Properties

Label 74.8.a.c.1.5
Level $74$
Weight $8$
Character 74.1
Self dual yes
Analytic conductor $23.116$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [74,8,Mod(1,74)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(74, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("74.1");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 74 = 2 \cdot 37 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 74.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(23.1164918858\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 10621x^{4} + 102052x^{3} + 31004503x^{2} - 305547358x - 22608804936 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(-57.0201\) of defining polynomial
Character \(\chi\) \(=\) 74.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-8.00000 q^{2} +62.0201 q^{3} +64.0000 q^{4} +42.8650 q^{5} -496.161 q^{6} +819.178 q^{7} -512.000 q^{8} +1659.49 q^{9} +O(q^{10})\) \(q-8.00000 q^{2} +62.0201 q^{3} +64.0000 q^{4} +42.8650 q^{5} -496.161 q^{6} +819.178 q^{7} -512.000 q^{8} +1659.49 q^{9} -342.920 q^{10} +728.856 q^{11} +3969.29 q^{12} +14302.8 q^{13} -6553.43 q^{14} +2658.49 q^{15} +4096.00 q^{16} -34889.7 q^{17} -13275.9 q^{18} +38798.5 q^{19} +2743.36 q^{20} +50805.5 q^{21} -5830.85 q^{22} -61429.2 q^{23} -31754.3 q^{24} -76287.6 q^{25} -114423. q^{26} -32716.2 q^{27} +52427.4 q^{28} +197556. q^{29} -21267.9 q^{30} +255264. q^{31} -32768.0 q^{32} +45203.7 q^{33} +279117. q^{34} +35114.1 q^{35} +106207. q^{36} -50653.0 q^{37} -310388. q^{38} +887064. q^{39} -21946.9 q^{40} +797332. q^{41} -406444. q^{42} +141543. q^{43} +46646.8 q^{44} +71134.1 q^{45} +491434. q^{46} +643617. q^{47} +254034. q^{48} -152490. q^{49} +610301. q^{50} -2.16386e6 q^{51} +915382. q^{52} +994805. q^{53} +261729. q^{54} +31242.4 q^{55} -419419. q^{56} +2.40629e6 q^{57} -1.58045e6 q^{58} -2.48495e6 q^{59} +170143. q^{60} -649593. q^{61} -2.04211e6 q^{62} +1.35942e6 q^{63} +262144. q^{64} +613091. q^{65} -361630. q^{66} -818509. q^{67} -2.23294e6 q^{68} -3.80985e6 q^{69} -280913. q^{70} -2.77796e6 q^{71} -849659. q^{72} +4.46812e6 q^{73} +405224. q^{74} -4.73136e6 q^{75} +2.48310e6 q^{76} +597063. q^{77} -7.09651e6 q^{78} +3.61377e6 q^{79} +175575. q^{80} -5.65837e6 q^{81} -6.37866e6 q^{82} -2.47637e6 q^{83} +3.25155e6 q^{84} -1.49555e6 q^{85} -1.13235e6 q^{86} +1.22525e7 q^{87} -373174. q^{88} +6.02437e6 q^{89} -569072. q^{90} +1.17166e7 q^{91} -3.93147e6 q^{92} +1.58315e7 q^{93} -5.14894e6 q^{94} +1.66310e6 q^{95} -2.03227e6 q^{96} -1.02401e7 q^{97} +1.21992e6 q^{98} +1.20953e6 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 48 q^{2} + 28 q^{3} + 384 q^{4} - 14 q^{5} - 224 q^{6} - 980 q^{7} - 3072 q^{8} + 8254 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 6 q - 48 q^{2} + 28 q^{3} + 384 q^{4} - 14 q^{5} - 224 q^{6} - 980 q^{7} - 3072 q^{8} + 8254 q^{9} + 112 q^{10} + 2956 q^{11} + 1792 q^{12} + 2394 q^{13} + 7840 q^{14} - 28820 q^{15} + 24576 q^{16} - 45108 q^{17} - 66032 q^{18} + 11764 q^{19} - 896 q^{20} - 135378 q^{21} - 23648 q^{22} + 21052 q^{23} - 14336 q^{24} + 194744 q^{25} - 19152 q^{26} + 439240 q^{27} - 62720 q^{28} + 288454 q^{29} + 230560 q^{30} + 578868 q^{31} - 196608 q^{32} + 980174 q^{33} + 360864 q^{34} + 1243052 q^{35} + 528256 q^{36} - 303918 q^{37} - 94112 q^{38} + 1735296 q^{39} + 7168 q^{40} + 1176840 q^{41} + 1083024 q^{42} + 2669236 q^{43} + 189184 q^{44} + 2560692 q^{45} - 168416 q^{46} - 131044 q^{47} + 114688 q^{48} + 2460856 q^{49} - 1557952 q^{50} + 2899732 q^{51} + 153216 q^{52} + 983190 q^{53} - 3513920 q^{54} - 1200168 q^{55} + 501760 q^{56} - 163216 q^{57} - 2307632 q^{58} - 1215568 q^{59} - 1844480 q^{60} + 3136358 q^{61} - 4630944 q^{62} - 1444880 q^{63} + 1572864 q^{64} - 1302836 q^{65} - 7841392 q^{66} + 2179276 q^{67} - 2886912 q^{68} - 929514 q^{69} - 9944416 q^{70} + 325164 q^{71} - 4226048 q^{72} + 5011444 q^{73} + 2431344 q^{74} - 9374520 q^{75} + 752896 q^{76} - 26500426 q^{77} - 13882368 q^{78} + 3173032 q^{79} - 57344 q^{80} - 2565226 q^{81} - 9414720 q^{82} - 22567048 q^{83} - 8664192 q^{84} + 1486476 q^{85} - 21353888 q^{86} - 157228 q^{87} - 1513472 q^{88} + 26836996 q^{89} - 20485536 q^{90} + 17942380 q^{91} + 1347328 q^{92} + 16734948 q^{93} + 1048352 q^{94} - 4252048 q^{95} - 917504 q^{96} + 295792 q^{97} - 19686848 q^{98} + 25990712 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −8.00000 −0.707107
\(3\) 62.0201 1.32620 0.663098 0.748532i \(-0.269241\pi\)
0.663098 + 0.748532i \(0.269241\pi\)
\(4\) 64.0000 0.500000
\(5\) 42.8650 0.153358 0.0766792 0.997056i \(-0.475568\pi\)
0.0766792 + 0.997056i \(0.475568\pi\)
\(6\) −496.161 −0.937763
\(7\) 819.178 0.902683 0.451341 0.892351i \(-0.350946\pi\)
0.451341 + 0.892351i \(0.350946\pi\)
\(8\) −512.000 −0.353553
\(9\) 1659.49 0.758798
\(10\) −342.920 −0.108441
\(11\) 728.856 0.165108 0.0825538 0.996587i \(-0.473692\pi\)
0.0825538 + 0.996587i \(0.473692\pi\)
\(12\) 3969.29 0.663098
\(13\) 14302.8 1.80560 0.902798 0.430065i \(-0.141509\pi\)
0.902798 + 0.430065i \(0.141509\pi\)
\(14\) −6553.43 −0.638293
\(15\) 2658.49 0.203384
\(16\) 4096.00 0.250000
\(17\) −34889.7 −1.72237 −0.861183 0.508295i \(-0.830276\pi\)
−0.861183 + 0.508295i \(0.830276\pi\)
\(18\) −13275.9 −0.536551
\(19\) 38798.5 1.29771 0.648854 0.760913i \(-0.275248\pi\)
0.648854 + 0.760913i \(0.275248\pi\)
\(20\) 2743.36 0.0766792
\(21\) 50805.5 1.19714
\(22\) −5830.85 −0.116749
\(23\) −61429.2 −1.05276 −0.526378 0.850251i \(-0.676450\pi\)
−0.526378 + 0.850251i \(0.676450\pi\)
\(24\) −31754.3 −0.468881
\(25\) −76287.6 −0.976481
\(26\) −114423. −1.27675
\(27\) −32716.2 −0.319882
\(28\) 52427.4 0.451341
