(-0.0803410\pi\)
0.968316 + 0.249727i \(0.0803410\pi\)
\(54\) 0 0
\(55\) −2.34017 −0.315549
\(56\) 0 0
\(57\) −2.94441 −0.389996
\(58\) 0 0
\(59\) −7.37629 −0.960311 −0.480156 0.877183i \(-0.659420\pi\)
−0.480156 + 0.877183i \(0.659420\pi\)
\(60\) 0 0
\(61\) 14.9939 1.91977 0.959883 0.280400i \(-0.0904670\pi\)
0.959883 + 0.280400i \(0.0904670\pi\)
\(62\) 0 0
\(63\) −10.2979 −1.29742
\(64\) 0 0
\(65\) 4.04945 0.502272
\(66\) 0 0
\(67\) 14.1145 1.72436 0.862180 0.506602i \(-0.169099\pi\)
0.862180 + 0.506602i \(0.169099\pi\)
\(68\) 0 0
\(69\) 2.34017 0.281724
\(70\) 0 0
\(71\) −13.2618 −1.57389 −0.786943 0.617026i \(-0.788337\pi\)
−0.786943 + 0.617026i \(0.788337\pi\)
\(72\) 0 0
\(73\) 4.34017 0.507979 0.253989 0.967207i \(-0.418257\pi\)
0.253989 + 0.967207i \(0.418257\pi\)
\(74\) 0 0
\(75\) −0.539189 −0.0622602
\(76\) 0 0
\(77\) 8.89496 1.01367
\(78\) 0 0
\(79\) −4.72261 −0.531335 −0.265667 0.964065i \(-0.585592\pi\)
−0.265667 + 0.964065i \(0.585592\pi\)
\(80\) 0 0
\(81\) 6.46800 0.718667
\(82\) 0 0
\(83\) −2.19902 −0.241373 −0.120687 0.992691i \(-0.538510\pi\)
−0.120687 + 0.992691i \(0.538510\pi\)
\(84\) 0 0
\(85\) −6.78765 −0.736224
\(86\) 0 0
\(87\) −4.18342 −0.448509
\(88\) 0 0
\(89\) −16.2557 −1.72310 −0.861548 0.507676i \(-0.830505\pi\)
−0.861548 + 0.507676i \(0.830505\pi\)
\(90\) 0 0
\(91\) −15.3919 −1.61351
\(92\) 0 0
\(93\) 0.872174 0.0904402
\(94\) 0 0
\(95\) −5.46081 −0.560267
\(96\) 0 0
\(97\) 4.92162 0.499715 0.249858 0.968283i \(-0.419616\pi\)
0.249858 + 0.968283i \(0.419616\pi\)
\(98\) 0 0
\(99\) −6.34017 −0.637211
\(100\) 0 0
\(101\) −15.6514 −1.55737 −0.778687 0.627412i \(-0.784114\pi\)
−0.778687 + 0.627412i \(0.784114\pi\)
\(102\) 0 0
\(103\) 6.09890 0.600942 0.300471 0.953791i \(-0.402856\pi\)
0.300471 + 0.953791i \(0.402856\pi\)
\(104\) 0 0
\(105\) 2.04945 0.200006
\(106\) 0 0
\(107\) −19.3184 −1.86758 −0.933792 0.357817i \(-0.883521\pi\)
−0.933792 + 0.357817i \(0.883521\pi\)
\(108\) 0 0
\(109\) −5.41855 −0.519003 −0.259502 0.965743i \(-0.583558\pi\)
−0.259502 + 0.965743i \(0.583558\pi\)
\(110\) 0 0
\(111\) 0.539189 0.0511775
\(112\) 0 0
\(113\) −6.20620 −0.583831 −0.291915 0.956444i \(-0.594293\pi\)
−0.291915 + 0.956444i \(0.594293\pi\)
\(114\) 0 0
\(115\) 4.34017 0.404723
\(116\) 0 0
\(117\) 10.9711 1.01428
\(118\) 0 0
\(119\) 25.7998 2.36506
\(120\) 0 0
\(121\) −5.52359 −0.502145
\(122\) 0 0
\(123\) 1.65983 0.149662
\(124\) 0 0
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) −6.19902 −0.550074 −0.275037 0.961434i \(-0.588690\pi\)
−0.275037 + 0.961434i \(0.588690\pi\)
\(128\) 0 0
\(129\) −6.34017 −0.558221
\(130\) 0 0
\(131\) −5.64423 −0.493139 −0.246569 0.969125i \(-0.579303\pi\)
−0.246569 + 0.969125i \(0.579303\pi\)
\(132\) 0 0
\(133\) 20.7565 1.79981
\(134\) 0 0
\(135\) −3.07838 −0.264945
\(136\) 0 0
\(137\) 11.1773 0.954939 0.477469 0.878648i \(-0.341554\pi\)
0.477469 + 0.878648i \(0.341554\pi\)
\(138\) 0 0
\(139\) 4.58145 0.388593 0.194297 0.980943i \(-0.437758\pi\)
0.194297 + 0.980943i \(0.437758\pi\)
\(140\) 0 0
\(141\) 1.15449 0.0972254
\(142\) 0 0
\(143\) −9.47641 −0.792457
\(144\) 0 0
\(145\) −7.75872 −0.644327
\(146\) 0 0
\(147\) −4.01560 −0.331201
\(148\) 0 0
\(149\) −7.65142 −0.626828 −0.313414 0.949617i \(-0.601473\pi\)
−0.313414 + 0.949617i \(0.601473\pi\)
\(150\) 0 0
\(151\) −16.8638 −1.37235 −0.686177 0.727435i \(-0.740712\pi\)
−0.686177 + 0.727435i \(0.740712\pi\)
\(152\) 0 0
\(153\) −18.3896 −1.48671
\(154\) 0 0
\(155\) 1.61757 0.129926
\(156\) 0 0
\(157\) 14.4969 1.15698 0.578490 0.815689i \(-0.303642\pi\)
0.578490 + 0.815689i \(0.303642\pi\)
\(158\) 0 0
\(159\) −7.60197 −0.602875
\(160\) 0 0
\(161\) −16.4969 −1.30014
\(162\) 0 0
\(163\) −2.36683 −0.185385 −0.0926924 0.995695i \(-0.529547\pi\)
