Properties

Label 740.2.a.e.1.1
Level $740$
Weight $2$
Character 740.1
Self dual yes
Analytic conductor $5.909$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [740,2,Mod(1,740)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("740.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(740, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 740 = 2^{2} \cdot 5 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 740.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(5.90892974957\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.148.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 3x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-1.48119\) of defining polynomial
Character \(\chi\) \(=\) 740.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.67513 q^{3} -1.00000 q^{5} -4.63752 q^{7} -0.193937 q^{9} -4.96239 q^{11} +5.76845 q^{13} +1.67513 q^{15} +6.54420 q^{17} +4.32487 q^{19} +7.76845 q^{21} +2.96239 q^{23} +1.00000 q^{25} +5.35026 q^{27} -4.57452 q^{29} -5.02539 q^{31} +8.31265 q^{33} +4.63752 q^{35} -1.00000 q^{37} -9.66291 q^{39} -5.35026 q^{41} -0.574515 q^{43} +0.193937 q^{45} +13.5999 q^{47} +14.5066 q^{49} -10.9624 q^{51} -5.53690 q^{53} +4.96239 q^{55} -7.24472 q^{57} +1.54912 q^{59} +9.47627 q^{61} +0.899385 q^{63} -5.76845 q^{65} +14.7635 q^{67} -4.96239 q^{69} -3.68735 q^{71} -2.96239 q^{73} -1.67513 q^{75} +23.0132 q^{77} +5.98778 q^{79} -8.38058 q^{81} -10.6375 q^{83} -6.54420 q^{85} +7.66291 q^{87} -1.16362 q^{89} -26.7513 q^{91} +8.41819 q^{93} -4.32487 q^{95} +2.64974 q^{97} +0.962389 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 3 q^{5} + 2 q^{7} - q^{9} - 4 q^{11} + 6 q^{13} + 10 q^{17} + 18 q^{19} + 12 q^{21} - 2 q^{23} + 3 q^{25} + 6 q^{27} - 2 q^{29} + 4 q^{33} - 2 q^{35} - 3 q^{37} + 2 q^{39} - 6 q^{41} + 10 q^{43}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.67513 −0.967137 −0.483569 0.875306i \(-0.660660\pi\)
−0.483569 + 0.875306i \(0.660660\pi\)
\(4\) 0 0
\(5\) −1.00000 −0.447214
\(6\) 0 0
\(7\) −4.63752 −1.75282 −0.876409 0.481568i \(-0.840067\pi\)
−0.876409 + 0.481568i \(0.840067\pi\)
\(8\) 0 0
\(9\) −0.193937 −0.0646455
\(10\) 0 0
\(11\) −4.96239 −1.49622 −0.748108 0.663577i \(-0.769038\pi\)
−0.748108 + 0.663577i \(0.769038\pi\)
\(12\) 0 0
\(13\) 5.76845 1.59988 0.799940 0.600079i \(-0.204864\pi\)
0.799940 + 0.600079i \(0.204864\pi\)
\(14\) 0 0
\(15\) 1.67513 0.432517
\(16\) 0 0
\(17\) 6.54420 1.58720 0.793601 0.608439i \(-0.208204\pi\)
0.793601 + 0.608439i \(0.208204\pi\)
\(18\) 0 0
\(19\) 4.32487 0.992193 0.496097 0.868267i \(-0.334766\pi\)
0.496097 + 0.868267i \(0.334766\pi\)
\(20\) 0 0
\(21\) 7.76845 1.69522
\(22\) 0 0
\(23\) 2.96239 0.617701 0.308850 0.951111i \(-0.400056\pi\)
0.308850 + 0.951111i \(0.400056\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 5.35026 1.02966
\(28\) 0 0
\(29\) −4.57452 −0.849466 −0.424733 0.905319i \(-0.639632\pi\)
−0.424733 + 0.905319i \(0.639632\pi\)
\(30\) 0 0
\(31\) −5.02539 −0.902587 −0.451294 0.892376i \(-0.649037\pi\)
−0.451294 + 0.892376i \(0.649037\pi\)
\(32\) 0 0
\(33\) 8.31265 1.44705
\(34\) 0 0
\(35\) 4.63752 0.783884
\(36\) 0 0
\(37\) −1.00000 −0.164399
\(38\) 0 0
\(39\) −9.66291 −1.54730
\(40\) 0 0
\(41\) −5.35026 −0.835571 −0.417785 0.908546i \(-0.637194\pi\)
−0.417785 + 0.908546i \(0.637194\pi\)
\(42\) 0 0
\(43\) −0.574515 −0.0876128 −0.0438064 0.999040i \(-0.513948\pi\)
−0.0438064 + 0.999040i \(0.513948\pi\)
\(44\) 0 0
\(45\) 0.193937 0.0289104
\(46\) 0 0
\(47\) 13.5999 1.98375 0.991875 0.127214i \(-0.0406036\pi\)
0.991875 + 0.127214i \(0.0406036\pi\)
\(48\) 0 0
\(49\) 14.5066 2.07237
\(50\) 0 0
\(51\) −10.9624 −1.53504
\(52\) 0 0
\(53\) −5.53690 −0.760552 −0.380276 0.924873i \(-0.624171\pi\)
−0.380276 + 0.924873i \(0.624171\pi\)
\(54\) 0 0
\(55\) 4.96239 0.669128
\(56\) 0 0
\(57\) −7.24472 −0.959587
\(58\) 0 0
\(59\) 1.54912 0.201679 0.100839 0.994903i \(-0.467847\pi\)
0.100839 + 0.994903i \(0.467847\pi\)
\(60\) 0 0
\(61\) 9.47627 1.21331 0.606656 0.794964i \(-0.292511\pi\)
0.606656 + 0.794964i \(0.292511\pi\)
\(62\) 0 0
\(63\) 0.899385 0.113312
\(64\) 0 0
\(65\) −5.76845 −0.715488
\(66\) 0 0
\(67\) 14.7635 1.80365 0.901826 0.432099i \(-0.142227\pi\)