\(29\) 197556. 1.50417 0.752086 0.659065i \(-0.229048\pi\)
0.752086 + 0.659065i \(0.229048\pi\)
\(30\) −21267.9 −0.143814
\(31\) 255264. 1.53895 0.769474 0.638678i \(-0.220519\pi\)
0.769474 + 0.638678i \(0.220519\pi\)
\(32\) −32768.0 −0.176777
\(33\) 45203.7 0.218965
\(34\) 279117. 1.21790
\(35\) 35114.1 0.138434
\(36\) 106207. 0.379399
\(37\) −50653.0 −0.164399
\(38\) −310388. −0.917618
\(39\) 887064. 2.39458
\(40\) −21946.9 −0.0542204
\(41\) 797332. 1.80674 0.903370 0.428861i \(-0.141085\pi\)
0.903370 + 0.428861i \(0.141085\pi\)
\(42\) −406444. −0.846502
\(43\) 141543. 0.271487 0.135744 0.990744i \(-0.456658\pi\)
0.135744 + 0.990744i \(0.456658\pi\)
\(44\) 46646.8 0.0825538
\(45\) 71134.1 0.116368
\(46\) 491434. 0.744411
\(47\) 643617. 0.904243 0.452121 0.891956i \(-0.350667\pi\)
0.452121 + 0.891956i \(0.350667\pi\)
\(48\) 254034. 0.331549
\(49\) −152490. −0.185163
\(50\) 610301. 0.690476
\(51\) −2.16386e6 −2.28420
\(52\) 915382. 0.902798
\(53\) 994805. 0.917852 0.458926 0.888475i \(-0.348234\pi\)
0.458926 + 0.888475i \(0.348234\pi\)
\(54\) 261729. 0.226191
\(55\) 31242.4 0.0253207
\(56\) −419419. −0.319147
\(57\) 2.40629e6 1.72102
\(58\) −1.58045e6 −1.06361
\(59\) −2.48495e6 −1.57520 −0.787601 0.616185i \(-0.788677\pi\)
−0.787601 + 0.616185i \(0.788677\pi\)
\(60\) 170143. 0.101692
\(61\) −649593. −0.366426 −0.183213 0.983073i \(-0.558650\pi\)
−0.183213 + 0.983073i \(0.558650\pi\)
\(62\) −2.04211e6 −1.08820
\(63\) 1.35942e6 0.684954
\(64\) 262144. 0.125000
\(65\) 613091. 0.276904
\(66\) −361630. −0.154832
\(67\) −818509. −0.332477 −0.166239 0.986086i \(-0.553162\pi\)
−0.166239 + 0.986086i \(0.553162\pi\)
\(68\) −2.23294e6 −0.861183
\(69\) −3.80985e6 −1.39616
\(70\) −280913. −0.0978877
\(71\) −2.77796e6 −0.921132 −0.460566 0.887625i \(-0.652354\pi\)
−0.460566 + 0.887625i \(0.652354\pi\)
\(72\) −849659. −0.268276
\(73\) 4.46812e6 1.34430 0.672148 0.740416i \(-0.265372\pi\)
0.672148 + 0.740416i \(0.265372\pi\)
\(74\) 405224. 0.116248
\(75\) −4.73136e6 −1.29501
\(76\) 2.48310e6 0.648854
\(77\) 597063. 0.149040
\(78\) −7.09651e6 −1.69322
\(79\) 3.61377e6 0.824643 0.412321 0.911038i \(-0.364718\pi\)
0.412321 + 0.911038i \(0.364718\pi\)
\(80\) 175575. 0.0383396
\(81\) −5.65837e6 −1.18302
\(82\) −6.37866e6 −1.27756
\(83\) −2.47637e6 −0.475382 −0.237691 0.971341i \(-0.576391\pi\)
−0.237691 + 0.971341i \(0.576391\pi\)
\(84\) 3.25155e6 0.598568
\(85\) −1.49555e6 −0.264139
\(86\) −1.13235e6 −0.191970
\(87\) 1.22525e7 1.99483
\(88\) −373174. −0.0583744
\(89\) 6.02437e6 0.905829 0.452915 0.891554i \(-0.350384\pi\)
0.452915 + 0.891554i \(0.350384\pi\)
\(90\) −569072. −0.0822846
\(91\) 1.17166e7 1.62988
\(92\) −3.93147e6 −0.526378
\(93\) 1.58315e7 2.04095
\(94\) −5.14894e6 −0.639396
\(95\) 1.66310e6 0.199015
\(96\) −2.03227e6 −0.234441
\(97\) −1.02401e7 −1.13921 −0.569603 0.821920i \(-0.692903\pi\)
−0.569603 + 0.821920i \(0.692903\pi\)
\(98\) 1.21992e6 0.130930
\(99\) 1.20953e6 0.125283
\(100\) −4.88241e6 −0.488241
\(101\) −9.80284e6 −0.946732 −0.473366 0.880866i \(-0.656961\pi\)
−0.473366 + 0.880866i \(0.656961\pi\)
\(102\) 1.73109e7 1.61517
\(103\) −8.87773e6 −0.800519 −0.400260 0.916402i \(-0.631080\pi\)
−0.400260 + 0.916402i \(0.631080\pi\)
\(104\) −7.32306e6 −0.638375
\(105\) 2.17778e6 0.183591
\(106\) −7.95844e6 −0.649019
\(107\) −2.13471e7 −1.68459 −0.842297 0.539014i \(-0.818797\pi\)
−0.842297 + 0.539014i \(0.818797\pi\)
\(108\) −2.09384e6 −0.159941
\(109\) 4.53326e6 0.335288 0.167644 0.985848i \(-0.446384\pi\)
0.167644 + 0.985848i \(0.446384\pi\)
\(110\) −249939. −0.0179044
\(111\) −3.14150e6 −0.218025
\(112\) 3.35535e6 0.225671
\(113\) 1.86207e7 1.21401 0.607003 0.794700i \(-0.292372\pi\)
0.607003 + 0.794700i \(0.292372\pi\)
\(114\) −1.92503e7 −1.21694
\(115\) −2.63316e6 −0.161449
\(116\) 1.26436e7 0.752086
\(117\) 2.37354e7 1.37008
\(118\) 1.98796e7 1.11384
\(119\) −2.85809e7 −1.55475
\(120\) −1.36115e6 −0.0719069
\(121\) −1.89559e7 −0.972739
\(122\) 5.19674e6 0.259103
\(123\) 4.94506e7 2.39609
\(124\) 1.63369e7 0.769474
\(125\) −6.61890e6 −0.303110
\(126\) −1.08753e7 −0.484335
\(127\) −3.19197e7 −1.38276 −0.691378 0.722494i \(-0.742996\pi\)
−0.691378 + 0.722494i \(0.742996\pi\)
\(128\) −2.09715e6 −0.0883883
\(129\) 8.77852e6 0.360045
\(130\) −4.90473e6 −0.195800
\(131\) 4.29915e6 0.167083 0.0835417 0.996504i \(-0.473377\pi\)
0.0835417 + 0.996504i \(0.473377\pi\)
\(132\) 2.89304e6 0.109483
\(133\) 3.17829e7 1.17142
\(134\) 6.54807e6 0.235097
\(135\) −1.40238e6 −0.0490566
\(136\) 1.78635e7 0.608948
\(137\) −2.11879e7 −0.703990 −0.351995 0.936002i \(-0.614497\pi\)
−0.351995 + 0.936002i \(0.614497\pi\)
\(138\) 3.04788e7 0.987235
\(139\) −4.55730e7 −1.43932 −0.719658 0.694329i \(-0.755701\pi\)
−0.719658 + 0.694329i \(0.755701\pi\)
\(140\) 2.24730e6 0.0692170
\(141\) 3.99172e7 1.19920
\(142\) 2.22237e7 0.651339
\(143\) 1.04247e7 0.298118
\(144\) 6.79727e6 0.189699
\(145\) 8.46825e6 0.230678
\(146\) −3.57450e7 −0.950561
\(147\) −9.45745e6 −0.245563
\(148\) −3.24179e6 −0.0821995
\(149\) −9.31111e6 −0.230595 −0.115297 0.993331i \(-0.536782\pi\)
−0.115297 + 0.993331i \(0.536782\pi\)
\(150\) 3.78509e7 0.915708
\(151\) 3.37665e7 0.798118 0.399059 0.916925i \(-0.369337\pi\)
0.399059 + 0.916925i \(0.369337\pi\)
\(152\) −1.98648e7 −0.458809
\(153\) −5.78991e7 −1.30693
\(154\) −4.77650e6 −0.105387
\(155\) 1.09419e7 0.236011
\(156\) 5.67721e7 1.19729
\(157\) −4.56700e7 −0.941852 −0.470926 0.882173i \(-0.656080\pi\)
−0.470926 + 0.882173i \(0.656080\pi\)
\(158\) −2.89102e7 −0.583110
\(159\) 6.16979e7 1.21725
\(160\) −1.40460e6 −0.0271102
\(161\) −5.03215e7 −0.950305
\(162\) 4.52669e7 0.836524