−0.0926924 + 0.995695i \(0.529547\pi\)
\(164\) 0 0
\(165\) 1.26180 0.0982306
\(166\) 0 0
\(167\) 2.68035 0.207411 0.103706 0.994608i \(-0.466930\pi\)
0.103706 + 0.994608i \(0.466930\pi\)
\(168\) 0 0
\(169\) 3.39803 0.261387
\(170\) 0 0
\(171\) −14.7948 −1.13139
\(172\) 0 0
\(173\) 6.76487 0.514323 0.257162 0.966368i \(-0.417213\pi\)
0.257162 + 0.966368i \(0.417213\pi\)
\(174\) 0 0
\(175\) 3.80098 0.287327
\(176\) 0 0
\(177\) 3.97721 0.298946
\(178\) 0 0
\(179\) 0.382433 0.0285844 0.0142922 0.999898i \(-0.495450\pi\)
0.0142922 + 0.999898i \(0.495450\pi\)
\(180\) 0 0
\(181\) −9.70928 −0.721685 −0.360842 0.932627i \(-0.617511\pi\)
−0.360842 + 0.932627i \(0.617511\pi\)
\(182\) 0 0
\(183\) −8.08452 −0.597625
\(184\) 0 0
\(185\) 1.00000 0.0735215
\(186\) 0 0
\(187\) 15.8843 1.16157
\(188\) 0 0
\(189\) 11.7009 0.851113
\(190\) 0 0
\(191\) 0.722606 0.0522860 0.0261430 0.999658i \(-0.491677\pi\)
0.0261430 + 0.999658i \(0.491677\pi\)
\(192\) 0 0
\(193\) −15.3607 −1.10569 −0.552843 0.833285i \(-0.686457\pi\)
−0.552843 + 0.833285i \(0.686457\pi\)
\(194\) 0 0
\(195\) −2.18342 −0.156358
\(196\) 0 0
\(197\) −8.92162 −0.635639 −0.317820 0.948151i \(-0.602951\pi\)
−0.317820 + 0.948151i \(0.602951\pi\)
\(198\) 0 0
\(199\) 21.8732 1.55055 0.775276 0.631623i \(-0.217611\pi\)
0.775276 + 0.631623i \(0.217611\pi\)
\(200\) 0 0
\(201\) −7.61038 −0.536795
\(202\) 0 0
\(203\) 29.4908 2.06985
\(204\) 0 0
\(205\) 3.07838 0.215003
\(206\) 0 0
\(207\) 11.7587 0.817288
\(208\) 0 0
\(209\) 12.7792 0.883959
\(210\) 0 0
\(211\) 4.31351 0.296954 0.148477 0.988916i \(-0.452563\pi\)
0.148477 + 0.988916i \(0.452563\pi\)
\(212\) 0 0
\(213\) 7.15061 0.489952
\(214\) 0 0
\(215\) −11.7587 −0.801938
\(216\) 0 0
\(217\) −6.14834 −0.417377
\(218\) 0 0
\(219\) −2.34017 −0.158134
\(220\) 0 0
\(221\) −27.4863 −1.84893
\(222\) 0 0
\(223\) −25.9988 −1.74101 −0.870503 0.492162i \(-0.836207\pi\)
−0.870503 + 0.492162i \(0.836207\pi\)
\(224\) 0 0
\(225\) −2.70928 −0.180618
\(226\) 0 0
\(227\) −22.7792 −1.51191 −0.755956 0.654623i \(-0.772827\pi\)
−0.755956 + 0.654623i \(0.772827\pi\)
\(228\) 0 0
\(229\) −25.1194 −1.65994 −0.829969 0.557810i \(-0.811642\pi\)
−0.829969 + 0.557810i \(0.811642\pi\)
\(230\) 0 0
\(231\) −4.79606 −0.315558
\(232\) 0 0
\(233\) 7.17727 0.470199 0.235099 0.971971i \(-0.424458\pi\)
0.235099 + 0.971971i \(0.424458\pi\)
\(234\) 0 0
\(235\) 2.14116 0.139674
\(236\) 0 0
\(237\) 2.54638 0.165405
\(238\) 0 0
\(239\) 10.9516 0.708400 0.354200 0.935170i \(-0.384753\pi\)
0.354200 + 0.935170i \(0.384753\pi\)
\(240\) 0 0
\(241\) 27.8576 1.79447 0.897234 0.441556i \(-0.145573\pi\)
0.897234 + 0.441556i \(0.145573\pi\)
\(242\) 0 0
\(243\) −12.7226 −0.816156
\(244\) 0 0
\(245\) −7.44748 −0.475802
\(246\) 0 0
\(247\) −22.1133 −1.40703
\(248\) 0 0
\(249\) 1.18568 0.0751397
\(250\) 0 0
\(251\) 23.4030 1.47718 0.738591 0.674154i \(-0.235492\pi\)
0.738591 + 0.674154i \(0.235492\pi\)
\(252\) 0 0
\(253\) −10.1568 −0.638550
\(254\) 0 0
\(255\) 3.65983 0.229187
\(256\) 0 0
\(257\) 3.95055 0.246429 0.123214 0.992380i \(-0.460680\pi\)
0.123214 + 0.992380i \(0.460680\pi\)
\(258\) 0 0
\(259\) −3.80098 −0.236182
\(260\) 0 0
\(261\) −21.0205 −1.30114
\(262\) 0 0
\(263\) −2.29791 −0.141695 −0.0708477 0.997487i \(-0.522570\pi\)
−0.0708477 + 0.997487i \(0.522570\pi\)
\(264\) 0 0
\(265\) −14.0989 −0.866088
\(266\) 0 0
\(267\) 8.76487 0.536401
\(268\) 0 0
\(269\) −5.61038 −0.342071 −0.171035 0.985265i \(-0.554711\pi\)
−0.171035 + 0.985265i \(0.554711\pi\)
\(270\) 0 0
\(271\) −14.7382 −0.895282 −0.447641 0.894213i \(-0.647736\pi\)
−0.447641 + 0.894213i \(0.647736\pi\)
\(272\) 0 0
\(273\) 8.29914 0.502287
\(274\) 0 0
\(275\) 2.34017 0.141118
\(276\) 0 0
\(277\) 15.9506 0.958376 0.479188 0.877712i \(-0.340931\pi\)