0.901826 + 0.432099i \(0.142227\pi\)
\(68\) 0 0
\(69\) −4.96239 −0.597401
\(70\) 0 0
\(71\) −3.68735 −0.437608 −0.218804 0.975769i \(-0.570216\pi\)
−0.218804 + 0.975769i \(0.570216\pi\)
\(72\) 0 0
\(73\) −2.96239 −0.346721 −0.173361 0.984858i \(-0.555463\pi\)
−0.173361 + 0.984858i \(0.555463\pi\)
\(74\) 0 0
\(75\) −1.67513 −0.193427
\(76\) 0 0
\(77\) 23.0132 2.62259
\(78\) 0 0
\(79\) 5.98778 0.673678 0.336839 0.941562i \(-0.390642\pi\)
0.336839 + 0.941562i \(0.390642\pi\)
\(80\) 0 0
\(81\) −8.38058 −0.931175
\(82\) 0 0
\(83\) −10.6375 −1.16762 −0.583810 0.811891i \(-0.698439\pi\)
−0.583810 + 0.811891i \(0.698439\pi\)
\(84\) 0 0
\(85\) −6.54420 −0.709818
\(86\) 0 0
\(87\) 7.66291 0.821550
\(88\) 0 0
\(89\) −1.16362 −0.123343 −0.0616717 0.998096i \(-0.519643\pi\)
−0.0616717 + 0.998096i \(0.519643\pi\)
\(90\) 0 0
\(91\) −26.7513 −2.80430
\(92\) 0 0
\(93\) 8.41819 0.872926
\(94\) 0 0
\(95\) −4.32487 −0.443722
\(96\) 0 0
\(97\) 2.64974 0.269040 0.134520 0.990911i \(-0.457051\pi\)
0.134520 + 0.990911i \(0.457051\pi\)
\(98\) 0 0
\(99\) 0.962389 0.0967237
\(100\) 0 0
\(101\) 11.0435 1.09887 0.549434 0.835537i \(-0.314843\pi\)
0.549434 + 0.835537i \(0.314843\pi\)
\(102\) 0 0
\(103\) −13.5369 −1.33383 −0.666915 0.745133i \(-0.732386\pi\)
−0.666915 + 0.745133i \(0.732386\pi\)
\(104\) 0 0
\(105\) −7.76845 −0.758123
\(106\) 0 0
\(107\) 13.7866 1.33280 0.666398 0.745596i \(-0.267835\pi\)
0.666398 + 0.745596i \(0.267835\pi\)
\(108\) 0 0
\(109\) −0.387873 −0.0371515 −0.0185758 0.999827i \(-0.505913\pi\)
−0.0185758 + 0.999827i \(0.505913\pi\)
\(110\) 0 0
\(111\) 1.67513 0.158996
\(112\) 0 0
\(113\) −0.932071 −0.0876819 −0.0438410 0.999039i \(-0.513959\pi\)
−0.0438410 + 0.999039i \(0.513959\pi\)
\(114\) 0 0
\(115\) −2.96239 −0.276244
\(116\) 0 0
\(117\) −1.11871 −0.103425
\(118\) 0 0
\(119\) −30.3488 −2.78207
\(120\) 0 0
\(121\) 13.6253 1.23866
\(122\) 0 0
\(123\) 8.96239 0.808111
\(124\) 0 0
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) −14.6375 −1.29887 −0.649435 0.760417i \(-0.724995\pi\)
−0.649435 + 0.760417i \(0.724995\pi\)
\(128\) 0 0
\(129\) 0.962389 0.0847336
\(130\) 0 0
\(131\) 7.33804 0.641128 0.320564 0.947227i \(-0.396128\pi\)
0.320564 + 0.947227i \(0.396128\pi\)
\(132\) 0 0
\(133\) −20.0567 −1.73913
\(134\) 0 0
\(135\) −5.35026 −0.460477
\(136\) 0 0
\(137\) −6.18664 −0.528561 −0.264280 0.964446i \(-0.585134\pi\)
−0.264280 + 0.964446i \(0.585134\pi\)
\(138\) 0 0
\(139\) 9.61213 0.815290 0.407645 0.913140i \(-0.366350\pi\)
0.407645 + 0.913140i \(0.366350\pi\)
\(140\) 0 0
\(141\) −22.7816 −1.91856
\(142\) 0 0
\(143\) −28.6253 −2.39377
\(144\) 0 0
\(145\) 4.57452 0.379893
\(146\) 0 0
\(147\) −24.3004 −2.00427
\(148\) 0 0
\(149\) 19.0435 1.56010 0.780052 0.625715i \(-0.215193\pi\)
0.780052 + 0.625715i \(0.215193\pi\)
\(150\) 0 0
\(151\) 9.58769 0.780235 0.390118 0.920765i \(-0.372434\pi\)
0.390118 + 0.920765i \(0.372434\pi\)
\(152\) 0 0
\(153\) −1.26916 −0.102605
\(154\) 0 0
\(155\) 5.02539 0.403649
\(156\) 0 0
\(157\) 11.7381 0.936805 0.468403 0.883515i \(-0.344830\pi\)
0.468403 + 0.883515i \(0.344830\pi\)
\(158\) 0 0
\(159\) 9.27504 0.735558
\(160\) 0 0
\(161\) −13.7381 −1.08272
\(162\) 0 0
\(163\) 21.3258 1.67037 0.835184 0.549971i \(-0.185361\pi\)
0.835184 + 0.549971i \(0.185361\pi\)
\(164\) 0 0
\(165\) −8.31265 −0.647139
\(166\) 0 0
\(167\) −11.9248 −0.922767 −0.461383 0.887201i \(-0.652647\pi\)
−0.461383 + 0.887201i \(0.652647\pi\)
\(168\) 0 0
\(169\) 20.2750 1.55962
\(170\) 0 0
\(171\) −0.838750 −0.0641408
\(172\) 0 0
\(173\) −0.0507852 −0.00386113 −0.00193056 0.999998i \(-0.500615\pi\)
−0.00193056 + 0.999998i \(0.500615\pi\)
\(174\) 0 0
\(175\) −4.63752 −0.350564
\(176\) 0 0
\(177\) −2.59498 −0.195051
\(178\) 0 0
\(179\) −3.02539 −0.226128 −0.113064 0.993588i \(-0.536067\pi\)
−0.113064 + 0.993588i \(0.536067\pi\)
\(180\) 0 0
\(181\) −7.19394 −0.534721 −0.267361 0.963597i \(-0.586151\pi\)
−0.267361 + 0.963597i \(0.586151\pi\)
\(182\) 0 0
\(183\) −15.8740 −1.17344
\(184\) 0 0
\(185\) 1.00000 0.0735215
\(186\) 0 0
\(187\) −32.4749 −2.37480
\(188\) 0 0
\(189\) −24.8119 −1.80480
\(190\) 0 0
\(191\) −9.98778 −0.722690 −0.361345 0.932432i \(-0.617682\pi\)
−0.361345 + 0.932432i \(0.617682\pi\)
\(192\) 0 0
