Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [74,8,Mod(73,74)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(74, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([1]))
N = Newforms(chi, 8, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("74.73");
S:= CuspForms(chi, 8);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 74 = 2 \cdot 37 \) |
Weight: | \( k \) | \(=\) | \( 8 \) |
Character orbit: | \([\chi]\) | \(=\) | 74.b (of order \(2\), degree \(1\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(23.1164918858\) |
Analytic rank: | \(0\) |
Dimension: | \(24\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
73.1 | − | 8.00000i | −91.9686 | −64.0000 | − | 130.944i | 735.749i | 433.376 | 512.000i | 6271.23 | −1047.55 | ||||||||||||||||
73.2 | − | 8.00000i | −61.7342 | −64.0000 | 552.363i | 493.873i | 606.238 | 512.000i | 1624.11 | 4418.91 | |||||||||||||||||
73.3 | − | 8.00000i | −56.1340 | −64.0000 | − | 124.677i | 449.072i | −681.195 | 512.000i | 964.026 | −997.419 | ||||||||||||||||
73.4 | − | 8.00000i | −35.5669 | −64.0000 | − | 301.873i | 284.535i | 1525.43 | 512.000i | −921.994 | −2414.98 | ||||||||||||||||
73.5 | − | 8.00000i | −31.2675 | −64.0000 | 179.532i | 250.140i | −1585.88 | 512.000i | −1209.34 | 1436.25 | |||||||||||||||||
73.6 | − | 8.00000i | −28.7630 | −64.0000 | − | 436.339i | 230.104i | −218.580 | 512.000i | −1359.69 | −3490.71 | ||||||||||||||||
73.7 | − | 8.00000i | −0.654487 | −64.0000 | 54.2779i | 5.23590i | 1545.01 | 512.000i | −2186.57 | 434.223 | |||||||||||||||||
73.8 | − | 8.00000i | 14.3858 | −64.0000 | 303.371i | − | 115.086i | 76.6627 | 512.000i | −1980.05 | 2426.97 | ||||||||||||||||
73.9 | − | 8.00000i | 34.9288 | −64.0000 | 125.706i | − | 279.431i | −166.083 | 512.000i | −966.977 | 1005.65 | ||||||||||||||||
73.10 | − | 8.00000i | 39.3436 | −64.0000 | − | 464.624i | − | 314.749i | −1250.90 | 512.000i | −639.083 | −3716.99 | |||||||||||||||
73.11 | − | 8.00000i | 77.9352 | −64.0000 | − | 194.832i | − | 623.482i | 874.611 | 512.000i | 3886.90 | −1558.66 | |||||||||||||||
73.12 | − | 8.00000i | 86.4953 | −64.0000 | 509.039i | − | 691.963i | −1106.69 | 512.000i | 5294.44 | 4072.31 | ||||||||||||||||
73.13 | 8.00000i | −91.9686 | −64.0000 | 130.944i | − | 735.749i | 433.376 | − | 512.000i | 6271.23 | −1047.55 | ||||||||||||||||
73.14 | 8.00000i | −61.7342 | −64.0000 | − | 552.363i | − | 493.873i | 606.238 | − | 512.000i | 1624.11 | 4418.91 | |||||||||||||||
73.15 | 8.00000i | −56.1340 | −64.0000 | 124.677i | − | 449.072i | −681.195 | − | 512.000i | 964.026 | −997.419 | ||||||||||||||||
73.16 | 8.00000i | −35.5669 | −64.0000 | 301.873i | − | 284.535i | 1525.43 | − | 512.000i | −921.994 | −2414.98 | ||||||||||||||||
73.17 | 8.00000i | −31.2675 | −64.0000 | − | 179.532i | − | 250.140i | −1585.88 | − | 512.000i | −1209.34 | 1436.25 | |||||||||||||||
73.18 | 8.00000i | −28.7630 | −64.0000 | 436.339i | − | 230.104i | −218.580 | − | 512.000i | −1359.69 | −3490.71 | ||||||||||||||||
73.19 | 8.00000i | −0.654487 | −64.0000 | − | 54.2779i | − | 5.23590i | 1545.01 | − | 512.000i | −2186.57 | 434.223 | |||||||||||||||
73.20 | 8.00000i | 14.3858 | −64.0000 | − | 303.371i | 115.086i | 76.6627 | − | 512.000i | −1980.05 | 2426.97 | ||||||||||||||||
See all 24 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
37.b | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 74.8.b.a | ✓ | 24 |
37.b | even | 2 | 1 | inner | 74.8.b.a | ✓ | 24 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
74.8.b.a | ✓ | 24 | 1.a | even | 1 | 1 | trivial |
74.8.b.a | ✓ | 24 | 37.b | even | 2 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{8}^{\mathrm{new}}(74, [\chi])\).