0.479188 + 0.877712i \(0.340931\pi\)
\(278\) 0 0
\(279\) 4.38243 0.262369
\(280\) 0 0
\(281\) 28.2245 1.68373 0.841865 0.539688i \(-0.181458\pi\)
0.841865 + 0.539688i \(0.181458\pi\)
\(282\) 0 0
\(283\) −23.4596 −1.39453 −0.697264 0.716815i \(-0.745599\pi\)
−0.697264 + 0.716815i \(0.745599\pi\)
\(284\) 0 0
\(285\) 2.94441 0.174412
\(286\) 0 0
\(287\) −11.7009 −0.690680
\(288\) 0 0
\(289\) 29.0722 1.71013
\(290\) 0 0
\(291\) −2.65368 −0.155562
\(292\) 0 0
\(293\) 1.68649 0.0985257 0.0492629 0.998786i \(-0.484313\pi\)
0.0492629 + 0.998786i \(0.484313\pi\)
\(294\) 0 0
\(295\) 7.37629 0.429464
\(296\) 0 0
\(297\) 7.20394 0.418015
\(298\) 0 0
\(299\) 17.5753 1.01641
\(300\) 0 0
\(301\) 44.6947 2.57616
\(302\) 0 0
\(303\) 8.43907 0.484812
\(304\) 0 0
\(305\) −14.9939 −0.858546
\(306\) 0 0
\(307\) 13.0628 0.745532 0.372766 0.927925i \(-0.378409\pi\)
0.372766 + 0.927925i \(0.378409\pi\)
\(308\) 0 0
\(309\) −3.28846 −0.187074
\(310\) 0 0
\(311\) −8.35577 −0.473812 −0.236906 0.971533i \(-0.576133\pi\)
−0.236906 + 0.971533i \(0.576133\pi\)
\(312\) 0 0
\(313\) −6.59583 −0.372818 −0.186409 0.982472i \(-0.559685\pi\)
−0.186409 + 0.982472i \(0.559685\pi\)
\(314\) 0 0
\(315\) 10.2979 0.580222
\(316\) 0 0
\(317\) 20.2245 1.13592 0.567959 0.823057i \(-0.307733\pi\)
0.567959 + 0.823057i \(0.307733\pi\)
\(318\) 0 0
\(319\) 18.1568 1.01658
\(320\) 0 0
\(321\) 10.4163 0.581380
\(322\) 0 0
\(323\) 37.0661 2.06241
\(324\) 0 0
\(325\) −4.04945 −0.224623
\(326\) 0 0
\(327\) 2.92162 0.161566
\(328\) 0 0
\(329\) −8.13850 −0.448690
\(330\) 0 0
\(331\) 6.63809 0.364862 0.182431 0.983219i \(-0.441603\pi\)
0.182431 + 0.983219i \(0.441603\pi\)
\(332\) 0 0
\(333\) 2.70928 0.148467
\(334\) 0 0
\(335\) −14.1145 −0.771157
\(336\) 0 0
\(337\) 10.8638 0.591787 0.295893 0.955221i \(-0.404383\pi\)
0.295893 + 0.955221i \(0.404383\pi\)
\(338\) 0 0
\(339\) 3.34632 0.181747
\(340\) 0 0
\(341\) −3.78539 −0.204990
\(342\) 0 0
\(343\) 1.70086 0.0918381
\(344\) 0 0
\(345\) −2.34017 −0.125991
\(346\) 0 0
\(347\) 26.8638 1.44212 0.721061 0.692871i \(-0.243655\pi\)
0.721061 + 0.692871i \(0.243655\pi\)
\(348\) 0 0
\(349\) −23.2846 −1.24640 −0.623198 0.782064i \(-0.714167\pi\)
−0.623198 + 0.782064i \(0.714167\pi\)
\(350\) 0 0
\(351\) −12.4657 −0.665372
\(352\) 0 0
\(353\) −0.156755 −0.00834325 −0.00417163 0.999991i \(-0.501328\pi\)
−0.00417163 + 0.999991i \(0.501328\pi\)
\(354\) 0 0
\(355\) 13.2618 0.703863
\(356\) 0 0
\(357\) −13.9109 −0.736245
\(358\) 0 0
\(359\) 2.34017 0.123510 0.0617548 0.998091i \(-0.480330\pi\)
0.0617548 + 0.998091i \(0.480330\pi\)
\(360\) 0 0
\(361\) 10.8205 0.569498
\(362\) 0 0
\(363\) 2.97826 0.156318
\(364\) 0 0
\(365\) −4.34017 −0.227175
\(366\) 0 0
\(367\) −3.77432 −0.197018 −0.0985090 0.995136i \(-0.531407\pi\)
−0.0985090 + 0.995136i \(0.531407\pi\)
\(368\) 0 0
\(369\) 8.34017 0.434172
\(370\) 0 0
\(371\) 53.5897 2.78224
\(372\) 0 0
\(373\) 24.3402 1.26029 0.630143 0.776479i \(-0.282996\pi\)
0.630143 + 0.776479i \(0.282996\pi\)
\(374\) 0 0
\(375\) 0.539189 0.0278436
\(376\) 0 0
\(377\) −31.4186 −1.61814
\(378\) 0 0
\(379\) −4.28231 −0.219968 −0.109984 0.993933i \(-0.535080\pi\)
−0.109984 + 0.993933i \(0.535080\pi\)
\(380\) 0 0
\(381\) 3.34244 0.171238
\(382\) 0 0
\(383\) −18.9627 −0.968947 −0.484473 0.874806i \(-0.660989\pi\)
−0.484473 + 0.874806i \(0.660989\pi\)
\(384\) 0 0
\(385\) −8.89496 −0.453329
\(386\) 0 0
\(387\) −31.8576 −1.61941
\(388\) 0 0
\(389\) −3.88882 −0.197171 −0.0985854 0.995129i \(-0.531432\pi\)
−0.0985854 + 0.995129i \(0.531432\pi\)
\(390\) 0 0
\(391\) −29.4596 −1.48984
\(392\) 0 0
\(393\) 3.04331 0.153514
\(394\) 0 0
\(395\) 4.72261 0.237620
\(396\) 0 0
\(397\) 7.20847 0.361783 0.180891 0.983503i \(-0.442102\pi\)
0.180891 + 0.983503i \(0.442102\pi\)
\(398\) 0 0