\(193\) 13.8496 0.996913 0.498456 0.866915i \(-0.333900\pi\)
0.498456 + 0.866915i \(0.333900\pi\)
\(194\) 0 0
\(195\) 9.66291 0.691976
\(196\) 0 0
\(197\) −6.64974 −0.473774 −0.236887 0.971537i \(-0.576127\pi\)
−0.236887 + 0.971537i \(0.576127\pi\)
\(198\) 0 0
\(199\) 10.1890 0.722280 0.361140 0.932512i \(-0.382388\pi\)
0.361140 + 0.932512i \(0.382388\pi\)
\(200\) 0 0
\(201\) −24.7308 −1.74438
\(202\) 0 0
\(203\) 21.2144 1.48896
\(204\) 0 0
\(205\) 5.35026 0.373678
\(206\) 0 0
\(207\) −0.574515 −0.0399316
\(208\) 0 0
\(209\) −21.4617 −1.48454
\(210\) 0 0
\(211\) 13.4010 0.922566 0.461283 0.887253i \(-0.347389\pi\)
0.461283 + 0.887253i \(0.347389\pi\)
\(212\) 0 0
\(213\) 6.17679 0.423227
\(214\) 0 0
\(215\) 0.574515 0.0391816
\(216\) 0 0
\(217\) 23.3054 1.58207
\(218\) 0 0
\(219\) 4.96239 0.335327
\(220\) 0 0
\(221\) 37.7499 2.53933
\(222\) 0 0
\(223\) 21.7113 1.45390 0.726949 0.686691i \(-0.240938\pi\)
0.726949 + 0.686691i \(0.240938\pi\)
\(224\) 0 0
\(225\) −0.193937 −0.0129291
\(226\) 0 0
\(227\) 11.4617 0.760739 0.380369 0.924835i \(-0.375797\pi\)
0.380369 + 0.924835i \(0.375797\pi\)
\(228\) 0 0
\(229\) 16.4241 1.08533 0.542667 0.839948i \(-0.317415\pi\)
0.542667 + 0.839948i \(0.317415\pi\)
\(230\) 0 0
\(231\) −38.5501 −2.53641
\(232\) 0 0
\(233\) −10.1866 −0.667349 −0.333675 0.942688i \(-0.608289\pi\)
−0.333675 + 0.942688i \(0.608289\pi\)
\(234\) 0 0
\(235\) −13.5999 −0.887160
\(236\) 0 0
\(237\) −10.0303 −0.651539
\(238\) 0 0
\(239\) 1.53927 0.0995673 0.0497837 0.998760i \(-0.484147\pi\)
0.0497837 + 0.998760i \(0.484147\pi\)
\(240\) 0 0
\(241\) −4.11142 −0.264840 −0.132420 0.991194i \(-0.542275\pi\)
−0.132420 + 0.991194i \(0.542275\pi\)
\(242\) 0 0
\(243\) −2.01222 −0.129084
\(244\) 0 0
\(245\) −14.5066 −0.926792
\(246\) 0 0
\(247\) 24.9478 1.58739
\(248\) 0 0
\(249\) 17.8192 1.12925
\(250\) 0 0
\(251\) −1.91256 −0.120720 −0.0603598 0.998177i \(-0.519225\pi\)
−0.0603598 + 0.998177i \(0.519225\pi\)
\(252\) 0 0
\(253\) −14.7005 −0.924214
\(254\) 0 0
\(255\) 10.9624 0.686491
\(256\) 0 0
\(257\) 13.7685 0.858852 0.429426 0.903102i \(-0.358716\pi\)
0.429426 + 0.903102i \(0.358716\pi\)
\(258\) 0 0
\(259\) 4.63752 0.288161
\(260\) 0 0
\(261\) 0.887166 0.0549142
\(262\) 0 0
\(263\) 8.89938 0.548760 0.274380 0.961621i \(-0.411527\pi\)
0.274380 + 0.961621i \(0.411527\pi\)
\(264\) 0 0
\(265\) 5.53690 0.340129
\(266\) 0 0
\(267\) 1.94921 0.119290
\(268\) 0 0
\(269\) −22.7308 −1.38592 −0.692962 0.720974i \(-0.743695\pi\)
−0.692962 + 0.720974i \(0.743695\pi\)
\(270\) 0 0
\(271\) −24.3127 −1.47689 −0.738444 0.674315i \(-0.764439\pi\)
−0.738444 + 0.674315i \(0.764439\pi\)
\(272\) 0 0
\(273\) 44.8119 2.71214
\(274\) 0 0
\(275\) −4.96239 −0.299243
\(276\) 0 0
\(277\) 25.7685 1.54828 0.774138 0.633017i \(-0.218184\pi\)
0.774138 + 0.633017i \(0.218184\pi\)
\(278\) 0 0
\(279\) 0.974607 0.0583482
\(280\) 0 0
\(281\) −27.4372 −1.63677 −0.818384 0.574671i \(-0.805130\pi\)
−0.818384 + 0.574671i \(0.805130\pi\)
\(282\) 0 0
\(283\) 25.3865 1.50907 0.754534 0.656261i \(-0.227863\pi\)
0.754534 + 0.656261i \(0.227863\pi\)
\(284\) 0 0
\(285\) 7.24472 0.429140
\(286\) 0 0
\(287\) 24.8119 1.46460
\(288\) 0 0
\(289\) 25.8265 1.51921
\(290\) 0 0
\(291\) −4.43866 −0.260199
\(292\) 0 0
\(293\) −7.40105 −0.432374 −0.216187 0.976352i \(-0.569362\pi\)
−0.216187 + 0.976352i \(0.569362\pi\)
\(294\) 0 0
\(295\) −1.54912 −0.0901934
\(296\) 0 0
\(297\) −26.5501 −1.54059
\(298\) 0 0
\(299\) 17.0884 0.988247
\(300\) 0 0
\(301\) 2.66433 0.153569
\(302\) 0 0
\(303\) −18.4993 −1.06276
\(304\) 0 0
\(305\) −9.47627 −0.542610
\(306\) 0 0
\(307\) −4.95017 −0.282521 −0.141261 0.989972i \(-0.545116\pi\)
−0.141261 + 0.989972i \(0.545116\pi\)
\(308\) 0 0
\(309\) 22.6761 1.29000
\(310\) 0 0
\(311\) −21.3380 −1.20997 −0.604985 0.796237i \(-0.706821\pi\)
−0.604985 + 0.796237i \(0.706821\pi\)
\(312\) 0 0
\(313\) 15.7988 0.892999 0.446500 0.894784i \(-0.352670\pi\)
0.446500 + 0.894784i \(0.352670\pi\)
\(314\) 0 0
\(315\) −0.899385 −0.0506746
\(316\) 0 0
\(317\) −35.4372 −1.99035 −0.995177 0.0980961i \(-0.968725\pi\)
−0.995177 + 0.0980961i \(0.968725\pi\)
\(318\) 0 0
\(319\) 22.7005 1.27099
\(320\) 0 0
\(321\) −23.0943 −1.28900
\(322\) 0 0