\(163\) 7.19023e7 1.30043 0.650214 0.759751i \(-0.274679\pi\)
0.650214 + 0.759751i \(0.274679\pi\)
\(164\) 5.10293e7 0.903370
\(165\) 1.93766e6 0.0335802
\(166\) 1.98110e7 0.336146
\(167\) −1.35765e7 −0.225569 −0.112785 0.993619i \(-0.535977\pi\)
−0.112785 + 0.993619i \(0.535977\pi\)
\(168\) −2.60124e7 −0.423251
\(169\) 1.41823e8 2.26018
\(170\) 1.19644e7 0.186775
\(171\) 6.43857e7 0.984698
\(172\) 9.05876e6 0.135744
\(173\) −7.10807e7 −1.04374 −0.521868 0.853027i \(-0.674764\pi\)
−0.521868 + 0.853027i \(0.674764\pi\)
\(174\) −9.80196e7 −1.41056
\(175\) −6.24931e7 −0.881453
\(176\) 2.98539e6 0.0412769
\(177\) −1.54117e8 −2.08903
\(178\) −4.81949e7 −0.640518
\(179\) −1.03698e8 −1.35141 −0.675704 0.737173i \(-0.736160\pi\)
−0.675704 + 0.737173i \(0.736160\pi\)
\(180\) 4.55258e6 0.0581840
\(181\) 1.19620e7 0.149944 0.0749721 0.997186i \(-0.476113\pi\)
0.0749721 + 0.997186i \(0.476113\pi\)
\(182\) −9.37326e7 −1.15250
\(183\) −4.02878e7 −0.485954
\(184\) 3.14518e7 0.372205
\(185\) −2.17124e6 −0.0252120
\(186\) −1.26652e8 −1.44317
\(187\) −2.54295e7 −0.284376
\(188\) 4.11915e7 0.452121
\(189\) −2.68004e7 −0.288752
\(190\) −1.33048e7 −0.140725
\(191\) −6.85614e7 −0.711972 −0.355986 0.934491i \(-0.615855\pi\)
−0.355986 + 0.934491i \(0.615855\pi\)
\(192\) 1.62582e7 0.165775
\(193\) 1.14842e7 0.114987 0.0574935 0.998346i \(-0.481689\pi\)
0.0574935 + 0.998346i \(0.481689\pi\)
\(194\) 8.19206e7 0.805540
\(195\) 3.80240e7 0.367229
\(196\) −9.75936e6 −0.0925817
\(197\) −5.96509e7 −0.555885 −0.277943 0.960598i \(-0.589652\pi\)
−0.277943 + 0.960598i \(0.589652\pi\)
\(198\) −9.67624e6 −0.0885887
\(199\) 2.32794e6 0.0209404 0.0104702 0.999945i \(-0.496667\pi\)
0.0104702 + 0.999945i \(0.496667\pi\)
\(200\) 3.90592e7 0.345238
\(201\) −5.07640e7 −0.440930
\(202\) 7.84227e7 0.669441
\(203\) 1.61834e8 1.35779
\(204\) −1.38487e8 −1.14210
\(205\) 3.41776e7 0.277079
\(206\) 7.10218e7 0.566052
\(207\) −1.01941e8 −0.798829
\(208\) 5.85844e7 0.451399
\(209\) 2.82785e7 0.214262
\(210\) −1.74222e7 −0.129818
\(211\) −1.21515e8 −0.890512 −0.445256 0.895403i \(-0.646887\pi\)
−0.445256 + 0.895403i \(0.646887\pi\)
\(212\) 6.36675e7 0.458926
\(213\) −1.72289e8 −1.22160
\(214\) 1.70777e8 1.19119
\(215\) 6.06725e6 0.0416349
\(216\) 1.67507e7 0.113095
\(217\) 2.09107e8 1.38918
\(218\) −3.62661e7 −0.237084
\(219\) 2.77113e8 1.78280
\(220\) 1.99951e6 0.0126603
\(221\) −4.99021e8 −3.10990
\(222\) 2.51320e7 0.154167
\(223\) 7.31257e7 0.441574 0.220787 0.975322i \(-0.429138\pi\)
0.220787 + 0.975322i \(0.429138\pi\)
\(224\) −2.68428e7 −0.159573
\(225\) −1.26599e8 −0.740952
\(226\) −1.48965e8 −0.858431
\(227\) 2.34452e8 1.33034 0.665171 0.746691i \(-0.268359\pi\)
0.665171 + 0.746691i \(0.268359\pi\)
\(228\) 1.54002e8 0.860508
\(229\) −1.23358e8 −0.678804 −0.339402 0.940641i \(-0.610225\pi\)
−0.339402 + 0.940641i \(0.610225\pi\)
\(230\) 2.10653e7 0.114162
\(231\) 3.70299e7 0.197656
\(232\) −1.01149e8 −0.531805
\(233\) −1.91129e8 −0.989877 −0.494939 0.868928i \(-0.664809\pi\)
−0.494939 + 0.868928i \(0.664809\pi\)
\(234\) −1.89883e8 −0.968795
\(235\) 2.75886e7 0.138673
\(236\) −1.59037e8 −0.787601
\(237\) 2.24126e8 1.09364
\(238\) 2.28647e8 1.09937
\(239\) 3.66027e8 1.73428 0.867142 0.498060i \(-0.165954\pi\)
0.867142 + 0.498060i \(0.165954\pi\)
\(240\) 1.08892e7 0.0508459
\(241\) −3.34001e8 −1.53705 −0.768526 0.639819i \(-0.779009\pi\)
−0.768526 + 0.639819i \(0.779009\pi\)
\(242\) 1.51648e8 0.687831
\(243\) −2.79382e8 −1.24904
\(244\) −4.15739e7 −0.183213
\(245\) −6.53649e6 −0.0283964
\(246\) −3.95605e8 −1.69429
\(247\) 5.54929e8 2.34314
\(248\) −1.30695e8 −0.544100
\(249\) −1.53585e8 −0.630450
\(250\) 5.29512e7 0.214331
\(251\) 4.23063e8 1.68868 0.844340 0.535808i \(-0.179993\pi\)
0.844340 + 0.535808i \(0.179993\pi\)
\(252\) 8.70028e7 0.342477
\(253\) −4.47731e7 −0.173818
\(254\) 2.55357e8 0.977756
\(255\) −9.27538e7 −0.350301
\(256\) 1.67772e7 0.0625000
\(257\) −1.74610e8 −0.641659 −0.320830 0.947137i \(-0.603962\pi\)
−0.320830 + 0.947137i \(0.603962\pi\)
\(258\) −7.02281e7 −0.254591
\(259\) −4.14938e7 −0.148400
\(260\) 3.92378e7 0.138452
\(261\) 3.27843e8 1.14136
\(262\) −3.43932e7 −0.118146
\(263\) −4.23880e7 −0.143680 −0.0718402 0.997416i \(-0.522887\pi\)
−0.0718402 + 0.997416i \(0.522887\pi\)
\(264\) −2.31443e7 −0.0774159
\(265\) 4.26423e7 0.140760
\(266\) −2.54263e8 −0.828319
\(267\) 3.73632e8 1.20131
\(268\) −5.23846e7 −0.166239
\(269\) 6.79464e6 0.0212830 0.0106415 0.999943i \(-0.496613\pi\)
0.0106415 + 0.999943i \(0.496613\pi\)
\(270\) 1.12190e7 0.0346882
\(271\) 4.98438e8 1.52131 0.760656 0.649155i \(-0.224877\pi\)
0.760656 + 0.649155i \(0.224877\pi\)
\(272\) −1.42908e8 −0.430592
\(273\) 7.26663e8 2.16154
\(274\) 1.69503e8 0.497796
\(275\) −5.56027e7 −0.161225
\(276\) −2.43830e8 −0.698081
\(277\) −1.15197e7 −0.0325659 −0.0162830 0.999867i \(-0.505183\pi\)
−0.0162830 + 0.999867i \(0.505183\pi\)
\(278\) 3.64584e8 1.01775
\(279\) 4.23608e8 1.16775
\(280\) −1.79784e7 −0.0489438
\(281\) −3.39018e7 −0.0911489 −0.0455744 0.998961i \(-0.514512\pi\)
−0.0455744 + 0.998961i \(0.514512\pi\)
\(282\) −3.19337e8 −0.847965
\(283\) 8.85427e7 0.232220 0.116110 0.993236i \(-0.462957\pi\)
0.116110 + 0.993236i \(0.462957\pi\)
\(284\) −1.77790e8 −0.460566
\(285\) 1.03145e8 0.263933
\(286\) −8.33977e7 −0.210801
\(287\) 6.53157e8 1.63091
\(288\) −5.43782e7 −0.134138
\(289\) 8.06950e8 1.96655
\(290\) −6.77460e7 −0.163114
\(291\) −6.35090e8 −1.51081
\(292\) 2.85960e8 0.672148
\(293\) −2.03644e8 −0.472971 −0.236486 0.971635i \(-0.575996\pi\)
−0.236486 + 0.971635i \(0.575996\pi\)
\(294\) 7.56596e7 0.173639
\(295\) −1.06518e8 −0.241571