\(399\) −11.1917 −0.560283
\(400\) 0 0
\(401\) 24.8371 1.24031 0.620153 0.784481i \(-0.287071\pi\)
0.620153 + 0.784481i \(0.287071\pi\)
\(402\) 0 0
\(403\) 6.55025 0.326291
\(404\) 0 0
\(405\) −6.46800 −0.321397
\(406\) 0 0
\(407\) −2.34017 −0.115998
\(408\) 0 0
\(409\) −8.07223 −0.399146 −0.199573 0.979883i \(-0.563956\pi\)
−0.199573 + 0.979883i \(0.563956\pi\)
\(410\) 0 0
\(411\) −6.02666 −0.297273
\(412\) 0 0
\(413\) −28.0372 −1.37962
\(414\) 0 0
\(415\) 2.19902 0.107945
\(416\) 0 0
\(417\) −2.47027 −0.120969
\(418\) 0 0
\(419\) −38.9048 −1.90062 −0.950312 0.311299i \(-0.899236\pi\)
−0.950312 + 0.311299i \(0.899236\pi\)
\(420\) 0 0
\(421\) −26.2967 −1.28162 −0.640811 0.767699i \(-0.721402\pi\)
−0.640811 + 0.767699i \(0.721402\pi\)
\(422\) 0 0
\(423\) 5.80098 0.282053
\(424\) 0 0
\(425\) 6.78765 0.329250
\(426\) 0 0
\(427\) 56.9914 2.75801
\(428\) 0 0
\(429\) 5.10957 0.246693
\(430\) 0 0
\(431\) −13.9311 −0.671036 −0.335518 0.942034i \(-0.608911\pi\)
−0.335518 + 0.942034i \(0.608911\pi\)
\(432\) 0 0
\(433\) 16.5548 0.795572 0.397786 0.917478i \(-0.369779\pi\)
0.397786 + 0.917478i \(0.369779\pi\)
\(434\) 0 0
\(435\) 4.18342 0.200580
\(436\) 0 0
\(437\) −23.7009 −1.13377
\(438\) 0 0
\(439\) −5.00946 −0.239088 −0.119544 0.992829i \(-0.538143\pi\)
−0.119544 + 0.992829i \(0.538143\pi\)
\(440\) 0 0
\(441\) −20.1773 −0.960823
\(442\) 0 0
\(443\) −18.3701 −0.872792 −0.436396 0.899755i \(-0.643745\pi\)
−0.436396 + 0.899755i \(0.643745\pi\)
\(444\) 0 0
\(445\) 16.2557 0.770592
\(446\) 0 0
\(447\) 4.12556 0.195132
\(448\) 0 0
\(449\) −9.28846 −0.438349 −0.219175 0.975686i \(-0.570336\pi\)
−0.219175 + 0.975686i \(0.570336\pi\)
\(450\) 0 0
\(451\) −7.20394 −0.339220
\(452\) 0 0
\(453\) 9.09275 0.427215
\(454\) 0 0
\(455\) 15.3919 0.721583
\(456\) 0 0
\(457\) 33.0661 1.54677 0.773383 0.633939i \(-0.218563\pi\)
0.773383 + 0.633939i \(0.218563\pi\)
\(458\) 0 0
\(459\) 20.8950 0.975293
\(460\) 0 0
\(461\) −28.6537 −1.33454 −0.667268 0.744818i \(-0.732536\pi\)
−0.667268 + 0.744818i \(0.732536\pi\)
\(462\) 0 0
\(463\) −1.40417 −0.0652575 −0.0326288 0.999468i \(-0.510388\pi\)
−0.0326288 + 0.999468i \(0.510388\pi\)
\(464\) 0 0
\(465\) −0.872174 −0.0404461
\(466\) 0 0
\(467\) 26.7259 1.23673 0.618364 0.785892i \(-0.287796\pi\)
0.618364 + 0.785892i \(0.287796\pi\)
\(468\) 0 0
\(469\) 53.6490 2.47728
\(470\) 0 0
\(471\) −7.81658 −0.360169
\(472\) 0 0
\(473\) 27.5174 1.26525
\(474\) 0 0
\(475\) 5.46081 0.250559
\(476\) 0 0
\(477\) −38.1978 −1.74896
\(478\) 0 0
\(479\) −26.7226 −1.22099 −0.610494 0.792021i \(-0.709029\pi\)
−0.610494 + 0.792021i \(0.709029\pi\)
\(480\) 0 0
\(481\) 4.04945 0.184639
\(482\) 0 0
\(483\) 8.89496 0.404735
\(484\) 0 0
\(485\) −4.92162 −0.223479
\(486\) 0 0
\(487\) 30.5814 1.38578 0.692889 0.721044i \(-0.256338\pi\)
0.692889 + 0.721044i \(0.256338\pi\)
\(488\) 0 0
\(489\) 1.27617 0.0577105
\(490\) 0 0
\(491\) −23.9299 −1.07994 −0.539970 0.841685i \(-0.681564\pi\)
−0.539970 + 0.841685i \(0.681564\pi\)
\(492\) 0 0
\(493\) 52.6635 2.37185
\(494\) 0 0
\(495\) 6.34017 0.284970
\(496\) 0 0
\(497\) −50.4079 −2.26110
\(498\) 0 0
\(499\) 43.1617 1.93218 0.966091 0.258202i \(-0.0831300\pi\)
0.966091 + 0.258202i \(0.0831300\pi\)
\(500\) 0 0
\(501\) −1.44521 −0.0645673
\(502\) 0 0
\(503\) −5.11942 −0.228263 −0.114132 0.993466i \(-0.536409\pi\)
−0.114132 + 0.993466i \(0.536409\pi\)
\(504\) 0 0
\(505\) 15.6514 0.696479
\(506\) 0 0
\(507\) −1.83218 −0.0813700
\(508\) 0 0
\(509\) −13.8843 −0.615410 −0.307705 0.951482i \(-0.599561\pi\)
−0.307705 + 0.951482i \(0.599561\pi\)
\(510\) 0 0
\(511\) 16.4969 0.729781
\(512\) 0 0
\(513\) 16.8104 0.742199
\(514\) 0 0
\(515\) −6.09890 −0.268749
\(516\) 0 0
\(517\) −5.01068 −0.220369
\(518\) 0 0
\(519\) −3.64754 −0.160109