\(323\) 28.3028 1.57481
\(324\) 0 0
\(325\) 5.76845 0.319976
\(326\) 0 0
\(327\) 0.649738 0.0359306
\(328\) 0 0
\(329\) −63.0698 −3.47715
\(330\) 0 0
\(331\) −11.8618 −0.651982 −0.325991 0.945373i \(-0.605698\pi\)
−0.325991 + 0.945373i \(0.605698\pi\)
\(332\) 0 0
\(333\) 0.193937 0.0106277
\(334\) 0 0
\(335\) −14.7635 −0.806618
\(336\) 0 0
\(337\) −15.5877 −0.849116 −0.424558 0.905401i \(-0.639570\pi\)
−0.424558 + 0.905401i \(0.639570\pi\)
\(338\) 0 0
\(339\) 1.56134 0.0848004
\(340\) 0 0
\(341\) 24.9380 1.35047
\(342\) 0 0
\(343\) −34.8119 −1.87967
\(344\) 0 0
\(345\) 4.96239 0.267166
\(346\) 0 0
\(347\) 0.412311 0.0221340 0.0110670 0.999939i \(-0.496477\pi\)
0.0110670 + 0.999939i \(0.496477\pi\)
\(348\) 0 0
\(349\) −20.2823 −1.08569 −0.542844 0.839833i \(-0.682653\pi\)
−0.542844 + 0.839833i \(0.682653\pi\)
\(350\) 0 0
\(351\) 30.8627 1.64733
\(352\) 0 0
\(353\) −4.70052 −0.250184 −0.125092 0.992145i \(-0.539923\pi\)
−0.125092 + 0.992145i \(0.539923\pi\)
\(354\) 0 0
\(355\) 3.68735 0.195704
\(356\) 0 0
\(357\) 50.8383 2.69065
\(358\) 0 0
\(359\) −4.96239 −0.261905 −0.130952 0.991389i \(-0.541804\pi\)
−0.130952 + 0.991389i \(0.541804\pi\)
\(360\) 0 0
\(361\) −0.295507 −0.0155530
\(362\) 0 0
\(363\) −22.8242 −1.19796
\(364\) 0 0
\(365\) 2.96239 0.155059
\(366\) 0 0
\(367\) −11.7259 −0.612088 −0.306044 0.952017i \(-0.599005\pi\)
−0.306044 + 0.952017i \(0.599005\pi\)
\(368\) 0 0
\(369\) 1.03761 0.0540159
\(370\) 0 0
\(371\) 25.6775 1.33311
\(372\) 0 0
\(373\) 17.0376 0.882174 0.441087 0.897464i \(-0.354593\pi\)
0.441087 + 0.897464i \(0.354593\pi\)
\(374\) 0 0
\(375\) 1.67513 0.0865034
\(376\) 0 0
\(377\) −26.3879 −1.35904
\(378\) 0 0
\(379\) 27.1998 1.39716 0.698580 0.715532i \(-0.253815\pi\)
0.698580 + 0.715532i \(0.253815\pi\)
\(380\) 0 0
\(381\) 24.5198 1.25619
\(382\) 0 0
\(383\) 27.1246 1.38600 0.693001 0.720937i \(-0.256288\pi\)
0.693001 + 0.720937i \(0.256288\pi\)
\(384\) 0 0
\(385\) −23.0132 −1.17286
\(386\) 0 0
\(387\) 0.111420 0.00566377
\(388\) 0 0
\(389\) −12.4894 −0.633240 −0.316620 0.948552i \(-0.602548\pi\)
−0.316620 + 0.948552i \(0.602548\pi\)
\(390\) 0 0
\(391\) 19.3865 0.980415
\(392\) 0 0
\(393\) −12.2922 −0.620059
\(394\) 0 0
\(395\) −5.98778 −0.301278
\(396\) 0 0
\(397\) 30.4142 1.52645 0.763223 0.646135i \(-0.223616\pi\)
0.763223 + 0.646135i \(0.223616\pi\)
\(398\) 0 0
\(399\) 33.5975 1.68198
\(400\) 0 0
\(401\) 14.7757 0.737866 0.368933 0.929456i \(-0.379723\pi\)
0.368933 + 0.929456i \(0.379723\pi\)
\(402\) 0 0
\(403\) −28.9887 −1.44403
\(404\) 0 0
\(405\) 8.38058 0.416434
\(406\) 0 0
\(407\) 4.96239 0.245976
\(408\) 0 0
\(409\) −4.82653 −0.238657 −0.119328 0.992855i \(-0.538074\pi\)
−0.119328 + 0.992855i \(0.538074\pi\)
\(410\) 0 0
\(411\) 10.3634 0.511191
\(412\) 0 0
\(413\) −7.18409 −0.353506
\(414\) 0 0
\(415\) 10.6375 0.522175
\(416\) 0 0
\(417\) −16.1016 −0.788497
\(418\) 0 0
\(419\) 31.3620 1.53213 0.766067 0.642760i \(-0.222211\pi\)
0.766067 + 0.642760i \(0.222211\pi\)
\(420\) 0 0
\(421\) 32.6107 1.58935 0.794674 0.607036i \(-0.207642\pi\)
0.794674 + 0.607036i \(0.207642\pi\)
\(422\) 0 0
\(423\) −2.63752 −0.128241
\(424\) 0 0
\(425\) 6.54420 0.317440
\(426\) 0 0
\(427\) −43.9464 −2.12671
\(428\) 0 0
\(429\) 47.9511 2.31510
\(430\) 0 0
\(431\) −26.4264 −1.27292 −0.636458 0.771311i \(-0.719601\pi\)
−0.636458 + 0.771311i \(0.719601\pi\)
\(432\) 0 0
\(433\) 37.9756 1.82499 0.912495 0.409089i \(-0.134153\pi\)
0.912495 + 0.409089i \(0.134153\pi\)
\(434\) 0 0
\(435\) −7.66291 −0.367409
\(436\) 0 0
\(437\) 12.8119 0.612878
\(438\) 0 0
\(439\) −19.7767 −0.943890 −0.471945 0.881628i \(-0.656448\pi\)
−0.471945 + 0.881628i \(0.656448\pi\)
\(440\) 0 0
\(441\) −2.81336 −0.133969
\(442\) 0 0
\(443\) −3.92715 −0.186584 −0.0932922 0.995639i \(-0.529739\pi\)
−0.0932922 + 0.995639i \(0.529739\pi\)
\(444\) 0 0
\(445\) 1.16362 0.0551608
\(446\) 0 0
\(447\) −31.9003 −1.50883
\(448\) 0 0
\(449\) 16.6761 0.786993 0.393497 0.919326i \(-0.371265\pi\)
0.393497 + 0.919326i \(0.371265\pi\)
\(450\) 0 0
\(451\) 26.5501 1.25019
\(452\) 0 0
\(453\) −16.0606 −0.754594
\(454\) 0 0
\(455\) 26.7513 1.25412
\(456\) 0 0
\(457\) 24.3028 1.13684 0.568419 0.822740i \(-0.307555\pi\)
0.568419 + 0.822740i \(0.307555\pi\)