\(296\) 2.59343e7 0.0581238
\(297\) −2.38454e7 −0.0528149
\(298\) 7.44889e7 0.163055
\(299\) −8.78613e8 −1.90085
\(300\) −3.02807e8 −0.647503
\(301\) 1.15949e8 0.245067
\(302\) −2.70132e8 −0.564355
\(303\) −6.07973e8 −1.25555
\(304\) 1.58919e8 0.324427
\(305\) −2.78448e7 −0.0561946
\(306\) 4.63193e8 0.924137
\(307\) 6.17625e8 1.21826 0.609130 0.793070i \(-0.291519\pi\)
0.609130 + 0.793070i \(0.291519\pi\)
\(308\) 3.82120e7 0.0745200
\(309\) −5.50598e8 −1.06165
\(310\) −8.75352e7 −0.166885
\(311\) −3.12762e8 −0.589593 −0.294796 0.955560i \(-0.595252\pi\)
−0.294796 + 0.955560i \(0.595252\pi\)
\(312\) −4.54177e8 −0.846610
\(313\) 7.83237e8 1.44374 0.721868 0.692030i \(-0.243284\pi\)
0.721868 + 0.692030i \(0.243284\pi\)
\(314\) 3.65360e8 0.665990
\(315\) 5.82715e7 0.105043
\(316\) 2.31281e8 0.412321
\(317\) 2.34008e8 0.412594 0.206297 0.978489i \(-0.433859\pi\)
0.206297 + 0.978489i \(0.433859\pi\)
\(318\) −4.93583e8 −0.860727
\(319\) 1.43990e8 0.248350
\(320\) 1.12368e7 0.0191698
\(321\) −1.32395e9 −2.23410
\(322\) 4.02572e8 0.671967
\(323\) −1.35367e9 −2.23513
\(324\) −3.62135e8 −0.591512
\(325\) −1.09113e9 −1.76313
\(326\) −5.75219e8 −0.919542
\(327\) 2.81153e8 0.444658
\(328\) −4.08234e8 −0.638779
\(329\) 5.27237e8 0.816244
\(330\) −1.55013e7 −0.0237448
\(331\) 3.12893e8 0.474240 0.237120 0.971480i \(-0.423797\pi\)
0.237120 + 0.971480i \(0.423797\pi\)
\(332\) −1.58488e8 −0.237691
\(333\) −8.40582e7 −0.124746
\(334\) 1.08612e8 0.159502
\(335\) −3.50854e7 −0.0509882
\(336\) 2.08099e8 0.299284
\(337\) −1.12815e9 −1.60569 −0.802844 0.596189i \(-0.796681\pi\)
−0.802844 + 0.596189i \(0.796681\pi\)
\(338\) −1.13458e9 −1.59819
\(339\) 1.15485e9 1.61001
\(340\) −9.57149e7 −0.132070
\(341\) 1.86051e8 0.254092
\(342\) −5.15086e8 −0.696287
\(343\) −7.99545e8 −1.06983
\(344\) −7.24701e7 −0.0959852
\(345\) −1.63309e8 −0.214113
\(346\) 5.68646e8 0.738032
\(347\) −4.60459e8 −0.591614 −0.295807 0.955248i \(-0.595588\pi\)
−0.295807 + 0.955248i \(0.595588\pi\)
\(348\) 7.84157e8 0.997414
\(349\) −1.49795e8 −0.188629 −0.0943147 0.995542i \(-0.530066\pi\)
−0.0943147 + 0.995542i \(0.530066\pi\)
\(350\) 4.99945e8 0.623281
\(351\) −4.67934e8 −0.577577
\(352\) −2.38832e7 −0.0291872
\(353\) −6.18632e8 −0.748550 −0.374275 0.927318i \(-0.622108\pi\)
−0.374275 + 0.927318i \(0.622108\pi\)
\(354\) 1.23294e9 1.47717
\(355\) −1.19077e8 −0.141263
\(356\) 3.85559e8 0.452915
\(357\) −1.77259e9 −2.06191
\(358\) 8.29587e8 0.955589
\(359\) 5.79596e8 0.661142 0.330571 0.943781i \(-0.392759\pi\)
0.330571 + 0.943781i \(0.392759\pi\)
\(360\) −3.64206e7 −0.0411423
\(361\) 6.11451e8 0.684047
\(362\) −9.56962e7 −0.106027
\(363\) −1.17565e9 −1.29004
\(364\) 7.49861e8 0.814941
\(365\) 1.91526e8 0.206159
\(366\) 3.22302e8 0.343621
\(367\) −6.40385e8 −0.676254 −0.338127 0.941100i \(-0.609793\pi\)
−0.338127 + 0.941100i \(0.609793\pi\)
\(368\) −2.51614e8 −0.263189
\(369\) 1.32317e9 1.37095
\(370\) 1.73699e7 0.0178276
\(371\) 8.14923e8 0.828529
\(372\) 1.01322e9 1.02047
\(373\) −8.49178e8 −0.847263 −0.423631 0.905835i \(-0.639245\pi\)
−0.423631 + 0.905835i \(0.639245\pi\)
\(374\) 2.03436e8 0.201084
\(375\) −4.10504e8 −0.401984
\(376\) −3.29532e8 −0.319698
\(377\) 2.82562e9 2.71593
\(378\) 2.14403e8 0.204178
\(379\) 2.68398e7 0.0253246 0.0126623 0.999920i \(-0.495969\pi\)
0.0126623 + 0.999920i \(0.495969\pi\)
\(380\) 1.06438e8 0.0995073
\(381\) −1.97966e9 −1.83381
\(382\) 5.48491e8 0.503440
\(383\) −9.40912e8 −0.855762 −0.427881 0.903835i \(-0.640740\pi\)
−0.427881 + 0.903835i \(0.640740\pi\)
\(384\) −1.30066e8 −0.117220
\(385\) 2.55931e7 0.0228565
\(386\) −9.18733e7 −0.0813081
\(387\) 2.34890e8 0.206004
\(388\) −6.55365e8 −0.569603
\(389\) 6.17107e8 0.531541 0.265771 0.964036i \(-0.414374\pi\)
0.265771 + 0.964036i \(0.414374\pi\)
\(390\) −3.04192e8 −0.259670
\(391\) 2.14325e9 1.81323
\(392\) 7.80749e7 0.0654652
\(393\) 2.66634e8 0.221585
\(394\) 4.77207e8 0.393070
\(395\) 1.54904e8 0.126466
\(396\) 7.74099e7 0.0626417
\(397\) −5.83027e8 −0.467651 −0.233825 0.972279i \(-0.575124\pi\)
−0.233825 + 0.972279i \(0.575124\pi\)
\(398\) −1.86235e7 −0.0148071
\(399\) 1.97118e9 1.55353
\(400\) −3.12474e8 −0.244120
\(401\) 3.92326e8 0.303838 0.151919 0.988393i \(-0.451455\pi\)
0.151919 + 0.988393i \(0.451455\pi\)
\(402\) 4.06112e8 0.311785
\(403\) 3.65100e9 2.77872
\(404\) −6.27382e8 −0.473366
\(405\) −2.42546e8 −0.181427
\(406\) −1.29467e9 −0.960103
\(407\) −3.69187e7 −0.0271435
\(408\) 1.10790e9 0.807585
\(409\) −7.88600e8 −0.569935 −0.284967 0.958537i \(-0.591983\pi\)
−0.284967 + 0.958537i \(0.591983\pi\)
\(410\) −2.73421e8 −0.195924
\(411\) −1.31408e9 −0.933629
\(412\) −5.68175e8 −0.400260
\(413\) −2.03562e9 −1.42191
\(414\) 8.15530e8 0.564857
\(415\) −1.06150e8 −0.0729038
\(416\) −4.68676e8 −0.319187
\(417\) −2.82644e9 −1.90882
\(418\) −2.26228e8 −0.151506
\(419\) 9.25509e8 0.614655 0.307328 0.951604i \(-0.400565\pi\)
0.307328 + 0.951604i \(0.400565\pi\)
\(420\) 1.39378e8 0.0917954
\(421\) −1.35607e9 −0.885717 −0.442859 0.896591i \(-0.646036\pi\)
−0.442859 + 0.896591i \(0.646036\pi\)
\(422\) 9.72117e8 0.629687
\(423\) 1.06808e9 0.686137
\(424\) −5.09340e8 −0.324510
\(425\) 2.66165e9 1.68186
\(426\) 1.37832e9 0.863803
\(427\) −5.32132e8 −0.330767
\(428\) −1.36621e9 −0.842297
\(429\) 6.46542e8 0.395363
\(430\) −4.85380e7 −0.0294403
\(431\) −1.78683e9 −1.07501 −0.537506 0.843260i \(-0.680633\pi\)
−0.537506 + 0.843260i \(0.680633\pi\)
\(432\) −1.34005e8 −0.0799704
\(433\) 1.29073e9 0.764059 0.382029 0.924150i \(-0.375225\pi\)
0.382029 + 0.924150i \(0.375225\pi\)
\(434\) −1.67285e9 −0.982300
\(435\) 5.25201e8 0.305924
\(436\) 2.90129e8 0.167644