\(520\) 0 0
\(521\) 13.4413 0.588876 0.294438 0.955671i \(-0.404868\pi\)
0.294438 + 0.955671i \(0.404868\pi\)
\(522\) 0 0
\(523\) −15.3919 −0.673040 −0.336520 0.941676i \(-0.609250\pi\)
−0.336520 + 0.941676i \(0.609250\pi\)
\(524\) 0 0
\(525\) −2.04945 −0.0894453
\(526\) 0 0
\(527\) −10.9795 −0.478274
\(528\) 0 0
\(529\) −4.16290 −0.180996
\(530\) 0 0
\(531\) 19.9844 0.867249
\(532\) 0 0
\(533\) 12.4657 0.539951
\(534\) 0 0
\(535\) 19.3184 0.835209
\(536\) 0 0
\(537\) −0.206204 −0.00889835
\(538\) 0 0
\(539\) 17.4284 0.750694
\(540\) 0 0
\(541\) 46.1666 1.98486 0.992429 0.122824i \(-0.0391950\pi\)
0.992429 + 0.122824i \(0.0391950\pi\)
\(542\) 0 0
\(543\) 5.23513 0.224661
\(544\) 0 0
\(545\) 5.41855 0.232105
\(546\) 0 0
\(547\) −19.2306 −0.822241 −0.411121 0.911581i \(-0.634862\pi\)
−0.411121 + 0.911581i \(0.634862\pi\)
\(548\) 0 0
\(549\) −40.6225 −1.73373
\(550\) 0 0
\(551\) 42.3689 1.80498
\(552\) 0 0
\(553\) −17.9506 −0.763335
\(554\) 0 0
\(555\) −0.539189 −0.0228873
\(556\) 0 0
\(557\) 4.63090 0.196217 0.0981087 0.995176i \(-0.468721\pi\)
0.0981087 + 0.995176i \(0.468721\pi\)
\(558\) 0 0
\(559\) −47.6163 −2.01396
\(560\) 0 0
\(561\) −8.56463 −0.361599
\(562\) 0 0
\(563\) −16.3857 −0.690577 −0.345288 0.938497i \(-0.612219\pi\)
−0.345288 + 0.938497i \(0.612219\pi\)
\(564\) 0 0
\(565\) 6.20620 0.261097
\(566\) 0 0
\(567\) 24.5848 1.03246
\(568\) 0 0
\(569\) 6.13009 0.256987 0.128493 0.991710i \(-0.458986\pi\)
0.128493 + 0.991710i \(0.458986\pi\)
\(570\) 0 0
\(571\) −19.3028 −0.807798 −0.403899 0.914803i \(-0.632345\pi\)
−0.403899 + 0.914803i \(0.632345\pi\)
\(572\) 0 0
\(573\) −0.389621 −0.0162767
\(574\) 0 0
\(575\) −4.34017 −0.180998
\(576\) 0 0
\(577\) −28.2472 −1.17595 −0.587974 0.808880i \(-0.700074\pi\)
−0.587974 + 0.808880i \(0.700074\pi\)
\(578\) 0 0
\(579\) 8.28231 0.344201
\(580\) 0 0
\(581\) −8.35842 −0.346766
\(582\) 0 0
\(583\) 32.9939 1.36647
\(584\) 0 0
\(585\) −10.9711 −0.453598
\(586\) 0 0
\(587\) 3.34632 0.138117 0.0690586 0.997613i \(-0.478000\pi\)
0.0690586 + 0.997613i \(0.478000\pi\)
\(588\) 0 0
\(589\) −8.83323 −0.363967
\(590\) 0 0
\(591\) 4.81044 0.197875
\(592\) 0 0
\(593\) 20.3090 0.833990 0.416995 0.908909i \(-0.363083\pi\)
0.416995 + 0.908909i \(0.363083\pi\)
\(594\) 0 0
\(595\) −25.7998 −1.05769
\(596\) 0 0
\(597\) −11.7938 −0.482688
\(598\) 0 0
\(599\) 0.130094 0.00531548 0.00265774 0.999996i \(-0.499154\pi\)
0.00265774 + 0.999996i \(0.499154\pi\)
\(600\) 0 0
\(601\) −39.1689 −1.59773 −0.798866 0.601510i \(-0.794566\pi\)
−0.798866 + 0.601510i \(0.794566\pi\)
\(602\) 0 0
\(603\) −38.2401 −1.55726
\(604\) 0 0
\(605\) 5.52359 0.224566
\(606\) 0 0
\(607\) −25.6020 −1.03915 −0.519576 0.854424i \(-0.673910\pi\)
−0.519576 + 0.854424i \(0.673910\pi\)
\(608\) 0 0
\(609\) −15.9011 −0.644345
\(610\) 0 0
\(611\) 8.67050 0.350771
\(612\) 0 0
\(613\) −17.8310 −0.720186 −0.360093 0.932916i \(-0.617255\pi\)
−0.360093 + 0.932916i \(0.617255\pi\)
\(614\) 0 0
\(615\) −1.65983 −0.0669307
\(616\) 0 0
\(617\) −8.21008 −0.330525 −0.165263 0.986250i \(-0.552847\pi\)
−0.165263 + 0.986250i \(0.552847\pi\)
\(618\) 0 0
\(619\) 4.36683 0.175518 0.0877590 0.996142i \(-0.472029\pi\)
0.0877590 + 0.996142i \(0.472029\pi\)
\(620\) 0 0
\(621\) −13.3607 −0.536146
\(622\) 0 0
\(623\) −61.7875 −2.47546
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) −6.89043 −0.275177
\(628\) 0 0
\(629\) −6.78765 −0.270641
\(630\) 0 0
\(631\) −13.0940 −0.521263 −0.260631 0.965438i \(-0.583931\pi\)
−0.260631 + 0.965438i \(0.583931\pi\)
\(632\) 0 0
\(633\) −2.32580 −0.0924421
\(634\) 0 0
\(635\) 6.19902 0.246000
\(636\) 0 0
\(637\) −30.1582 −1.19491
\(638\) 0 0
\(639\) 35.9299 1.42136
\(640\) 0 0
\(641\) 32.1171 1.26855 0.634276 0.773107i \(-0.281298\pi\)