\(458\) 0 0
\(459\) 35.0132 1.63427
\(460\) 0 0
\(461\) −30.4387 −1.41767 −0.708835 0.705375i \(-0.750779\pi\)
−0.708835 + 0.705375i \(0.750779\pi\)
\(462\) 0 0
\(463\) −23.7988 −1.10602 −0.553011 0.833174i \(-0.686521\pi\)
−0.553011 + 0.833174i \(0.686521\pi\)
\(464\) 0 0
\(465\) −8.41819 −0.390384
\(466\) 0 0
\(467\) 25.2652 1.16913 0.584567 0.811346i \(-0.301264\pi\)
0.584567 + 0.811346i \(0.301264\pi\)
\(468\) 0 0
\(469\) −68.4661 −3.16147
\(470\) 0 0
\(471\) −19.6629 −0.906019
\(472\) 0 0
\(473\) 2.85097 0.131088
\(474\) 0 0
\(475\) 4.32487 0.198439
\(476\) 0 0
\(477\) 1.07381 0.0491663
\(478\) 0 0
\(479\) −16.0122 −0.731617 −0.365808 0.930690i \(-0.619207\pi\)
−0.365808 + 0.930690i \(0.619207\pi\)
\(480\) 0 0
\(481\) −5.76845 −0.263019
\(482\) 0 0
\(483\) 23.0132 1.04714
\(484\) 0 0
\(485\) −2.64974 −0.120318
\(486\) 0 0
\(487\) 35.6121 1.61374 0.806870 0.590729i \(-0.201160\pi\)
0.806870 + 0.590729i \(0.201160\pi\)
\(488\) 0 0
\(489\) −35.7235 −1.61547
\(490\) 0 0
\(491\) 11.2849 0.509280 0.254640 0.967036i \(-0.418043\pi\)
0.254640 + 0.967036i \(0.418043\pi\)
\(492\) 0 0
\(493\) −29.9365 −1.34827
\(494\) 0 0
\(495\) −0.962389 −0.0432562
\(496\) 0 0
\(497\) 17.1002 0.767047
\(498\) 0 0
\(499\) 5.51293 0.246792 0.123396 0.992357i \(-0.460621\pi\)
0.123396 + 0.992357i \(0.460621\pi\)
\(500\) 0 0
\(501\) 19.9756 0.892442
\(502\) 0 0
\(503\) 36.4241 1.62407 0.812035 0.583609i \(-0.198360\pi\)
0.812035 + 0.583609i \(0.198360\pi\)
\(504\) 0 0
\(505\) −11.0435 −0.491429
\(506\) 0 0
\(507\) −33.9633 −1.50837
\(508\) 0 0
\(509\) 34.4749 1.52807 0.764036 0.645174i \(-0.223215\pi\)
0.764036 + 0.645174i \(0.223215\pi\)
\(510\) 0 0
\(511\) 13.7381 0.607739
\(512\) 0 0
\(513\) 23.1392 1.02162
\(514\) 0 0
\(515\) 13.5369 0.596507
\(516\) 0 0
\(517\) −67.4880 −2.96812
\(518\) 0 0
\(519\) 0.0850719 0.00373424
\(520\) 0 0
\(521\) 14.9829 0.656411 0.328205 0.944606i \(-0.393556\pi\)
0.328205 + 0.944606i \(0.393556\pi\)
\(522\) 0 0
\(523\) −26.7513 −1.16975 −0.584877 0.811122i \(-0.698857\pi\)
−0.584877 + 0.811122i \(0.698857\pi\)
\(524\) 0 0
\(525\) 7.76845 0.339043
\(526\) 0 0
\(527\) −32.8872 −1.43259
\(528\) 0 0
\(529\) −14.2243 −0.618446
\(530\) 0 0
\(531\) −0.300432 −0.0130376
\(532\) 0 0
\(533\) −30.8627 −1.33681
\(534\) 0 0
\(535\) −13.7866 −0.596045
\(536\) 0 0
\(537\) 5.06793 0.218697
\(538\) 0 0
\(539\) −71.9873 −3.10071
\(540\) 0 0
\(541\) −33.6747 −1.44779 −0.723894 0.689912i \(-0.757649\pi\)
−0.723894 + 0.689912i \(0.757649\pi\)
\(542\) 0 0
\(543\) 12.0508 0.517149
\(544\) 0 0
\(545\) 0.387873 0.0166147
\(546\) 0 0
\(547\) 30.9135 1.32177 0.660883 0.750489i \(-0.270182\pi\)
0.660883 + 0.750489i \(0.270182\pi\)
\(548\) 0 0
\(549\) −1.83780 −0.0784352
\(550\) 0 0
\(551\) −19.7842 −0.842834
\(552\) 0 0
\(553\) −27.7685 −1.18083
\(554\) 0 0
\(555\) −1.67513 −0.0711053
\(556\) 0 0
\(557\) −0.156325 −0.00662371 −0.00331186 0.999995i \(-0.501054\pi\)
−0.00331186 + 0.999995i \(0.501054\pi\)
\(558\) 0 0
\(559\) −3.31406 −0.140170
\(560\) 0 0
\(561\) 54.3996 2.29675
\(562\) 0 0
\(563\) −22.2276 −0.936781 −0.468390 0.883522i \(-0.655166\pi\)
−0.468390 + 0.883522i \(0.655166\pi\)
\(564\) 0 0
\(565\) 0.932071 0.0392125
\(566\) 0 0
\(567\) 38.8651 1.63218
\(568\) 0 0
\(569\) 27.0640 1.13458 0.567290 0.823518i \(-0.307992\pi\)
0.567290 + 0.823518i \(0.307992\pi\)
\(570\) 0 0
\(571\) 34.0870 1.42650 0.713248 0.700912i \(-0.247223\pi\)
0.713248 + 0.700912i \(0.247223\pi\)
\(572\) 0 0
\(573\) 16.7308 0.698941
\(574\) 0 0
\(575\) 2.96239 0.123540
\(576\) 0 0
\(577\) 20.8423 0.867675 0.433837 0.900991i \(-0.357159\pi\)
0.433837 + 0.900991i \(0.357159\pi\)
\(578\) 0 0
\(579\) −23.1998 −0.964151
\(580\) 0 0
\(581\) 49.3317 2.04662
\(582\) 0 0
\(583\) 27.4763 1.13795
\(584\) 0 0
\(585\) 1.11871 0.0462531
\(586\) 0 0
\(587\) 1.56134 0.0644435 0.0322217 0.999481i \(-0.489742\pi\)
0.0322217 + 0.999481i \(0.489742\pi\)
\(588\) 0 0
\(589\) −21.7342 −0.895541
\(590\) 0 0
\(591\) 11.1392 0.458205
\(592\) 0 0
\(593\) −27.5633 −1.13189 −0.565944 0.824444i \(-0.691488\pi\)
−0.565944 + 0.824444i \(0.691488\pi\)
\(594\) 0 0
\(595\) 30.3488 1.24418
\(596\) 0 0
\(597\) −17.0679 −0.698544
\(598\) 0 0
