Properties

Label 74.8.a.c.1.4
Level $74$
Weight $8$
Character 74.1
Self dual yes
Analytic conductor $23.116$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [74,8,Mod(1,74)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(74, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("74.1");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 74 = 2 \cdot 37 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 74.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(23.1164918858\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 10621x^{4} + 102052x^{3} + 31004503x^{2} - 305547358x - 22608804936 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-26.0193\) of defining polynomial
Character \(\chi\) \(=\) 74.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-8.00000 q^{2} +31.0193 q^{3} +64.0000 q^{4} -544.510 q^{5} -248.154 q^{6} -1685.44 q^{7} -512.000 q^{8} -1224.80 q^{9} +O(q^{10})\) \(q-8.00000 q^{2} +31.0193 q^{3} +64.0000 q^{4} -544.510 q^{5} -248.154 q^{6} -1685.44 q^{7} -512.000 q^{8} -1224.80 q^{9} +4356.08 q^{10} +5629.72 q^{11} +1985.23 q^{12} +5228.81 q^{13} +13483.5 q^{14} -16890.3 q^{15} +4096.00 q^{16} -12575.5 q^{17} +9798.43 q^{18} +18367.1 q^{19} -34848.6 q^{20} -52281.0 q^{21} -45037.7 q^{22} +40252.9 q^{23} -15881.9 q^{24} +218366. q^{25} -41830.5 q^{26} -105832. q^{27} -107868. q^{28} +18705.8 q^{29} +135123. q^{30} -169281. q^{31} -32768.0 q^{32} +174630. q^{33} +100604. q^{34} +917737. q^{35} -78387.4 q^{36} -50653.0 q^{37} -146937. q^{38} +162194. q^{39} +278789. q^{40} -26437.9 q^{41} +418248. q^{42} +406992. q^{43} +360302. q^{44} +666918. q^{45} -322024. q^{46} +175342. q^{47} +127055. q^{48} +2.01715e6 q^{49} -1.74693e6 q^{50} -390084. q^{51} +334644. q^{52} -1.82314e6 q^{53} +846654. q^{54} -3.06544e6 q^{55} +862943. q^{56} +569735. q^{57} -149646. q^{58} -1.24173e6 q^{59} -1.08098e6 q^{60} +3.25092e6 q^{61} +1.35425e6 q^{62} +2.06433e6 q^{63} +262144. q^{64} -2.84714e6 q^{65} -1.39704e6 q^{66} -1.66755e6 q^{67} -804834. q^{68} +1.24862e6 q^{69} -7.34189e6 q^{70} +262493. q^{71} +627099. q^{72} +2.68612e6 q^{73} +405224. q^{74} +6.77356e6 q^{75} +1.17550e6 q^{76} -9.48853e6 q^{77} -1.29755e6 q^{78} +363284. q^{79} -2.23031e6 q^{80} -604180. q^{81} +211503. q^{82} -6.71044e6 q^{83} -3.34599e6 q^{84} +6.84750e6 q^{85} -3.25594e6 q^{86} +580239. q^{87} -2.88241e6 q^{88} +1.16083e7 q^{89} -5.33534e6 q^{90} -8.81283e6 q^{91} +2.57619e6 q^{92} -5.25097e6 q^{93} -1.40274e6 q^{94} -1.00011e7 