0.634276 + 0.773107i \(0.281298\pi\)
\(642\) 0 0
\(643\) −4.95282 −0.195320 −0.0976601 0.995220i \(-0.531136\pi\)
−0.0976601 + 0.995220i \(0.531136\pi\)
\(644\) 0 0
\(645\) 6.34017 0.249644
\(646\) 0 0
\(647\) 18.3812 0.722640 0.361320 0.932442i \(-0.382326\pi\)
0.361320 + 0.932442i \(0.382326\pi\)
\(648\) 0 0
\(649\) −17.2618 −0.677585
\(650\) 0 0
\(651\) 3.31512 0.129930
\(652\) 0 0
\(653\) −4.57691 −0.179109 −0.0895543 0.995982i \(-0.528544\pi\)
−0.0895543 + 0.995982i \(0.528544\pi\)
\(654\) 0 0
\(655\) 5.64423 0.220538
\(656\) 0 0
\(657\) −11.7587 −0.458752
\(658\) 0 0
\(659\) −5.62863 −0.219260 −0.109630 0.993972i \(-0.534967\pi\)
−0.109630 + 0.993972i \(0.534967\pi\)
\(660\) 0 0
\(661\) −14.9939 −0.583193 −0.291597 0.956541i \(-0.594187\pi\)
−0.291597 + 0.956541i \(0.594187\pi\)
\(662\) 0 0
\(663\) 14.8203 0.575572
\(664\) 0 0
\(665\) −20.7565 −0.804901
\(666\) 0 0
\(667\) −33.6742 −1.30387
\(668\) 0 0
\(669\) 14.0183 0.541977
\(670\) 0 0
\(671\) 35.0882 1.35457
\(672\) 0 0
\(673\) −28.8371 −1.11159 −0.555794 0.831320i \(-0.687586\pi\)
−0.555794 + 0.831320i \(0.687586\pi\)
\(674\) 0 0
\(675\) 3.07838 0.118487
\(676\) 0 0
\(677\) 13.3340 0.512468 0.256234 0.966615i \(-0.417518\pi\)
0.256234 + 0.966615i \(0.417518\pi\)
\(678\) 0 0
\(679\) 18.7070 0.717909
\(680\) 0 0
\(681\) 12.2823 0.470659
\(682\) 0 0
\(683\) −20.6537 −0.790291 −0.395146 0.918618i \(-0.629306\pi\)
−0.395146 + 0.918618i \(0.629306\pi\)
\(684\) 0 0
\(685\) −11.1773 −0.427062
\(686\) 0 0
\(687\) 13.5441 0.516740
\(688\) 0 0
\(689\) −57.0928 −2.17506
\(690\) 0 0
\(691\) 30.7070 1.16815 0.584075 0.811700i \(-0.301457\pi\)
0.584075 + 0.811700i \(0.301457\pi\)
\(692\) 0 0
\(693\) −24.0989 −0.915441
\(694\) 0 0
\(695\) −4.58145 −0.173784
\(696\) 0 0
\(697\) −20.8950 −0.791453
\(698\) 0 0
\(699\) −3.86991 −0.146373
\(700\) 0 0
\(701\) −0.424694 −0.0160405 −0.00802023 0.999968i \(-0.502553\pi\)
−0.00802023 + 0.999968i \(0.502553\pi\)
\(702\) 0 0
\(703\) −5.46081 −0.205958
\(704\) 0 0
\(705\) −1.15449 −0.0434805
\(706\) 0 0
\(707\) −59.4908 −2.23738
\(708\) 0 0
\(709\) 36.9048 1.38599 0.692994 0.720943i \(-0.256291\pi\)
0.692994 + 0.720943i \(0.256291\pi\)
\(710\) 0 0
\(711\) 12.7948 0.479844
\(712\) 0 0
\(713\) 7.02052 0.262920
\(714\) 0 0
\(715\) 9.47641 0.354398
\(716\) 0 0
\(717\) −5.90498 −0.220525
\(718\) 0 0
\(719\) −10.0722 −0.375631 −0.187815 0.982204i \(-0.560141\pi\)
−0.187815 + 0.982204i \(0.560141\pi\)
\(720\) 0 0
\(721\) 23.1818 0.863336
\(722\) 0 0
\(723\) −15.0205 −0.558619
\(724\) 0 0
\(725\) 7.75872 0.288152
\(726\) 0 0
\(727\) −38.8638 −1.44138 −0.720689 0.693259i \(-0.756174\pi\)
−0.720689 + 0.693259i \(0.756174\pi\)
\(728\) 0 0
\(729\) −12.5441 −0.464597
\(730\) 0 0
\(731\) 79.8141 2.95203
\(732\) 0 0
\(733\) −36.6681 −1.35437 −0.677183 0.735815i \(-0.736799\pi\)
−0.677183 + 0.735815i \(0.736799\pi\)
\(734\) 0 0
\(735\) 4.01560 0.148118
\(736\) 0 0
\(737\) 33.0304 1.21669
\(738\) 0 0
\(739\) 51.7152 1.90238 0.951188 0.308612i \(-0.0998645\pi\)
0.951188 + 0.308612i \(0.0998645\pi\)
\(740\) 0 0
\(741\) 11.9232 0.438011
\(742\) 0 0
\(743\) 16.3291 0.599057 0.299528 0.954087i \(-0.403171\pi\)
0.299528 + 0.954087i \(0.403171\pi\)
\(744\) 0 0
\(745\) 7.65142 0.280326
\(746\) 0 0
\(747\) 5.95774 0.217982
\(748\) 0 0
\(749\) −73.4291 −2.68304
\(750\) 0 0
\(751\) −12.0845 −0.440970 −0.220485 0.975390i \(-0.570764\pi\)
−0.220485 + 0.975390i \(0.570764\pi\)
\(752\) 0 0
\(753\) −12.6186 −0.459848
\(754\) 0 0
\(755\) 16.8638 0.613735
\(756\) 0 0
\(757\) 2.62702 0.0954807 0.0477404 0.998860i \(-0.484798\pi\)
0.0477404 + 0.998860i \(0.484798\pi\)
\(758\) 0 0
\(759\) 5.47641 0.198781
\(760\) 0 0
\(761\) −31.3607 −1.13682 −0.568412 0.822744i \(-0.692442\pi\)
−0.568412 + 0.822744i \(0.692442\pi\)