\(599\) 21.0640 0.860650 0.430325 0.902674i \(-0.358399\pi\)
0.430325 + 0.902674i \(0.358399\pi\)
\(600\) 0 0
\(601\) 12.1925 0.497343 0.248672 0.968588i \(-0.420006\pi\)
0.248672 + 0.968588i \(0.420006\pi\)
\(602\) 0 0
\(603\) −2.86319 −0.116598
\(604\) 0 0
\(605\) −13.6253 −0.553947
\(606\) 0 0
\(607\) −8.72496 −0.354135 −0.177068 0.984199i \(-0.556661\pi\)
−0.177068 + 0.984199i \(0.556661\pi\)
\(608\) 0 0
\(609\) −35.5369 −1.44003
\(610\) 0 0
\(611\) 78.4504 3.17376
\(612\) 0 0
\(613\) −2.25202 −0.0909581 −0.0454790 0.998965i \(-0.514481\pi\)
−0.0454790 + 0.998965i \(0.514481\pi\)
\(614\) 0 0
\(615\) −8.96239 −0.361398
\(616\) 0 0
\(617\) 20.0263 0.806230 0.403115 0.915149i \(-0.367927\pi\)
0.403115 + 0.915149i \(0.367927\pi\)
\(618\) 0 0
\(619\) −19.3258 −0.776770 −0.388385 0.921497i \(-0.626967\pi\)
−0.388385 + 0.921497i \(0.626967\pi\)
\(620\) 0 0
\(621\) 15.8496 0.636021
\(622\) 0 0
\(623\) 5.39631 0.216198
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 35.9511 1.43575
\(628\) 0 0
\(629\) −6.54420 −0.260934
\(630\) 0 0
\(631\) −35.6507 −1.41923 −0.709616 0.704589i \(-0.751131\pi\)
−0.709616 + 0.704589i \(0.751131\pi\)
\(632\) 0 0
\(633\) −22.4485 −0.892248
\(634\) 0 0
\(635\) 14.6375 0.580872
\(636\) 0 0
\(637\) 83.6806 3.31554
\(638\) 0 0
\(639\) 0.715112 0.0282894
\(640\) 0 0
\(641\) −37.9062 −1.49721 −0.748603 0.663019i \(-0.769275\pi\)
−0.748603 + 0.663019i \(0.769275\pi\)
\(642\) 0 0
\(643\) −43.2506 −1.70564 −0.852819 0.522207i \(-0.825109\pi\)
−0.852819 + 0.522207i \(0.825109\pi\)
\(644\) 0 0
\(645\) −0.962389 −0.0378940
\(646\) 0 0
\(647\) −32.7367 −1.28701 −0.643507 0.765441i \(-0.722521\pi\)
−0.643507 + 0.765441i \(0.722521\pi\)
\(648\) 0 0
\(649\) −7.68735 −0.301755
\(650\) 0 0
\(651\) −39.0395 −1.53008
\(652\) 0 0
\(653\) 47.3522 1.85303 0.926517 0.376253i \(-0.122788\pi\)
0.926517 + 0.376253i \(0.122788\pi\)
\(654\) 0 0
\(655\) −7.33804 −0.286721
\(656\) 0 0
\(657\) 0.574515 0.0224140
\(658\) 0 0
\(659\) 27.6385 1.07664 0.538321 0.842740i \(-0.319059\pi\)
0.538321 + 0.842740i \(0.319059\pi\)
\(660\) 0 0
\(661\) −9.47627 −0.368584 −0.184292 0.982872i \(-0.558999\pi\)
−0.184292 + 0.982872i \(0.558999\pi\)
\(662\) 0 0
\(663\) −63.2360 −2.45588
\(664\) 0 0
\(665\) 20.0567 0.777764
\(666\) 0 0
\(667\) −13.5515 −0.524716
\(668\) 0 0
\(669\) −36.3693 −1.40612
\(670\) 0 0
\(671\) −47.0249 −1.81538
\(672\) 0 0
\(673\) −18.7757 −0.723752 −0.361876 0.932226i \(-0.617864\pi\)
−0.361876 + 0.932226i \(0.617864\pi\)
\(674\) 0 0
\(675\) 5.35026 0.205932
\(676\) 0 0
\(677\) 0.513881 0.0197501 0.00987503 0.999951i \(-0.496857\pi\)
0.00987503 + 0.999951i \(0.496857\pi\)
\(678\) 0 0
\(679\) −12.2882 −0.471578
\(680\) 0 0
\(681\) −19.1998 −0.735739
\(682\) 0 0
\(683\) −22.4387 −0.858591 −0.429296 0.903164i \(-0.641238\pi\)
−0.429296 + 0.903164i \(0.641238\pi\)
\(684\) 0 0
\(685\) 6.18664 0.236379
\(686\) 0 0
\(687\) −27.5125 −1.04967
\(688\) 0 0
\(689\) −31.9394 −1.21679
\(690\) 0 0
\(691\) −0.288213 −0.0109641 −0.00548207 0.999985i \(-0.501745\pi\)
−0.00548207 + 0.999985i \(0.501745\pi\)
\(692\) 0 0
\(693\) −4.46310 −0.169539
\(694\) 0 0
\(695\) −9.61213 −0.364609
\(696\) 0 0
\(697\) −35.0132 −1.32622
\(698\) 0 0
\(699\) 17.0640 0.645418
\(700\) 0 0
\(701\) −0.911603 −0.0344308 −0.0172154 0.999852i \(-0.505480\pi\)
−0.0172154 + 0.999852i \(0.505480\pi\)
\(702\) 0 0
\(703\) −4.32487 −0.163116
\(704\) 0 0
\(705\) 22.7816 0.858006
\(706\) 0 0
\(707\) −51.2144 −1.92612
\(708\) 0 0
\(709\) −33.3620 −1.25294 −0.626468 0.779447i \(-0.715500\pi\)
−0.626468 + 0.779447i \(0.715500\pi\)
\(710\) 0 0
\(711\) −1.16125 −0.0435503
\(712\) 0 0
\(713\) −14.8872 −0.557529
\(714\) 0 0
\(715\) 28.6253 1.07053
\(716\) 0 0
\(717\) −2.57848 −0.0962953
\(718\) 0 0
\(719\) −6.82653 −0.254587 −0.127293 0.991865i \(-0.540629\pi\)
−0.127293 + 0.991865i \(0.540629\pi\)
\(720\) 0 0
\(721\) 62.7777 2.33796
\(722\) 0 0
\(723\) 6.88717 0.256136
\(724\) 0 0
\(725\) −4.57452 −0.169893
\(726\) 0 0
\(727\) −12.4123 −0.460347 −0.230174 0.973150i \(-0.573929\pi\)
−0.230174 + 0.973150i \(0.573929\pi\)
\(728\) 0 0
\(729\) 28.5125 1.05602
\(730\) 0 0
\(731\) −3.75974 −0.139059
\(732\) 0 0
\(733\) −11.0278 −0.407320 −0.203660 0.979042i \(-0.565284\pi\)