q^{95} -1.01644e6 q^{96} +1.63488e7 q^{97} -1.61372e7 q^{98} -6.89530e6 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 48 q^{2} + 28 q^{3} + 384 q^{4} - 14 q^{5} - 224 q^{6} - 980 q^{7} - 3072 q^{8} + 8254 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 6 q - 48 q^{2} + 28 q^{3} + 384 q^{4} - 14 q^{5} - 224 q^{6} - 980 q^{7} - 3072 q^{8} + 8254 q^{9} + 112 q^{10} + 2956 q^{11} + 1792 q^{12} + 2394 q^{13} + 7840 q^{14} - 28820 q^{15} + 24576 q^{16} - 45108 q^{17} - 66032 q^{18} + 11764 q^{19} - 896 q^{20} - 135378 q^{21} - 23648 q^{22} + 21052 q^{23} - 14336 q^{24} + 194744 q^{25} - 19152 q^{26} + 439240 q^{27} - 62720 q^{28} + 288454 q^{29} + 230560 q^{30} + 578868 q^{31} - 196608 q^{32} + 980174 q^{33} + 360864 q^{34} + 1243052 q^{35} + 528256 q^{36} - 303918 q^{37} - 94112 q^{38} + 1735296 q^{39} + 7168 q^{40} + 1176840 q^{41} + 1083024 q^{42} + 2669236 q^{43} + 189184 q^{44} + 2560692 q^{45} - 168416 q^{46} - 131044 q^{47} + 114688 q^{48} + 2460856 q^{49} - 1557952 q^{50} + 2899732 q^{51} + 153216 q^{52} + 983190 q^{53} - 3513920 q^{54} - 1200168 q^{55} + 501760 q^{56} - 163216 q^{57} - 2307632 q^{58} - 1215568 q^{59} - 1844480 q^{60} + 3136358 q^{61} - 4630944 q^{62} - 1444880 q^{63} + 1572864 q^{64} - 1302836 q^{65} - 7841392 q^{66} + 2179276 q^{67} - 2886912 q^{68} - 929514 q^{69} - 9944416 q^{70} + 325164 q^{71} - 4226048 q^{72} + 5011444 q^{73} + 2431344 q^{74} - 9374520 q^{75} + 752896 q^{76} - 26500426 q^{77} - 13882368 q^{78} + 3173032 q^{79} - 57344 q^{80} - 2565226 q^{81} - 9414720 q^{82} - 22567048 q^{83} - 8664192 q^{84} + 1486476 q^{85} - 21353888 q^{86} - 157228 q^{87} - 1513472 q^{88} + 26836996 q^{89} - 20485536 q^{90} + 17942380 q^{91} + 1347328 q^{92} + 16734948 q^{93} + 1048352 q^{94} - 4252048 q^{95} - 917504 q^{96} + 295792 q^{97} - 19686848 q^{98} + 25990712 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −8.00000 −0.707107
\(3\) 31.0193 0.663296 0.331648 0.943403i \(-0.392395\pi\)
0.331648 + 0.943403i \(0.392395\pi\)
\(4\) 64.0000 0.500000
\(5\) −544.510 −1.94810 −0.974049 0.226337i \(-0.927325\pi\)
−0.974049 + 0.226337i \(0.927325\pi\)
\(6\) −248.154 −0.469021
\(7\) −1685.44 −1.85724 −0.928622 0.371026i \(-0.879006\pi\)
−0.928622 + 0.371026i \(0.879006\pi\)
\(8\) −512.000 −0.353553
\(9\) −1224.80 −0.560038
\(10\) 4356.08 1.37751
\(11\) 5629.72 1.27530 0.637650 0.770327i \(-0.279907\pi\)
0.637650 + 0.770327i \(0.279907\pi\)
\(12\) 1985.23 0.331648