\(762\) 0 0
\(763\) −20.5958 −0.745619
\(764\) 0 0
\(765\) 18.3896 0.664878
\(766\) 0 0
\(767\) 29.8699 1.07854
\(768\) 0 0
\(769\) −10.0000 −0.360609 −0.180305 0.983611i \(-0.557708\pi\)
−0.180305 + 0.983611i \(0.557708\pi\)
\(770\) 0 0
\(771\) −2.13009 −0.0767134
\(772\) 0 0
\(773\) −7.56093 −0.271948 −0.135974 0.990712i \(-0.543416\pi\)
−0.135974 + 0.990712i \(0.543416\pi\)
\(774\) 0 0
\(775\) −1.61757 −0.0581047
\(776\) 0 0
\(777\) 2.04945 0.0735235
\(778\) 0 0
\(779\) −16.8104 −0.602296
\(780\) 0 0
\(781\) −31.0349 −1.11052
\(782\) 0 0
\(783\) 23.8843 0.853555
\(784\) 0 0
\(785\) −14.4969 −0.517418
\(786\) 0 0
\(787\) −23.8999 −0.851939 −0.425969 0.904738i \(-0.640067\pi\)
−0.425969 + 0.904738i \(0.640067\pi\)
\(788\) 0 0
\(789\) 1.23901 0.0441099
\(790\) 0 0
\(791\) −23.5897 −0.838753
\(792\) 0 0
\(793\) −60.7168 −2.15612
\(794\) 0 0
\(795\) 7.60197 0.269614
\(796\) 0 0
\(797\) −3.99612 −0.141550 −0.0707750 0.997492i \(-0.522547\pi\)
−0.0707750 + 0.997492i \(0.522547\pi\)
\(798\) 0 0
\(799\) −14.5334 −0.514156
\(800\) 0 0
\(801\) 44.0410 1.55611
\(802\) 0 0
\(803\) 10.1568 0.358424
\(804\) 0 0
\(805\) 16.4969 0.581440
\(806\) 0 0
\(807\) 3.02505 0.106487
\(808\) 0 0
\(809\) −35.3607 −1.24322 −0.621608 0.783329i \(-0.713520\pi\)
−0.621608 + 0.783329i \(0.713520\pi\)
\(810\) 0 0
\(811\) −1.84324 −0.0647251 −0.0323625 0.999476i \(-0.510303\pi\)
−0.0323625 + 0.999476i \(0.510303\pi\)
\(812\) 0 0
\(813\) 7.94668 0.278702
\(814\) 0 0
\(815\) 2.36683 0.0829066
\(816\) 0 0
\(817\) 64.2122 2.24650
\(818\) 0 0
\(819\) 41.7009 1.45715
\(820\) 0 0
\(821\) −11.4764 −0.400529 −0.200265 0.979742i \(-0.564180\pi\)
−0.200265 + 0.979742i \(0.564180\pi\)
\(822\) 0 0
\(823\) −30.4235 −1.06050 −0.530248 0.847843i \(-0.677901\pi\)
−0.530248 + 0.847843i \(0.677901\pi\)
\(824\) 0 0
\(825\) −1.26180 −0.0439301
\(826\) 0 0
\(827\) −0.738205 −0.0256699 −0.0128349 0.999918i \(-0.504086\pi\)
−0.0128349 + 0.999918i \(0.504086\pi\)
\(828\) 0 0
\(829\) −34.1445 −1.18589 −0.592943 0.805244i \(-0.702034\pi\)
−0.592943 + 0.805244i \(0.702034\pi\)
\(830\) 0 0
\(831\) −8.60036 −0.298343
\(832\) 0 0
\(833\) 50.5509 1.75149
\(834\) 0 0
\(835\) −2.68035 −0.0927572
\(836\) 0 0
\(837\) −4.97948 −0.172116
\(838\) 0 0
\(839\) −26.3545 −0.909860 −0.454930 0.890527i \(-0.650336\pi\)
−0.454930 + 0.890527i \(0.650336\pi\)
\(840\) 0 0
\(841\) 31.1978 1.07579
\(842\) 0 0
\(843\) −15.2183 −0.524147
\(844\) 0 0
\(845\) −3.39803 −0.116896
\(846\) 0 0
\(847\) −20.9951 −0.721399
\(848\) 0 0
\(849\) 12.6491 0.434118
\(850\) 0 0
\(851\) 4.34017 0.148779
\(852\) 0 0
\(853\) 18.7936 0.643481 0.321741 0.946828i \(-0.395732\pi\)
0.321741 + 0.946828i \(0.395732\pi\)
\(854\) 0 0
\(855\) 14.7948 0.505973
\(856\) 0 0
\(857\) 39.4452 1.34742 0.673711 0.738995i \(-0.264699\pi\)
0.673711 + 0.738995i \(0.264699\pi\)
\(858\) 0 0
\(859\) −30.0521 −1.02536 −0.512682 0.858578i \(-0.671348\pi\)
−0.512682 + 0.858578i \(0.671348\pi\)
\(860\) 0 0
\(861\) 6.30898 0.215009
\(862\) 0 0
\(863\) 0.821503 0.0279643 0.0139821 0.999902i \(-0.495549\pi\)
0.0139821 + 0.999902i \(0.495549\pi\)
\(864\) 0 0
\(865\) −6.76487 −0.230012
\(866\) 0 0
\(867\) −15.6754 −0.532365
\(868\) 0 0
\(869\) −11.0517 −0.374904
\(870\) 0 0
\(871\) −57.1559 −1.93665
\(872\) 0 0
\(873\) −13.3340 −0.451289
\(874\) 0 0
\(875\) −3.80098 −0.128497
\(876\) 0 0
\(877\) −10.4436 −0.352655 −0.176328 0.984332i \(-0.556422\pi\)
−0.176328 + 0.984332i \(0.556422\pi\)
\(878\) 0 0
\(879\) −0.909336 −0.0306711
\(880\) 0 0
\(881\) 11.9649 0.403109 0.201554 0.979477i \(-0.435401\pi\)
0.201554 + 0.979477i \(0.435401\pi\)
\(882\) 0 0
\(883\) 43.2905 1.45684 0.728421 0.685129i \(-0.240254\pi\)
0.728421 + 0.685129i \(0.240254\pi\)
\(884\) 0 0
\(885\) −3.97721 −0.133693