−0.203660 + 0.979042i \(0.565284\pi\)
\(734\) 0 0
\(735\) 24.3004 0.896335
\(736\) 0 0
\(737\) −73.2624 −2.69865
\(738\) 0 0
\(739\) −12.2228 −0.449624 −0.224812 0.974402i \(-0.572177\pi\)
−0.224812 + 0.974402i \(0.572177\pi\)
\(740\) 0 0
\(741\) −41.7908 −1.53522
\(742\) 0 0
\(743\) 45.7015 1.67662 0.838312 0.545190i \(-0.183543\pi\)
0.838312 + 0.545190i \(0.183543\pi\)
\(744\) 0 0
\(745\) −19.0435 −0.697700
\(746\) 0 0
\(747\) 2.06300 0.0754814
\(748\) 0 0
\(749\) −63.9354 −2.33615
\(750\) 0 0
\(751\) −19.8740 −0.725212 −0.362606 0.931942i \(-0.618113\pi\)
−0.362606 + 0.931942i \(0.618113\pi\)
\(752\) 0 0
\(753\) 3.20379 0.116752
\(754\) 0 0
\(755\) −9.58769 −0.348932
\(756\) 0 0
\(757\) 20.8021 0.756065 0.378032 0.925792i \(-0.376601\pi\)
0.378032 + 0.925792i \(0.376601\pi\)
\(758\) 0 0
\(759\) 24.6253 0.893842
\(760\) 0 0
\(761\) −2.15045 −0.0779536 −0.0389768 0.999240i \(-0.512410\pi\)
−0.0389768 + 0.999240i \(0.512410\pi\)
\(762\) 0 0
\(763\) 1.79877 0.0651198
\(764\) 0 0
\(765\) 1.26916 0.0458866
\(766\) 0 0
\(767\) 8.93604 0.322662
\(768\) 0 0
\(769\) −10.0000 −0.360609 −0.180305 0.983611i \(-0.557708\pi\)
−0.180305 + 0.983611i \(0.557708\pi\)
\(770\) 0 0
\(771\) −23.0640 −0.830628
\(772\) 0 0
\(773\) −34.4993 −1.24085 −0.620427 0.784264i \(-0.713041\pi\)
−0.620427 + 0.784264i \(0.713041\pi\)
\(774\) 0 0
\(775\) −5.02539 −0.180517
\(776\) 0 0
\(777\) −7.76845 −0.278692
\(778\) 0 0
\(779\) −23.1392 −0.829047
\(780\) 0 0
\(781\) 18.2981 0.654756
\(782\) 0 0
\(783\) −24.4749 −0.874660
\(784\) 0 0
\(785\) −11.7381 −0.418952
\(786\) 0 0
\(787\) 4.17442 0.148802 0.0744011 0.997228i \(-0.476296\pi\)
0.0744011 + 0.997228i \(0.476296\pi\)
\(788\) 0 0
\(789\) −14.9076 −0.530726
\(790\) 0 0
\(791\) 4.32250 0.153690
\(792\) 0 0
\(793\) 54.6634 1.94115
\(794\) 0 0
\(795\) −9.27504 −0.328952
\(796\) 0 0
\(797\) −26.9584 −0.954916 −0.477458 0.878655i \(-0.658442\pi\)
−0.477458 + 0.878655i \(0.658442\pi\)
\(798\) 0 0
\(799\) 89.0005 3.14861
\(800\) 0 0
\(801\) 0.225668 0.00797360
\(802\) 0 0
\(803\) 14.7005 0.518770
\(804\) 0 0
\(805\) 13.7381 0.484206
\(806\) 0 0
\(807\) 38.0771 1.34038
\(808\) 0 0
\(809\) −6.15045 −0.216238 −0.108119 0.994138i \(-0.534483\pi\)
−0.108119 + 0.994138i \(0.534483\pi\)
\(810\) 0 0
\(811\) 2.70052 0.0948282 0.0474141 0.998875i \(-0.484902\pi\)
0.0474141 + 0.998875i \(0.484902\pi\)
\(812\) 0 0
\(813\) 40.7269 1.42835
\(814\) 0 0
\(815\) −21.3258 −0.747011
\(816\) 0 0
\(817\) −2.48470 −0.0869288
\(818\) 0 0
\(819\) 5.18806 0.181285
\(820\) 0 0
\(821\) −30.6253 −1.06883 −0.534415 0.845222i \(-0.679468\pi\)
−0.534415 + 0.845222i \(0.679468\pi\)
\(822\) 0 0
\(823\) 16.7997 0.585602 0.292801 0.956173i \(-0.405413\pi\)
0.292801 + 0.956173i \(0.405413\pi\)
\(824\) 0 0
\(825\) 8.31265 0.289409
\(826\) 0 0
\(827\) −10.3127 −0.358606 −0.179303 0.983794i \(-0.557384\pi\)
−0.179303 + 0.983794i \(0.557384\pi\)
\(828\) 0 0
\(829\) −27.6531 −0.960431 −0.480215 0.877151i \(-0.659441\pi\)
−0.480215 + 0.877151i \(0.659441\pi\)
\(830\) 0 0
\(831\) −43.1655 −1.49740
\(832\) 0 0
\(833\) 94.9340 3.28927
\(834\) 0 0
\(835\) 11.9248 0.412674
\(836\) 0 0
\(837\) −26.8872 −0.929356
\(838\) 0 0
\(839\) 8.37328 0.289078 0.144539 0.989499i \(-0.453830\pi\)
0.144539 + 0.989499i \(0.453830\pi\)
\(840\) 0 0
\(841\) −8.07381 −0.278407
\(842\) 0 0
\(843\) 45.9610 1.58298
\(844\) 0 0
\(845\) −20.2750 −0.697483
\(846\) 0 0
\(847\) −63.1876 −2.17115
\(848\) 0 0
\(849\) −42.5256 −1.45948
\(850\) 0 0
\(851\) −2.96239 −0.101549
\(852\) 0 0
\(853\) −42.8726 −1.46793 −0.733965 0.679188i \(-0.762332\pi\)
−0.733965 + 0.679188i \(0.762332\pi\)
\(854\) 0 0
\(855\) 0.838750 0.0286847
\(856\) 0 0
\(857\) 18.0244 0.615703 0.307852 0.951434i \(-0.400390\pi\)
0.307852 + 0.951434i \(0.400390\pi\)
\(858\) 0 0
\(859\) 50.4382 1.72093 0.860465 0.509510i \(-0.170173\pi\)
0.860465 + 0.509510i \(0.170173\pi\)
\(860\) 0 0
\(861\) −41.5633 −1.41647
\(862\) 0 0
\(863\) −29.5247 −1.00503 −0.502516 0.864568i \(-0.667592\pi\)
−0.502516 + 0.864568i \(0.667592\pi\)
\(864\) 0 0
\(865\) 0.0507852 0.00172675
\(866\) 0 0
\(867\) −43.2628 −1.46928
\(868\) 0 0
\(869\) −29.7137 −1.00797
\(870\) 0 0
\(871\) 85.1627 2.88563
\(872\) 0 0