\(13\) 5228.81 0.660087 0.330044 0.943966i \(-0.392937\pi\)
0.330044 + 0.943966i \(0.392937\pi\)
\(14\) 13483.5 1.31327
\(15\) −16890.3 −1.29217
\(16\) 4096.00 0.250000
\(17\) −12575.5 −0.620805 −0.310402 0.950605i \(-0.600464\pi\)
−0.310402 + 0.950605i \(0.600464\pi\)
\(18\) 9798.43 0.396007
\(19\) 18367.1 0.614332 0.307166 0.951656i \(-0.400619\pi\)
0.307166 + 0.951656i \(0.400619\pi\)
\(20\) −34848.6 −0.974049
\(21\) −52281.0 −1.23190
\(22\) −45037.7 −0.901773
\(23\) 40252.9 0.689843 0.344921 0.938632i \(-0.387906\pi\)
0.344921 + 0.938632i \(0.387906\pi\)
\(24\) −15881.9 −0.234511
\(25\) 218366. 2.79509
\(26\) −41830.5 −0.466752
\(27\) −105832. −1.03477
\(28\) −107868. −0.928622
\(29\) 18705.8 0.142424 0.0712118 0.997461i \(-0.477313\pi\)
0.0712118 + 0.997461i \(0.477313\pi\)
\(30\) 135123. 0.913699
\(31\) −169281. −1.02057 −0.510284 0.860006i \(-0.670460\pi\)
−0.510284 + 0.860006i \(0.670460\pi\)
\(32\) −32768.0 −0.176777
\(33\) 174630. 0.845901
\(34\) 100604. 0.438975
\(35\) 917737. 3.61809
\(36\) −78387.4 −0.280019
\(37\) −50653.0 −0.164399
\(38\) −146937. −0.434399
\(39\) 162194. 0.437833
\(40\) 278789. 0.688757
\(41\) −26437.9 −0.0599078 −0.0299539 0.999551i \(-0.509536\pi\)
−0.0299539 + 0.999551i \(0.509536\pi\)
\(42\) 418248. 0.871087
\(43\) 406992. 0.780632 0.390316 0.920681i \(-0.372366\pi\)
0.390316 + 0.920681i \(0.372366\pi\)
\(44\) 360302. 0.637650
\(45\) 666918. 1.09101
\(46\) −322024. −0.487793
\(47\) 175342. 0.246345 0.123173 0.992385i \(-0.460693\pi\)
0.123173 + 0.992385i \(0.460693\pi\)
\(48\) 127055. 0.165824
\(49\) 2.01715e6 2.44936
\(50\) −1.74693e6 −1.97642
\(51\) −390084. −0.411778
\(52\) 334644. 0.330044
\(53\) −1.82314e6 −1.68211 −0.841056 0.540949i \(-0.818065\pi\)
−0.841056 + 0.540949i \(0.818065\pi\)
\(54\) 846654. 0.731691
\(55\) −3.06544e6 −2.48441
\(56\) 862943. 0.656635
\(57\) 569735. 0.407484
\(58\) −149646. −0.100709
\(59\) −1.24173e6 −0.787131 −0.393565 0.919297i \(-0.628758\pi\)
−0.393565 + 0.919297i \(0.628758\pi\)
\(60\) −1.08098e6 −0.646083
\(61\) 3.25092e6 1.83380 0.916899 0.399120i \(-0.130684\pi\)
0.916899 + 0.399120i \(0.130684\pi\)
\(62\) 1.35425e6 0.721651
\(63\) 2.06433e6 1.04013
\(64\) 262144. 0.125000
\(65\) −2.84714e6 −1.28592
\(66\) −1.39704e6 −0.598142
\(67\) −1.66755e6 −0.677357 −0.338678 0.940902i \(-0.609980\pi\)
−0.338678 + 0.940902i \(0.609980\pi\)
\(68\) −804834. −0.310402
\(69\) 1.24862e6 0.457570
\(70\) −7.34189e6 −2.55838
\(71\) 262493. 0.0870388 0.0435194 0.999053i \(-0.486143\pi\)