\(437\) −2.38336e9 −1.36617
\(438\) −2.21691e9 −1.26063
\(439\) −1.86786e9 −1.05370 −0.526852 0.849957i \(-0.676628\pi\)
−0.526852 + 0.849957i \(0.676628\pi\)
\(440\) −1.59961e7 −0.00895221
\(441\) −2.53056e8 −0.140502
\(442\) 3.99217e9 2.19903
\(443\) −4.02219e8 −0.219811 −0.109905 0.993942i \(-0.535055\pi\)
−0.109905 + 0.993942i \(0.535055\pi\)
\(444\) −2.01056e8 −0.109013
\(445\) 2.58234e8 0.138917
\(446\) −5.85006e8 −0.312240
\(447\) −5.77476e8 −0.305814
\(448\) 2.14743e8 0.112835
\(449\) 2.85136e8 0.148659 0.0743294 0.997234i \(-0.476318\pi\)
0.0743294 + 0.997234i \(0.476318\pi\)
\(450\) 1.01279e9 0.523932
\(451\) 5.81140e8 0.298307
\(452\) 1.19172e9 0.607003
\(453\) 2.09420e9 1.05846
\(454\) −1.87562e9 −0.940694
\(455\) 5.02231e8 0.249956
\(456\) −1.23202e9 −0.608471
\(457\) 3.67397e9 1.80065 0.900325 0.435218i \(-0.143329\pi\)
0.900325 + 0.435218i \(0.143329\pi\)
\(458\) 9.86867e8 0.479987
\(459\) 1.14146e9 0.550953
\(460\) −1.68523e8 −0.0807245
\(461\) 2.42828e9 1.15437 0.577185 0.816613i \(-0.304151\pi\)
0.577185 + 0.816613i \(0.304151\pi\)
\(462\) −2.96239e8 −0.139764
\(463\) −5.71932e8 −0.267800 −0.133900 0.990995i \(-0.542750\pi\)
−0.133900 + 0.990995i \(0.542750\pi\)
\(464\) 8.09190e8 0.376043
\(465\) 6.78617e8 0.312997
\(466\) 1.52903e9 0.699949
\(467\) 7.45718e8 0.338817 0.169409 0.985546i \(-0.445814\pi\)
0.169409 + 0.985546i \(0.445814\pi\)
\(468\) 1.51907e9 0.685041
\(469\) −6.70505e8 −0.300121
\(470\) −2.20709e8 −0.0980568
\(471\) −2.83246e9 −1.24908
\(472\) 1.27230e9 0.556918
\(473\) 1.03165e8 0.0448246
\(474\) −1.79301e9 −0.773319
\(475\) −2.95984e9 −1.26719
\(476\) −1.82917e9 −0.777375
\(477\) 1.65087e9 0.696464
\(478\) −2.92822e9 −1.22632
\(479\) −2.52196e9 −1.04849 −0.524244 0.851568i \(-0.675652\pi\)
−0.524244 + 0.851568i \(0.675652\pi\)
\(480\) −8.71134e7 −0.0359535
\(481\) −7.24482e8 −0.296838
\(482\) 2.67201e9 1.08686
\(483\) −3.12094e9 −1.26029
\(484\) −1.21318e9 −0.486370
\(485\) −4.38941e8 −0.174707
\(486\) 2.23506e9 0.883205
\(487\) 5.08644e9 1.99555 0.997776 0.0666592i \(-0.0212340\pi\)
0.997776 + 0.0666592i \(0.0212340\pi\)
\(488\) 3.32592e8 0.129551
\(489\) 4.45939e9 1.72462
\(490\) 5.22919e7 0.0200793
\(491\) 4.19309e9 1.59863 0.799317 0.600909i \(-0.205195\pi\)
0.799317 + 0.600909i \(0.205195\pi\)
\(492\) 3.16484e9 1.19805
\(493\) −6.89267e9 −2.59074
\(494\) −4.43943e9 −1.65685
\(495\) 5.18465e7 0.0192133
\(496\) 1.04556e9 0.384737
\(497\) −2.27565e9 −0.831490
\(498\) 1.22868e9 0.445795
\(499\) 2.71162e9 0.976960 0.488480 0.872575i \(-0.337552\pi\)
0.488480 + 0.872575i \(0.337552\pi\)
\(500\) −4.23609e8 −0.151555
\(501\) −8.42015e8 −0.299149
\(502\) −3.38451e9 −1.19408
\(503\) −1.10903e8 −0.0388558 −0.0194279 0.999811i \(-0.506184\pi\)
−0.0194279 + 0.999811i \(0.506184\pi\)
\(504\) −6.96022e8 −0.242168
\(505\) −4.20199e8 −0.145189
\(506\) 3.58185e8 0.122908
\(507\) 8.79586e9 2.99744
\(508\) −2.04286e9 −0.691378
\(509\) −2.34668e8 −0.0788753 −0.0394377 0.999222i \(-0.512557\pi\)
−0.0394377 + 0.999222i \(0.512557\pi\)
\(510\) 7.42031e8 0.247700
\(511\) 3.66019e9 1.21347
\(512\) −1.34218e8 −0.0441942
\(513\) −1.26934e9 −0.415113
\(514\) 1.39688e9 0.453722
\(515\) −3.80544e8 −0.122766
\(516\) 5.61825e8 0.180023
\(517\) 4.69104e8 0.149297
\(518\) 3.31951e8 0.104935
\(519\) −4.40843e9 −1.38420
\(520\) −3.13903e8 −0.0979002
\(521\) −4.13958e9 −1.28240 −0.641201 0.767373i \(-0.721564\pi\)
−0.641201 + 0.767373i \(0.721564\pi\)
\(522\) −2.62274e9 −0.807065
\(523\) −3.44542e9 −1.05314 −0.526570 0.850132i \(-0.676522\pi\)
−0.526570 + 0.850132i \(0.676522\pi\)
\(524\) 2.75146e8 0.0835417
\(525\) −3.87583e9 −1.16898
\(526\) 3.39104e8 0.101597
\(527\) −8.90608e9 −2.65063
\(528\) 1.85154e8 0.0547413
\(529\) 3.68727e8 0.108295
\(530\) −3.41139e8 −0.0995326
\(531\) −4.12376e9 −1.19526
\(532\) 2.03410e9 0.585710
\(533\) 1.14041e10 3.26224
\(534\) −2.98905e9 −0.849453
\(535\) −9.15042e8 −0.258347
\(536\) 4.19077e8 0.117548
\(537\) −6.43138e9 −1.79223
\(538\) −5.43571e7 −0.0150494
\(539\) −1.11143e8 −0.0305719
\(540\) −8.97522e7 −0.0245283
\(541\) −1.85339e9 −0.503241 −0.251620 0.967826i \(-0.580963\pi\)
−0.251620 + 0.967826i \(0.580963\pi\)
\(542\) −3.98750e9 −1.07573
\(543\) 7.41886e8 0.198855
\(544\) 1.14326e9 0.304474
\(545\) 1.94318e8 0.0514192
\(546\) −5.81330e9 −1.52844
\(547\) 5.68957e9 1.48636 0.743180 0.669092i \(-0.233317\pi\)
0.743180 + 0.669092i \(0.233317\pi\)
\(548\) −1.35603e9 −0.351995
\(549\) −1.07799e9 −0.278044
\(550\) 4.44821e8 0.114003
\(551\) 7.66488e9 1.95198
\(552\) 1.95064e9 0.493618
\(553\) 2.96032e9 0.744391
\(554\) 9.21579e7 0.0230276
\(555\) −1.34661e8 −0.0334360
\(556\) −2.91667e9 −0.719658
\(557\) −3.33204e9 −0.816991 −0.408495 0.912760i \(-0.633946\pi\)
−0.408495 + 0.912760i \(0.633946\pi\)
\(558\) −3.38887e9 −0.825724
\(559\) 2.02447e9 0.490196
\(560\) 1.43827e8 0.0346085
\(561\) −1.57714e9 −0.377138
\(562\) 2.71215e8 0.0644520
\(563\) −1.06521e9 −0.251569 −0.125785 0.992058i \(-0.540145\pi\)
−0.125785 + 0.992058i \(0.540145\pi\)
\(564\) 2.55470e9 0.599602
\(565\) 7.98175e8 0.186178
\(566\) −7.08342e8 −0.164205
\(567\) −4.63521e9 −1.06790
\(568\) 1.42232e9 0.325669
\(569\) 7.06281e9 1.60725 0.803627 0.595134i \(-0.202901\pi\)
0.803627 + 0.595134i \(0.202901\pi\)
\(570\) −8.25163e8 −0.186628
\(571\) −4.37500e8 −0.0983448 −0.0491724 0.998790i \(-0.515658\pi\)
−0.0491724 + 0.998790i \(0.515658\pi\)
\(572\) 6.67182e8 0.149059
\(573\) −4.25218e9 −0.944215
\(574\) −5.22526e9 −1.15323
\(575\) 4.68629e9 1.02800
\(576\) 4.35026e8 0.0948497
\(577\) −3.43823e9 −0.745108 −0.372554 0.928011i \(-0.621518\pi\)
−0.372554 + 0.928011i \(0.621518\pi\)