\(886\) 0 0
\(887\) 8.19902 0.275296 0.137648 0.990481i \(-0.456046\pi\)
0.137648 + 0.990481i \(0.456046\pi\)
\(888\) 0 0
\(889\) −23.5624 −0.790256
\(890\) 0 0
\(891\) 15.1362 0.507083
\(892\) 0 0
\(893\) −11.6925 −0.391273
\(894\) 0 0
\(895\) −0.382433 −0.0127833
\(896\) 0 0
\(897\) −9.47641 −0.316408
\(898\) 0 0
\(899\) −12.5503 −0.418574
\(900\) 0 0
\(901\) 95.6984 3.18818
\(902\) 0 0
\(903\) −24.0989 −0.801961
\(904\) 0 0
\(905\) 9.70928 0.322747
\(906\) 0 0
\(907\) −23.4596 −0.778963 −0.389481 0.921034i \(-0.627346\pi\)
−0.389481 + 0.921034i \(0.627346\pi\)
\(908\) 0 0
\(909\) 42.4040 1.40645
\(910\) 0 0
\(911\) −13.5864 −0.450137 −0.225068 0.974343i \(-0.572261\pi\)
−0.225068 + 0.974343i \(0.572261\pi\)
\(912\) 0 0
\(913\) −5.14608 −0.170310
\(914\) 0 0
\(915\) 8.08452 0.267266
\(916\) 0 0
\(917\) −21.4536 −0.708461
\(918\) 0 0
\(919\) 27.4896 0.906797 0.453399 0.891308i \(-0.350211\pi\)
0.453399 + 0.891308i \(0.350211\pi\)
\(920\) 0 0
\(921\) −7.04331 −0.232085
\(922\) 0 0
\(923\) 53.7030 1.76765
\(924\) 0 0
\(925\) −1.00000 −0.0328798
\(926\) 0 0
\(927\) −16.5236 −0.542706
\(928\) 0 0
\(929\) 17.8622 0.586038 0.293019 0.956107i \(-0.405340\pi\)
0.293019 + 0.956107i \(0.405340\pi\)
\(930\) 0 0
\(931\) 40.6693 1.33288
\(932\) 0 0
\(933\) 4.50534 0.147498
\(934\) 0 0
\(935\) −15.8843 −0.519472
\(936\) 0 0
\(937\) −52.4678 −1.71405 −0.857025 0.515276i \(-0.827690\pi\)
−0.857025 + 0.515276i \(0.827690\pi\)
\(938\) 0 0
\(939\) 3.55640 0.116059
\(940\) 0 0
\(941\) 17.0121 0.554579 0.277289 0.960786i \(-0.410564\pi\)
0.277289 + 0.960786i \(0.410564\pi\)
\(942\) 0 0
\(943\) 13.3607 0.435084
\(944\) 0 0
\(945\) −11.7009 −0.380629
\(946\) 0 0
\(947\) −4.79153 −0.155704 −0.0778519 0.996965i \(-0.524806\pi\)
−0.0778519 + 0.996965i \(0.524806\pi\)
\(948\) 0 0
\(949\) −17.5753 −0.570519
\(950\) 0 0
\(951\) −10.9048 −0.353612
\(952\) 0 0
\(953\) 40.0944 1.29878 0.649392 0.760454i \(-0.275024\pi\)
0.649392 + 0.760454i \(0.275024\pi\)
\(954\) 0 0
\(955\) −0.722606 −0.0233830
\(956\) 0 0
\(957\) −9.78992 −0.316463
\(958\) 0 0
\(959\) 42.4846 1.37190
\(960\) 0 0
\(961\) −28.3835 −0.915596
\(962\) 0 0
\(963\) 52.3390 1.68660
\(964\) 0 0
\(965\) 15.3607 0.494478
\(966\) 0 0
\(967\) −44.3090 −1.42488 −0.712440 0.701733i \(-0.752410\pi\)
−0.712440 + 0.701733i \(0.752410\pi\)
\(968\) 0 0
\(969\) −19.9856 −0.642031
\(970\) 0 0
\(971\) 53.8187 1.72712 0.863562 0.504243i \(-0.168228\pi\)
0.863562 + 0.504243i \(0.168228\pi\)
\(972\) 0 0
\(973\) 17.4140 0.558268
\(974\) 0 0
\(975\) 2.18342 0.0699253
\(976\) 0 0
\(977\) −7.39189 −0.236487 −0.118244 0.992985i \(-0.537726\pi\)
−0.118244 + 0.992985i \(0.537726\pi\)
\(978\) 0 0
\(979\) −38.0410 −1.21580
\(980\) 0 0
\(981\) 14.6803 0.468707
\(982\) 0 0
\(983\) 1.02174 0.0325885 0.0162942 0.999867i \(-0.494813\pi\)
0.0162942 + 0.999867i \(0.494813\pi\)
\(984\) 0 0
\(985\) 8.92162 0.284267
\(986\) 0 0
\(987\) 4.38819 0.139678
\(988\) 0 0
\(989\) −51.0349 −1.62282
\(990\) 0 0
\(991\) 47.1494 1.49775 0.748875 0.662711i \(-0.230594\pi\)
0.748875 + 0.662711i \(0.230594\pi\)
\(992\) 0 0
\(993\) −3.57918 −0.113582
\(994\) 0 0
\(995\) −21.8732 −0.693428
\(996\) 0 0
\(997\) 7.04718 0.223186 0.111593 0.993754i \(-0.464405\pi\)
0.111593 + 0.993754i \(0.464405\pi\)
\(998\) 0 0
\(999\) −3.07838 −0.0973956
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 740.2.a.e.1.2 3
3.2 odd 2 6660.2.a.q.1.3 3
4.3 odd 2 2960.2.a.t.1.2 3
5.2 odd 4 3700.2.d.h.149.4 6
5.3 odd 4 3700.2.d.h.149.3 6
5.4 even 2 3700.2.a.i.1.2 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
740.2.a.e.1.2 3 1.1 even 1 trivial
2960.2.a.t.1.2 3 4.3 odd 2
3700.2.a.i.1.2 3 5.4 even 2
3700.2.d.h.149.3 6 5.3 odd 4
3700.2.d.h.149.4 6 5.2 odd 4
6660.2.a.q.1.3 3 3.2 odd 2