0.0435194 + 0.999053i \(0.486143\pi\)
\(72\) 627099. 0.198003
\(73\) 2.68612e6 0.808157 0.404078 0.914724i \(-0.367592\pi\)
0.404078 + 0.914724i \(0.367592\pi\)
\(74\) 405224. 0.116248
\(75\) 6.77356e6 1.85397
\(76\) 1.17550e6 0.307166
\(77\) −9.48853e6 −2.36854
\(78\) −1.29755e6 −0.309595
\(79\) 363284. 0.0828993 0.0414497 0.999141i \(-0.486802\pi\)
0.0414497 + 0.999141i \(0.486802\pi\)
\(80\) −2.23031e6 −0.487025
\(81\) −604180. −0.126319
\(82\) 211503. 0.0423612
\(83\) −6.71044e6 −1.28818 −0.644091 0.764948i \(-0.722764\pi\)
−0.644091 + 0.764948i \(0.722764\pi\)
\(84\) −3.34599e6 −0.615952
\(85\) 6.84750e6 1.20939
\(86\) −3.25594e6 −0.551990
\(87\) 580239. 0.0944691
\(88\) −2.88241e6 −0.450886
\(89\) 1.16083e7 1.74543 0.872715 0.488229i \(-0.162357\pi\)
0.872715 + 0.488229i \(0.162357\pi\)
\(90\) −5.33534e6 −0.771460
\(91\) −8.81283e6 −1.22594
\(92\) 2.57619e6 0.344921
\(93\) −5.25097e6 −0.676939
\(94\) −1.40274e6 −0.174192
\(95\) −1.00011e7 −1.19678
\(96\) −1.01644e6 −0.117255
\(97\) 1.63488e7 1.81880 0.909400 0.415923i \(-0.136541\pi\)
0.909400 + 0.415923i \(0.136541\pi\)
\(98\) −1.61372e7 −1.73196
\(99\) −6.89530e6 −0.714216
\(100\) 1.39754e7 1.39754
\(101\) 7.79452e6 0.752774 0.376387 0.926462i \(-0.377166\pi\)
0.376387 + 0.926462i \(0.377166\pi\)
\(102\) 3.12067e6 0.291171
\(103\) 8.12543e6 0.732683 0.366341 0.930481i \(-0.380610\pi\)
0.366341 + 0.930481i \(0.380610\pi\)
\(104\) −2.67715e6 −0.233376
\(105\) 2.84675e7 2.39987
\(106\) 1.45851e7 1.18943
\(107\) 1.15348e6 0.0910264 0.0455132 0.998964i \(-0.485508\pi\)
0.0455132 + 0.998964i \(0.485508\pi\)
\(108\) −6.77323e6 −0.517384
\(109\) −8.60358e6 −0.636336 −0.318168 0.948034i \(-0.603068\pi\)
−0.318168 + 0.948034i \(0.603068\pi\)
\(110\) 2.45235e7 1.75674
\(111\) −1.57122e6 −0.109045
\(112\) −6.90355e6 −0.464311
\(113\) −7.76780e6 −0.506435 −0.253217 0.967409i \(-0.581489\pi\)
−0.253217 + 0.967409i \(0.581489\pi\)
\(114\) −4.55788e6 −0.288135
\(115\) −2.19181e7 −1.34388
\(116\) 1.19717e6 0.0712118
\(117\) −6.40427e6 −0.369674
\(118\) 9.93388e6 0.556585
\(119\) 2.11953e7 1.15299
\(120\) 8.64784e6 0.456850
\(121\) 1.22065e7 0.626388
\(122\) −2.60073e7 −1.29669
\(123\) −820084. −0.0397366
\(124\) −1.08340e7 −0.510284
\(125\) −7.63627e7 −3.49700
\(126\) −1.65146e7 −0.735481
\(127\) 4.49536e6 0.194738 0.0973691 0.995248i \(-0.468957\pi\)
0.0973691 + 0.995248i \(0.468957\pi\)
\(128\) −2.09715e6 −0.0883883
\(129\) 1.26246e7 0.517791
\(130\) 2.27771e7 0.909279