\(578\) −6.45560e9 −1.39056
\(579\) 7.12249e8 0.152495
\(580\) 5.41968e8 0.115339
\(581\) −2.02859e9 −0.429119
\(582\) 5.08072e9 1.06830
\(583\) 7.25070e8 0.151544
\(584\) −2.28768e9 −0.475281
\(585\) 1.01742e9 0.210114
\(586\) 1.62915e9 0.334441
\(587\) −3.05838e9 −0.624106 −0.312053 0.950065i \(-0.601017\pi\)
−0.312053 + 0.950065i \(0.601017\pi\)
\(588\) −6.05277e8 −0.122782
\(589\) 9.90386e9 1.99711
\(590\) 8.52140e8 0.170816
\(591\) −3.69955e9 −0.737213
\(592\) −2.07475e8 −0.0410997
\(593\) −3.89622e9 −0.767277 −0.383638 0.923483i \(-0.625329\pi\)
−0.383638 + 0.923483i \(0.625329\pi\)
\(594\) 1.90763e8 0.0373458
\(595\) −1.22512e9 −0.238434
\(596\) −5.95911e8 −0.115297
\(597\) 1.44379e8 0.0277711
\(598\) 7.02890e9 1.34411
\(599\) 2.62988e8 0.0499968 0.0249984 0.999687i \(-0.492042\pi\)
0.0249984 + 0.999687i \(0.492042\pi\)
\(600\) 2.42246e9 0.457854
\(601\) 5.90358e9 1.10931 0.554657 0.832079i \(-0.312849\pi\)
0.554657 + 0.832079i \(0.312849\pi\)
\(602\) −9.27593e8 −0.173288
\(603\) −1.35831e9 −0.252283
\(604\) 2.16106e9 0.399059
\(605\) −8.12546e8 −0.149178
\(606\) 4.86378e9 0.887810
\(607\) −3.48163e8 −0.0631862 −0.0315931 0.999501i \(-0.510058\pi\)
−0.0315931 + 0.999501i \(0.510058\pi\)
\(608\) −1.27135e9 −0.229405
\(609\) 1.00369e10 1.80070
\(610\) 2.22758e8 0.0397356
\(611\) 9.20555e9 1.63270
\(612\) −3.70554e9 −0.653464
\(613\) 9.95233e9 1.74507 0.872535 0.488551i \(-0.162474\pi\)
0.872535 + 0.488551i \(0.162474\pi\)
\(614\) −4.94100e9 −0.861440
\(615\) 2.11970e9 0.367461
\(616\) −3.05696e8 −0.0526936
\(617\) −4.16252e9 −0.713440 −0.356720 0.934211i \(-0.616105\pi\)
−0.356720 + 0.934211i \(0.616105\pi\)
\(618\) 4.40478e9 0.750697
\(619\) −9.02642e9 −1.52967 −0.764836 0.644225i \(-0.777180\pi\)
−0.764836 + 0.644225i \(0.777180\pi\)
\(620\) 7.00281e8 0.118005
\(621\) 2.00973e9 0.336757
\(622\) 2.50209e9 0.416905
\(623\) 4.93503e9 0.817677
\(624\) 3.63341e9 0.598644
\(625\) 5.67625e9 0.929997
\(626\) −6.26590e9 −1.02088
\(627\) 1.75384e9 0.284153
\(628\) −2.92288e9 −0.470926
\(629\) 1.76727e9 0.283155
\(630\) −4.66172e8 −0.0742770
\(631\) −5.18976e9 −0.822327 −0.411164 0.911562i \(-0.634877\pi\)
−0.411164 + 0.911562i \(0.634877\pi\)
\(632\) −1.85025e9 −0.291555
\(633\) −7.53635e9 −1.18099
\(634\) −1.87206e9 −0.291748
\(635\) −1.36824e9 −0.212057
\(636\) 3.94867e9 0.608626
\(637\) −2.18104e9 −0.334330
\(638\) −1.15192e9 −0.175610
\(639\) −4.61000e9 −0.698953
\(640\) −8.98944e7 −0.0135551
\(641\) 4.63971e9 0.695805 0.347903 0.937531i \(-0.386894\pi\)
0.347903 + 0.937531i \(0.386894\pi\)
\(642\) 1.05916e10 1.57975
\(643\) −5.83618e9 −0.865746 −0.432873 0.901455i \(-0.642500\pi\)
−0.432873 + 0.901455i \(0.642500\pi\)
\(644\) −3.22058e9 −0.475153
\(645\) 3.76291e8 0.0552160
\(646\) 1.08293e10 1.58048
\(647\) 6.91032e9 1.00307 0.501537 0.865136i \(-0.332768\pi\)
0.501537 + 0.865136i \(0.332768\pi\)
\(648\) 2.89708e9 0.418262
\(649\) −1.81117e9 −0.260078
\(650\) 8.72904e9 1.24672
\(651\) 1.29688e10 1.84233
\(652\) 4.60175e9 0.650214
\(653\) 1.11911e10 1.57281 0.786404 0.617713i \(-0.211941\pi\)
0.786404 + 0.617713i \(0.211941\pi\)
\(654\) −2.24922e9 −0.314420
\(655\) 1.84283e8 0.0256237
\(656\) 3.26587e9 0.451685
\(657\) 7.41481e9 1.02005
\(658\) −4.21790e9 −0.577172
\(659\) −6.79949e8 −0.0925501 −0.0462751 0.998929i \(-0.514735\pi\)
−0.0462751 + 0.998929i \(0.514735\pi\)
\(660\) 1.24010e8 0.0167901
\(661\) −9.88028e9 −1.33065 −0.665326 0.746553i \(-0.731707\pi\)
−0.665326 + 0.746553i \(0.731707\pi\)
\(662\) −2.50314e9 −0.335338
\(663\) −3.09493e10 −4.12434
\(664\) 1.26790e9 0.168073
\(665\) 1.36237e9 0.179647
\(666\) 6.72465e8 0.0882084
\(667\) −1.21357e10 −1.58353
\(668\) −8.68896e8 −0.112785
\(669\) 4.53526e9 0.585613
\(670\) 2.80683e8 0.0360541
\(671\) −4.73460e8 −0.0604998
\(672\) −1.66479e9 −0.211626
\(673\) −7.85546e9 −0.993388 −0.496694 0.867926i \(-0.665453\pi\)
−0.496694 + 0.867926i \(0.665453\pi\)
\(674\) 9.02518e9 1.13539
\(675\) 2.49584e9 0.312358
\(676\) 9.07666e9 1.13009
\(677\) 6.57364e8 0.0814227 0.0407113 0.999171i \(-0.487038\pi\)
0.0407113 + 0.999171i \(0.487038\pi\)
\(678\) −9.23884e9 −1.13845
\(679\) −8.38844e9 −1.02834
\(680\) 7.65719e8 0.0933874
\(681\) 1.45407e10 1.76430
\(682\) −1.48841e9 −0.179670
\(683\) −2.16148e9 −0.259584 −0.129792 0.991541i \(-0.541431\pi\)
−0.129792 + 0.991541i \(0.541431\pi\)
\(684\) 4.12069e9 0.492349
\(685\) −9.08220e8 −0.107963
\(686\) 6.39636e9 0.756482
\(687\) −7.65069e9 −0.900228
\(688\) 5.79761e8 0.0678718
\(689\) 1.42285e10 1.65727
\(690\) 1.30647e9 0.151401
\(691\) −2.97140e9 −0.342600 −0.171300 0.985219i \(-0.554797\pi\)
−0.171300 + 0.985219i \(0.554797\pi\)
\(692\) −4.54916e9 −0.521868
\(693\) 9.90820e8 0.113091
\(694\) 3.68368e9 0.418334
\(695\) −1.95349e9 −0.220731
\(696\) −6.27326e9 −0.705279
\(697\) −2.78187e10 −3.11187
\(698\) 1.19836e9 0.133381
\(699\) −1.18539e10 −1.31277
\(700\) −3.99956e9 −0.440726
\(701\) −1.11677e9 −0.122448 −0.0612239 0.998124i \(-0.519500\pi\)
−0.0612239 + 0.998124i \(0.519500\pi\)
\(702\) 3.74347e9 0.408409
\(703\) −1.96526e9 −0.213342
\(704\) 1.91065e8 0.0206385
\(705\) 1.71105e9 0.183908
\(706\) 4.94905e9 0.529305
\(707\) −8.03027e9 −0.854599
\(708\) −9.86349e9 −1.04451
\(709\) 1.09686e9 0.115582 0.0577909 0.998329i \(-0.481594\pi\)
0.0577909 + 0.998329i \(0.481594\pi\)
\(710\) 9.52618e8 0.0998883
\(711\) 5.99702e9 0.625737
\(712\) −3.08448e9 −0.320259
\(713\) −1.56807e10 −1.62014
\(714\) 1.41807e10 1.45799
\(715\) 4.46855e8 0.0457189
\(716\) −6.63670e9 −0.675704
\(717\) 2.27010e10 2.30000
\(718\) −4.63676e9 −0.467498
\(719\) 1.63850e10 1.64397 0.821987 0.569507i \(-0.192866\pi\)
