# Properties

 Label 740.2.a.c Level $740$ Weight $2$ Character orbit 740.a Self dual yes Analytic conductor $5.909$ Analytic rank $0$ Dimension $1$ CM no Inner twists $1$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [740,2,Mod(1,740)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(740, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 0, 0]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("740.1");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$740 = 2^{2} \cdot 5 \cdot 37$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 740.a (trivial)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: yes Analytic conductor: $$5.90892974957$$ Analytic rank: $$0$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: yes Fricke sign: $$-1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q + 3 q^{3} - q^{5} - 3 q^{7} + 6 q^{9}+O(q^{10})$$ q + 3 * q^3 - q^5 - 3 * q^7 + 6 * q^9 $$q + 3 q^{3} - q^{5} - 3 q^{7} + 6 q^{9} + 5 q^{11} + 2 q^{13} - 3 q^{15} + 4 q^{17} - 4 q^{19} - 9 q^{21} + 6 q^{23} + q^{25} + 9 q^{27} + 6 q^{29} - 4 q^{31} + 15 q^{33} + 3 q^{35} - q^{37} + 6 q^{39} - 9 q^{41} + 10 q^{43} - 6 q^{45} - 11 q^{47} + 2 q^{49} + 12 q^{51} - 11 q^{53} - 5 q^{55} - 12 q^{57} - 8 q^{59} - 8 q^{61} - 18 q^{63} - 2 q^{65} - 8 q^{67} + 18 q^{69} + 3 q^{71} + 7 q^{73} + 3 q^{75} - 15 q^{77} + 8 q^{79} + 9 q^{81} - 9 q^{83} - 4 q^{85} + 18 q^{87} - 16 q^{89} - 6 q^{91} - 12 q^{93} + 4 q^{95} + 12 q^{97} + 30 q^{99}+O(q^{100})$$ q + 3 * q^3 - q^5 - 3 * q^7 + 6 * q^9 + 5 * q^11 + 2 * q^13 - 3 * q^15 + 4 * q^17 - 4 * q^19 - 9 * q^21 + 6 * q^23 + q^25 + 9 * q^27 + 6 * q^29 - 4 * q^31 + 15 * q^33 + 3 * q^35 - q^37 + 6 * q^39 - 9 * q^41 + 10 * q^43 - 6 * q^45 - 11 * q^47 + 2 * q^49 + 12 * q^51 - 11 * q^53 - 5 * q^55 - 12 * q^57 - 8 * q^59 - 8 * q^61 - 18 * q^63 - 2 * q^65 - 8 * q^67 + 18 * q^69 + 3 * q^71 + 7 * q^73 + 3 * q^75 - 15 * q^77 + 8 * q^79 + 9 * q^81 - 9 * q^83 - 4 * q^85 + 18 * q^87 - 16 * q^89 - 6 * q^91 - 12 * q^93 + 4 * q^95 + 12 * q^97 + 30 * q^99

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label   $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 0
0 3.00000 0 −1.00000 0 −3.00000 0 6.00000 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$-1$$
$$5$$ $$+1$$
$$37$$ $$+1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 740.2.a.c 1
3.b odd 2 1 6660.2.a.b 1
4.b odd 2 1 2960.2.a.a 1
5.b even 2 1 3700.2.a.a 1
5.c odd 4 2 3700.2.d.a 2

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
740.2.a.c 1 1.a even 1 1 trivial
2960.2.a.a 1 4.b odd 2 1
3700.2.a.a 1 5.b even 2 1
3700.2.d.a 2 5.c odd 4 2
6660.2.a.b 1 3.b odd 2 1

## Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator $$T_{3} - 3$$ acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(740))$$.

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T$$
$3$ $$T - 3$$
$5$ $$T + 1$$
$7$ $$T + 3$$
$11$ $$T - 5$$
$13$ $$T - 2$$
$17$ $$T - 4$$
$19$ $$T + 4$$
$23$ $$T - 6$$
$29$ $$T - 6$$
$31$ $$T + 4$$
$37$ $$T + 1$$
$41$ $$T + 9$$
$43$ $$T - 10$$
$47$ $$T + 11$$
$53$ $$T + 11$$
$59$ $$T + 8$$
$61$ $$T + 8$$
$67$ $$T + 8$$
$71$ $$T - 3$$
$73$ $$T - 7$$
$79$ $$T - 8$$
$83$ $$T + 9$$
$89$ $$T + 16$$
$97$ $$T - 12$$