\(131\) −1.57640e7 −0.612656 −0.306328 0.951926i \(-0.599100\pi\)
−0.306328 + 0.951926i \(0.599100\pi\)
\(132\) 1.11763e7 0.422951
\(133\) −3.09566e7 −1.14097
\(134\) 1.33404e7 0.478963
\(135\) 5.76264e7 2.01583
\(136\) 6.43867e6 0.219488
\(137\) −9.27787e6 −0.308267 −0.154133 0.988050i \(-0.549259\pi\)
−0.154133 + 0.988050i \(0.549259\pi\)
\(138\) −9.98894e6 −0.323551
\(139\) 5.30404e7 1.67515 0.837577 0.546319i \(-0.183972\pi\)
0.837577 + 0.546319i \(0.183972\pi\)
\(140\) 5.87351e7 1.80905
\(141\) 5.43899e6 0.163400
\(142\) −2.09994e6 −0.0615457
\(143\) 2.94367e7 0.841809
\(144\) −5.01680e6 −0.140010
\(145\) −1.01855e7 −0.277455
\(146\) −2.14890e7 −0.571453
\(147\) 6.25706e7 1.62465
\(148\) −3.24179e6 −0.0821995
\(149\) 2.61358e7 0.647267 0.323633 0.946183i \(-0.395096\pi\)
0.323633 + 0.946183i \(0.395096\pi\)
\(150\) −5.41885e7 −1.31095
\(151\) −3.32760e7 −0.786523 −0.393261 0.919427i \(-0.628653\pi\)
−0.393261 + 0.919427i \(0.628653\pi\)
\(152\) −9.40396e6 −0.217199
\(153\) 1.54026e7 0.347674
\(154\) 7.59082e7 1.67481
\(155\) 9.21751e7 1.98817
\(156\) 1.03804e7 0.218917
\(157\) −2.08133e7 −0.429232 −0.214616 0.976698i \(-0.568850\pi\)
−0.214616 + 0.976698i \(0.568850\pi\)
\(158\) −2.90627e6 −0.0586187
\(159\) −5.65525e7 −1.11574
\(160\) 1.78425e7 0.344378
\(161\) −6.78438e7 −1.28121
\(162\) 4.83344e6 0.0893211
\(163\) 4.00702e7 0.724711 0.362355 0.932040i \(-0.381973\pi\)
0.362355 + 0.932040i \(0.381973\pi\)
\(164\) −1.69202e6 −0.0299539
\(165\) −9.50877e7 −1.64790
\(166\) 5.36835e7 0.910883
\(167\) 4.26523e7 0.708656 0.354328 0.935121i \(-0.384710\pi\)
0.354328 + 0.935121i \(0.384710\pi\)
\(168\) 2.67679e7 0.435544
\(169\) −3.54080e7 −0.564285
\(170\) −5.47800e7 −0.855167
\(171\) −2.24961e7 −0.344050
\(172\) 2.60475e7 0.390316
\(173\) 7.13528e6 0.104773 0.0523865 0.998627i \(-0.483317\pi\)
0.0523865 + 0.998627i \(0.483317\pi\)
\(174\) −4.64191e6 −0.0667997
\(175\) −3.68042e8 −5.19116
\(176\) 2.30593e7 0.318825
\(177\) −3.85177e7 −0.522101
\(178\) −9.28662e7 −1.23421
\(179\) 1.39174e8 1.81373 0.906866 0.421419i \(-0.138468\pi\)
0.906866 + 0.421419i \(0.138468\pi\)
\(180\) 4.26827e7 0.545505
\(181\) −6.11153e7 −0.766082 −0.383041 0.923731i \(-0.625123\pi\)
−0.383041 + 0.923731i \(0.625123\pi\)
\(182\) 7.05026e7 0.866873
\(183\) 1.00841e8 1.21635
\(184\) −2.06095e7 −0.243896
\(185\) 2.75811e7 0.320265
\(186\) 4.20078e7 0.478668
\(187\) −7.07967e7 −0.791712
\(188\) 1.12219e7 0.123173
\(189\) 1.78373e8 1.92182
\(190\) 8.00086e7 0.846251