0.821987 + 0.569507i \(0.192866\pi\)
\(720\) 2.91365e8 0.0290920
\(721\) −7.27244e9 −0.722615
\(722\) −4.89160e9 −0.483694
\(723\) −2.07148e10 −2.03843
\(724\) 7.65569e8 0.0749721
\(725\) −1.50711e10 −1.46880
\(726\) 9.40519e9 0.912199
\(727\) 1.15403e10 1.11390 0.556951 0.830545i \(-0.311971\pi\)
0.556951 + 0.830545i \(0.311971\pi\)
\(728\) −5.99889e9 −0.576250
\(729\) −4.95245e9 −0.473450
\(730\) −1.53221e9 −0.145777
\(731\) −4.93839e9 −0.467600
\(732\) −2.57842e9 −0.242977
\(733\) 2.54300e9 0.238497 0.119248 0.992864i \(-0.461952\pi\)
0.119248 + 0.992864i \(0.461952\pi\)
\(734\) 5.12308e9 0.478184
\(735\) −4.05393e8 −0.0376592
\(736\) 2.01291e9 0.186103
\(737\) −5.96575e8 −0.0548945
\(738\) −1.05853e10 −0.969409
\(739\) 4.83951e9 0.441109 0.220554 0.975375i \(-0.429213\pi\)
0.220554 + 0.975375i \(0.429213\pi\)
\(740\) −1.38959e8 −0.0126060
\(741\) 3.44167e10 3.10746
\(742\) −6.51938e9 −0.585859
\(743\) 1.47376e10 1.31815 0.659075 0.752077i \(-0.270948\pi\)
0.659075 + 0.752077i \(0.270948\pi\)
\(744\) −8.10573e9 −0.721584
\(745\) −3.99121e8 −0.0353637
\(746\) 6.79343e9 0.599105
\(747\) −4.10952e9 −0.360719
\(748\) −1.62749e9 −0.142188
\(749\) −1.74871e10 −1.52065
\(750\) 3.28404e9 0.284245
\(751\) −8.79357e9 −0.757575 −0.378787 0.925484i \(-0.623659\pi\)
−0.378787 + 0.925484i \(0.623659\pi\)
\(752\) 2.63625e9 0.226061
\(753\) 2.62384e10 2.23952
\(754\) −2.26049e10 −1.92045
\(755\) 1.44740e9 0.122398
\(756\) −1.71522e9 −0.144376
\(757\) 1.10901e10 0.929176 0.464588 0.885527i \(-0.346202\pi\)
0.464588 + 0.885527i \(0.346202\pi\)
\(758\) −2.14718e8 −0.0179072
\(759\) −2.77683e9 −0.230517
\(760\) −8.51506e8 −0.0703623
\(761\) 1.63390e10 1.34394 0.671971 0.740578i \(-0.265448\pi\)
0.671971 + 0.740578i \(0.265448\pi\)
\(762\) 1.58373e10 1.29670
\(763\) 3.71355e9 0.302659
\(764\) −4.38793e9 −0.355986
\(765\) −2.48184e9 −0.200428
\(766\) 7.52729e9 0.605115
\(767\) −3.55419e10 −2.84418
\(768\) 1.04052e9 0.0828873
\(769\) −2.03601e10 −1.61450 −0.807250 0.590210i \(-0.799045\pi\)
−0.807250 + 0.590210i \(0.799045\pi\)
\(770\) −2.04745e8 −0.0161620
\(771\) −1.08294e10 −0.850966
\(772\) 7.34987e8 0.0574935
\(773\) −1.48655e10 −1.15758 −0.578791 0.815476i \(-0.696475\pi\)
−0.578791 + 0.815476i \(0.696475\pi\)
\(774\) −1.87912e9 −0.145667
\(775\) −1.94735e10 −1.50275
\(776\) 5.24292e9 0.402770
\(777\) −2.57345e9 −0.196808
\(778\) −4.93686e9 −0.375856
\(779\) 3.09353e10 2.34462
\(780\) 2.43353e9 0.183614
\(781\) −2.02473e9 −0.152086
\(782\) −1.71460e10 −1.28215
\(783\) −6.46328e9 −0.481157
\(784\) −6.24599e8 −0.0462909
\(785\) −1.95765e9 −0.144441
\(786\) −2.13307e9 −0.156685
\(787\) 8.65619e8 0.0633017 0.0316508 0.999499i \(-0.489924\pi\)
0.0316508 + 0.999499i \(0.489924\pi\)
\(788\) −3.81766e9 −0.277943
\(789\) −2.62891e9 −0.190549
\(790\) −1.23923e9 −0.0894249
\(791\) 1.52536e10 1.09586
\(792\) −6.19279e8 −0.0442943
\(793\) −9.29103e9 −0.661618
\(794\) 4.66421e9 0.330679
\(795\) 2.64468e9 0.186676
\(796\) 1.48988e8 0.0104702
\(797\) 9.04298e9 0.632714 0.316357 0.948640i \(-0.397540\pi\)
0.316357 + 0.948640i \(0.397540\pi\)
\(798\) −1.57694e10 −1.09851
\(799\) −2.24556e10 −1.55744
\(800\) 2.49979e9 0.172619
\(801\) 9.99738e9 0.687341
\(802\) −3.13861e9 −0.214846
\(803\) 3.25662e9 0.221954
\(804\) −3.24890e9 −0.220465
\(805\) −2.15703e9 −0.145737
\(806\) −2.92080e10 −1.96485
\(807\) 4.21404e8 0.0282255
\(808\) 5.01905e9 0.334720
\(809\) 1.63192e10 1.08362 0.541812 0.840500i \(-0.317738\pi\)
0.541812 + 0.840500i \(0.317738\pi\)
\(810\) 1.94037e9 0.128288
\(811\) 7.76810e9 0.511378 0.255689 0.966759i \(-0.417698\pi\)
0.255689 + 0.966759i \(0.417698\pi\)
\(812\) 1.03574e10 0.678896
\(813\) 3.09131e10 2.01756
\(814\) 2.95350e8 0.0191934
\(815\) 3.08209e9 0.199432
\(816\) −8.86317e9 −0.571049
\(817\) 5.49166e9 0.352311
\(818\) 6.30880e9 0.403005
\(819\) 1.94436e10 1.23675
\(820\) 2.18737e9 0.138539
\(821\) −2.01204e10 −1.26892 −0.634461 0.772955i \(-0.718778\pi\)
−0.634461 + 0.772955i \(0.718778\pi\)
\(822\) 1.05126e10 0.660176
\(823\) 1.05708e10 0.661012 0.330506 0.943804i \(-0.392781\pi\)
0.330506 + 0.943804i \(0.392781\pi\)
\(824\) 4.54540e9 0.283026
\(825\) −3.44848e9 −0.213815
\(826\) 1.62850e10 1.00544
\(827\) 1.25059e10 0.768855 0.384427 0.923155i \(-0.374399\pi\)
0.384427 + 0.923155i \(0.374399\pi\)
\(828\) −6.52424e9 −0.399414
\(829\) −2.45378e10 −1.49587 −0.747935 0.663771i \(-0.768955\pi\)
−0.747935 + 0.663771i \(0.768955\pi\)
\(830\) 8.49197e8 0.0515508
\(831\) −7.14455e8 −0.0431888
\(832\) 3.74940e9 0.225700
\(833\) 5.32033e9 0.318919
\(834\) 2.26115e10 1.34974
\(835\) −5.81956e8 −0.0345930
\(836\) 1.80982e9 0.107131
\(837\) −8.35127e9 −0.492281
\(838\) −7.40407e9 −0.434627
\(839\) 1.37816e10 0.805627 0.402814 0.915282i \(-0.368032\pi\)
0.402814 + 0.915282i \(0.368032\pi\)
\(840\) −1.11502e9 −0.0649092
\(841\) 2.17786e10 1.26254
\(842\) 1.08486e10 0.626297
\(843\) −2.10260e9 −0.120881
\(844\) −7.77694e9 −0.445256
\(845\) 6.07923e9 0.346617
\(846\) −8.54461e9 −0.485172
\(847\) −1.55283e10 −0.878075
\(848\) 4.07472e9 0.229463
\(849\) 5.49143e9 0.307970
\(850\) −2.12932e10 −1.18925
\(851\) 3.11158e9 0.173072
\(852\) −1.10265e10 −0.610801
\(853\) −1.85710e10 −1.02450 −0.512252 0.858835i \(-0.671189\pi\)
−0.512252 + 0.858835i \(0.671189\pi\)
\(854\) 4.25706e9 0.233888
\(855\) 2.75989e9 0.151012
\(856\) 1.09297e10 0.595594
\(857\) −2.10434e10 −1.14204 −0.571021 0.820935i \(-0.693453\pi\)
−0.571021 + 0.820935i \(0.693453\pi\)
\(858\) −5.17233e9 −0.279564
\(859\) 9.00309e9 0.484636 0.242318 0.970197i \(-0.422092\pi\)
0.242318 + 0.970197i \(0.422092\pi\)
\(860\) 3.88304e8 0.0208174