\(873\) −0.513881 −0.0173922
\(874\) 0 0
\(875\) 4.63752 0.156777
\(876\) 0 0
\(877\) −40.4650 −1.36641 −0.683203 0.730228i \(-0.739414\pi\)
−0.683203 + 0.730228i \(0.739414\pi\)
\(878\) 0 0
\(879\) 12.3977 0.418165
\(880\) 0 0
\(881\) −5.64244 −0.190099 −0.0950494 0.995473i \(-0.530301\pi\)
−0.0950494 + 0.995473i \(0.530301\pi\)
\(882\) 0 0
\(883\) −21.1344 −0.711231 −0.355615 0.934632i \(-0.615729\pi\)
−0.355615 + 0.934632i \(0.615729\pi\)
\(884\) 0 0
\(885\) 2.59498 0.0872294
\(886\) 0 0
\(887\) 16.6375 0.558633 0.279317 0.960199i \(-0.409892\pi\)
0.279317 + 0.960199i \(0.409892\pi\)
\(888\) 0 0
\(889\) 67.8818 2.27668
\(890\) 0 0
\(891\) 41.5877 1.39324
\(892\) 0 0
\(893\) 58.8178 1.96826
\(894\) 0 0
\(895\) 3.02539 0.101128
\(896\) 0 0
\(897\) −28.6253 −0.955771
\(898\) 0 0
\(899\) 22.9887 0.766717
\(900\) 0 0
\(901\) −36.2346 −1.20715
\(902\) 0 0
\(903\) −4.46310 −0.148523
\(904\) 0 0
\(905\) 7.19394 0.239135
\(906\) 0 0
\(907\) 25.3865 0.842944 0.421472 0.906842i \(-0.361514\pi\)
0.421472 + 0.906842i \(0.361514\pi\)
\(908\) 0 0
\(909\) −2.14174 −0.0710369
\(910\) 0 0
\(911\) 23.5755 0.781090 0.390545 0.920584i \(-0.372287\pi\)
0.390545 + 0.920584i \(0.372287\pi\)
\(912\) 0 0
\(913\) 52.7875 1.74701
\(914\) 0 0
\(915\) 15.8740 0.524778
\(916\) 0 0
\(917\) −34.0303 −1.12378
\(918\) 0 0
\(919\) −28.4969 −0.940027 −0.470013 0.882659i \(-0.655751\pi\)
−0.470013 + 0.882659i \(0.655751\pi\)
\(920\) 0 0
\(921\) 8.29218 0.273237
\(922\) 0 0
\(923\) −21.2703 −0.700120
\(924\) 0 0
\(925\) −1.00000 −0.0328798
\(926\) 0 0
\(927\) 2.62530 0.0862262
\(928\) 0 0
\(929\) 42.8529 1.40596 0.702979 0.711211i \(-0.251853\pi\)
0.702979 + 0.711211i \(0.251853\pi\)
\(930\) 0 0
\(931\) 62.7391 2.05619
\(932\) 0 0
\(933\) 35.7440 1.17021
\(934\) 0 0
\(935\) 32.4749 1.06204
\(936\) 0 0
\(937\) 29.3211 0.957878 0.478939 0.877848i \(-0.341021\pi\)
0.478939 + 0.877848i \(0.341021\pi\)
\(938\) 0 0
\(939\) −26.4650 −0.863653
\(940\) 0 0
\(941\) −38.8930 −1.26788 −0.633939 0.773383i \(-0.718563\pi\)
−0.633939 + 0.773383i \(0.718563\pi\)
\(942\) 0 0
\(943\) −15.8496 −0.516133
\(944\) 0 0
\(945\) 24.8119 0.807133
\(946\) 0 0
\(947\) 18.4142 0.598382 0.299191 0.954193i \(-0.403283\pi\)
0.299191 + 0.954193i \(0.403283\pi\)
\(948\) 0 0
\(949\) −17.0884 −0.554713
\(950\) 0 0
\(951\) 59.3620 1.92495
\(952\) 0 0
\(953\) −36.5012 −1.18239 −0.591195 0.806529i \(-0.701344\pi\)
−0.591195 + 0.806529i \(0.701344\pi\)
\(954\) 0 0
\(955\) 9.98778 0.323197
\(956\) 0 0
\(957\) −38.0263 −1.22922
\(958\) 0 0
\(959\) 28.6907 0.926470
\(960\) 0 0
\(961\) −5.74543 −0.185336
\(962\) 0 0
\(963\) −2.67372 −0.0861593
\(964\) 0 0
\(965\) −13.8496 −0.445833
\(966\) 0 0
\(967\) 3.56325 0.114586 0.0572932 0.998357i \(-0.481753\pi\)
0.0572932 + 0.998357i \(0.481753\pi\)
\(968\) 0 0
\(969\) −47.4109 −1.52306
\(970\) 0 0
\(971\) 27.2046 0.873036 0.436518 0.899696i \(-0.356212\pi\)
0.436518 + 0.899696i \(0.356212\pi\)
\(972\) 0 0
\(973\) −44.5764 −1.42905
\(974\) 0 0
\(975\) −9.66291 −0.309461
\(976\) 0 0
\(977\) −18.7513 −0.599908 −0.299954 0.953954i \(-0.596971\pi\)
−0.299954 + 0.953954i \(0.596971\pi\)
\(978\) 0 0
\(979\) 5.77433 0.184548
\(980\) 0 0
\(981\) 0.0752228 0.00240168
\(982\) 0 0
\(983\) 26.8242 0.855558 0.427779 0.903883i \(-0.359296\pi\)
0.427779 + 0.903883i \(0.359296\pi\)
\(984\) 0 0
\(985\) 6.64974 0.211878
\(986\) 0 0
\(987\) 105.650 3.36288
\(988\) 0 0
\(989\) −1.70194 −0.0541185
\(990\) 0 0
\(991\) −1.53453 −0.0487461 −0.0243730 0.999703i \(-0.507759\pi\)
−0.0243730 + 0.999703i \(0.507759\pi\)
\(992\) 0 0
\(993\) 19.8700 0.630556
\(994\) 0 0
\(995\) −10.1890 −0.323013
\(996\) 0 0
\(997\) −31.2506 −0.989716 −0.494858 0.868974i \(-0.664780\pi\)
−0.494858 + 0.868974i \(0.664780\pi\)
\(998\) 0 0
\(999\) −5.35026 −0.169275
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 740.2.a.e.1.1 3
3.2 odd 2 6660.2.a.q.1.1 3
4.3 odd 2 2960.2.a.t.1.3 3
5.2 odd 4 3700.2.d.h.149.5 6
5.3 odd 4 3700.2.d.h.149.2 6
5.4 even 2 3700.2.a.i.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
740.2.a.e.1.1 3 1.1 even 1 trivial
2960.2.a.t.1.3 3 4.3 odd 2
3700.2.a.i.1.3 3 5.4 even 2
3700.2.d.h.149.2 6 5.3 odd 4
3700.2.d.h.149.5 6 5.2 odd 4
6660.2.a.q.1.1 3 3.2 odd 2