Defining parameters
Level: | \( N \) | \(=\) | \( 740 = 2^{2} \cdot 5 \cdot 37 \) |
Weight: | \( k \) | \(=\) | \( 1 \) |
Character orbit: | \([\chi]\) | \(=\) | 740.g (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 740 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(114\) | ||
Trace bound: | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{1}(740, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 10 | 10 | 0 |
Cusp forms | 6 | 6 | 0 |
Eisenstein series | 4 | 4 | 0 |
The following table gives the dimensions of subspaces with specified projective image type.
\(D_n\) | \(A_4\) | \(S_4\) | \(A_5\) | |
---|---|---|---|---|
Dimension | 6 | 0 | 0 | 0 |
Trace form
Decomposition of \(S_{1}^{\mathrm{new}}(740, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | Image | CM | RM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||||
740.1.g.a | $1$ | $0.369$ | \(\Q\) | $D_{2}$ | \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-185}) \) | \(\Q(\sqrt{185}) \) | \(-1\) | \(0\) | \(-1\) | \(0\) | \(q-q^{2}+q^{4}-q^{5}-q^{8}-q^{9}+q^{10}+\cdots\) |
740.1.g.b | $1$ | $0.369$ | \(\Q\) | $D_{2}$ | \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-185}) \) | \(\Q(\sqrt{185}) \) | \(1\) | \(0\) | \(1\) | \(0\) | \(q+q^{2}+q^{4}+q^{5}+q^{8}-q^{9}+q^{10}+\cdots\) |
740.1.g.c | $2$ | $0.369$ | \(\Q(\sqrt{2}) \) | $D_{4}$ | \(\Q(\sqrt{-185}) \) | None | \(-2\) | \(0\) | \(2\) | \(0\) | \(q-q^{2}-\beta q^{3}+q^{4}+q^{5}+\beta q^{6}+\beta q^{7}+\cdots\) |
740.1.g.d | $2$ | $0.369$ | \(\Q(\sqrt{2}) \) | $D_{4}$ | \(\Q(\sqrt{-185}) \) | None | \(2\) | \(0\) | \(-2\) | \(0\) | \(q+q^{2}-\beta q^{3}+q^{4}-q^{5}-\beta q^{6}+\beta q^{7}+\cdots\) |