\(861\) 4.05089e10 2.16291
\(862\) 1.42946e10 0.760148
\(863\) −3.43937e9 −0.182155 −0.0910775 0.995844i \(-0.529031\pi\)
−0.0910775 + 0.995844i \(0.529031\pi\)
\(864\) 1.07204e9 0.0565476
\(865\) −3.04687e9 −0.160066
\(866\) −1.03258e10 −0.540271
\(867\) 5.00471e10 2.60803
\(868\) 1.33828e10 0.694591
\(869\) 2.63392e9 0.136155
\(870\) −4.20161e9 −0.216321
\(871\) −1.17070e10 −0.600319
\(872\) −2.32103e9 −0.118542
\(873\) −1.69933e10 −0.864426
\(874\) 1.90669e10 0.966028
\(875\) −5.42206e9 −0.273612
\(876\) 1.77353e10 0.891401
\(877\) 2.84257e10 1.42302 0.711512 0.702674i \(-0.248011\pi\)
0.711512 + 0.702674i \(0.248011\pi\)
\(878\) 1.49429e10 0.745081
\(879\) −1.26300e10 −0.627253
\(880\) 1.27969e8 0.00633017
\(881\) 2.37520e10 1.17027 0.585134 0.810937i \(-0.301042\pi\)
0.585134 + 0.810937i \(0.301042\pi\)
\(882\) 2.02445e9 0.0993496
\(883\) 6.43568e9 0.314581 0.157290 0.987552i \(-0.449724\pi\)
0.157290 + 0.987552i \(0.449724\pi\)
\(884\) −3.19374e10 −1.55495
\(885\) −6.60623e9 −0.320370
\(886\) 3.21775e9 0.155430
\(887\) 3.32908e10 1.60174 0.800868 0.598841i \(-0.204372\pi\)
0.800868 + 0.598841i \(0.204372\pi\)
\(888\) 1.60845e9 0.0770836
\(889\) −2.61479e10 −1.24819
\(890\) −2.06588e9 −0.0982289
\(891\) −4.12413e9 −0.195326
\(892\) 4.68005e9 0.220787
\(893\) 2.49714e10 1.17344
\(894\) 4.61981e9 0.216243
\(895\) −4.44503e9 −0.207250
\(896\) −1.71794e9 −0.0797867
\(897\) −5.44916e10 −2.52090
\(898\) −2.28109e9 −0.105118
\(899\) 5.04290e10 2.31484
\(900\) −8.10231e9 −0.370476
\(901\) −3.47084e10 −1.58088
\(902\) −4.64912e9 −0.210935
\(903\) 7.19117e9 0.325007
\(904\) −9.53378e9 −0.429216
\(905\) 5.12752e8 0.0229952
\(906\) −1.67536e10 −0.748445
\(907\) 1.75497e10 0.780986 0.390493 0.920606i \(-0.372305\pi\)
0.390493 + 0.920606i \(0.372305\pi\)
\(908\) 1.50049e10 0.665171
\(909\) −1.62677e10 −0.718378
\(910\) −4.01785e9 −0.176746
\(911\) 2.72922e10 1.19598 0.597991 0.801503i \(-0.295966\pi\)
0.597991 + 0.801503i \(0.295966\pi\)
\(912\) 9.85614e9 0.430254
\(913\) −1.80492e9 −0.0784892
\(914\) −2.93918e10 −1.27325
\(915\) −1.72694e9 −0.0745251
\(916\) −7.89493e9 −0.339402
\(917\) 3.52177e9 0.150823
\(918\) −9.13165e9 −0.389583
\(919\) 1.03176e10 0.438504 0.219252 0.975668i \(-0.429638\pi\)
0.219252 + 0.975668i \(0.429638\pi\)
\(920\) 1.34818e9 0.0570809
\(921\) 3.83051e10 1.61565
\(922\) −1.94262e10 −0.816263
\(923\) −3.97327e10 −1.66319
\(924\) 2.36991e9 0.0988281
\(925\) 3.86420e9 0.160533
\(926\) 4.57546e9 0.189363
\(927\) −1.47325e10 −0.607432
\(928\) −6.47352e9 −0.265903
\(929\) −4.40028e10 −1.80064 −0.900318 0.435233i \(-0.856666\pi\)
−0.900318 + 0.435233i \(0.856666\pi\)
\(930\) −5.42894e9 −0.221322
\(931\) −5.91638e9 −0.240288
\(932\) −1.22323e10 −0.494939
\(933\) −1.93975e10 −0.781916
\(934\) −5.96574e9 −0.239580
\(935\) −1.09004e9 −0.0436115
\(936\) −1.21525e10 −0.484397
\(937\) −4.05329e10 −1.60960 −0.804802 0.593543i \(-0.797729\pi\)
−0.804802 + 0.593543i \(0.797729\pi\)
\(938\) 5.36404e9 0.212218
\(939\) 4.85764e10 1.91468
\(940\) 1.76567e9 0.0693366
\(941\) 2.75697e10 1.07862 0.539310 0.842107i \(-0.318685\pi\)
0.539310 + 0.842107i \(0.318685\pi\)
\(942\) 2.26597e10 0.883233
\(943\) −4.89795e10 −1.90206
\(944\) −1.01784e10 −0.393801
\(945\) −1.14880e9 −0.0442825
\(946\) −8.25317e8 −0.0316958
\(947\) 2.02210e10 0.773710 0.386855 0.922141i \(-0.373561\pi\)
0.386855 + 0.922141i \(0.373561\pi\)
\(948\) 1.43441e10 0.546819
\(949\) 6.39069e10 2.42726
\(950\) 2.36787e10 0.896037
\(951\) 1.45132e10 0.547180
\(952\) 1.46334e10 0.549687
\(953\) −3.99186e10 −1.49400 −0.747000 0.664825i \(-0.768506\pi\)
−0.747000 + 0.664825i \(0.768506\pi\)
\(954\) −1.32070e10 −0.492474
\(955\) −2.93888e9 −0.109187
\(956\) 2.34257e10 0.867142
\(957\) 8.93027e9 0.329362
\(958\) 2.01756e10 0.741392
\(959\) −1.73567e10 −0.635480
\(960\) 6.96907e8 0.0254229
\(961\) 3.76472e10 1.36836
\(962\) 5.79586e9 0.209896
\(963\) −3.54253e10 −1.27827
\(964\) −2.13761e10 −0.768526
\(965\) 4.92269e8 0.0176342
\(966\) 2.49675e10 0.891161
\(967\) 2.34274e10 0.833164 0.416582 0.909098i \(-0.363228\pi\)
0.416582 + 0.909098i \(0.363228\pi\)
\(968\) 9.70544e9 0.343915
\(969\) −8.39545e10 −2.96422
\(970\) 3.51153e9 0.123536
\(971\) −8.28673e9 −0.290480 −0.145240 0.989396i \(-0.546395\pi\)
−0.145240 + 0.989396i \(0.546395\pi\)
\(972\) −1.78805e10 −0.624520
\(973\) −3.73324e10 −1.29925
\(974\) −4.06916e10 −1.41107
\(975\) −6.76719e10 −2.33826
\(976\) −2.66073e9 −0.0916066
\(977\) 2.09332e8 0.00718132 0.00359066 0.999994i \(-0.498857\pi\)
0.00359066 + 0.999994i \(0.498857\pi\)
\(978\) −3.56751e10 −1.21949
\(979\) 4.39090e9 0.149559
\(980\) −4.18335e8 −0.0141982
\(981\) 7.52290e9 0.254416
\(982\) −3.35447e10 −1.13041
\(983\) −2.56474e10 −0.861204 −0.430602 0.902542i \(-0.641699\pi\)
−0.430602 + 0.902542i \(0.641699\pi\)
\(984\) −2.53187e10 −0.847147
\(985\) −2.55693e9 −0.0852497
\(986\) 5.51414e10 1.83193
\(987\) 3.26993e10 1.08250
\(988\) 3.55154e10 1.17157
\(989\) −8.69489e9 −0.285810
\(990\) −4.14772e8 −0.0135858
\(991\) −1.00296e10 −0.327360 −0.163680 0.986513i \(-0.552337\pi\)
−0.163680 + 0.986513i \(0.552337\pi\)
\(992\) −8.36449e9 −0.272050
\(993\) 1.94057e10 0.628935
\(994\) 1.82052e10 0.587952
\(995\) 9.97871e7 0.00321139
\(996\) −9.82943e9 −0.315225
\(997\) −5.07634e10 −1.62225 −0.811125 0.584872i \(-0.801145\pi\)
−0.811125 + 0.584872i \(0.801145\pi\)
\(998\) −2.16930e10 −0.690815
\(999\) 1.65717e9 0.0525882
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 74.8.a.c.1.5 6
4.3 odd 2 592.8.a.c.1.2 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
74.8.a.c.1.5 6 1.1 even 1 trivial
592.8.a.c.1.2 6 4.3 odd 2