\(191\) −1.77318e8 −1.84135 −0.920676 0.390329i \(-0.872361\pi\)
−0.920676 + 0.390329i \(0.872361\pi\)
\(192\) 8.13152e6 0.0829120
\(193\) −6.75041e7 −0.675896 −0.337948 0.941165i \(-0.609733\pi\)
−0.337948 + 0.941165i \(0.609733\pi\)
\(194\) −1.30790e8 −1.28609
\(195\) −8.83163e7 −0.852943
\(196\) 1.29098e8 1.22468
\(197\) −1.03097e8 −0.960761 −0.480380 0.877060i \(-0.659501\pi\)
−0.480380 + 0.877060i \(0.659501\pi\)
\(198\) 5.51624e7 0.505027
\(199\) 1.78780e8 1.60817 0.804086 0.594512i \(-0.202655\pi\)
0.804086 + 0.594512i \(0.202655\pi\)
\(200\) −1.11803e8 −0.988212
\(201\) −5.17263e7 −0.449288
\(202\) −6.23562e7 −0.532292
\(203\) −3.15273e7 −0.264516
\(204\) −2.49654e7 −0.205889
\(205\) 1.43957e7 0.116706
\(206\) −6.50034e7 −0.518085
\(207\) −4.93019e7 −0.386338
\(208\) 2.14172e7 0.165022
\(209\) 1.03402e8 0.783458
\(210\) −2.27740e8 −1.69696
\(211\) 2.20832e8 1.61836 0.809178 0.587564i \(-0.199913\pi\)
0.809178 + 0.587564i \(0.199913\pi\)
\(212\) −1.16681e8 −0.841056
\(213\) 8.14233e6 0.0577325
\(214\) −9.22786e6 −0.0643654
\(215\) −2.21611e8 −1.52075
\(216\) 5.41858e7 0.365846
\(217\) 2.85312e8 1.89544
\(218\) 6.88286e7 0.449957
\(219\) 8.33216e7 0.536047
\(220\) −1.96188e8 −1.24220
\(221\) −6.57551e7 −0.409786
\(222\) 1.25698e7 0.0771066
\(223\) 2.27015e8 1.37085 0.685423 0.728146i \(-0.259618\pi\)
0.685423 + 0.728146i \(0.259618\pi\)
\(224\) 5.52284e7 0.328318
\(225\) −2.67456e8 −1.56535
\(226\) 6.21424e7 0.358103
\(227\) −2.27056e8 −1.28838 −0.644188 0.764867i \(-0.722805\pi\)
−0.644188 + 0.764867i \(0.722805\pi\)
\(228\) 3.64630e7 0.203742
\(229\) 1.74743e8 0.961557 0.480778 0.876842i \(-0.340354\pi\)
0.480778 + 0.876842i \(0.340354\pi\)
\(230\) 1.75345e8 0.950268
\(231\) −2.94327e8 −1.57105
\(232\) −9.57735e6 −0.0503544
\(233\) 2.66617e8 1.38083 0.690417 0.723411i \(-0.257427\pi\)
0.690417 + 0.723411i \(0.257427\pi\)
\(234\) 5.12342e7 0.261399
\(235\) −9.54755e7 −0.479904
\(236\) −7.94710e7 −0.393565
\(237\) 1.12688e7 0.0549868
\(238\) −1.69562e8 −0.815285
\(239\) 7.94730e7 0.376554 0.188277 0.982116i \(-0.439710\pi\)
0.188277 + 0.982116i \(0.439710\pi\)
\(240\) −6.91827e7 −0.323042
\(241\) 5.79710e7 0.266779 0.133389 0.991064i \(-0.457414\pi\)
0.133389 + 0.991064i \(0.457414\pi\)
\(242\) −9.76523e7 −0.442923
\(243\) 2.12713e8 0.950980
\(244\) 2.08059e8 0.916899
\(245\) −1.09836e9 −4.77159
\(246\) 6.56067e6 0.0280980
\(247\) 9.60382e7 0.405513
\(248\) 8.66718e7 0.360825
\(249\) −2.08153e8 −0.854447
\(250\) 6.10901e8 2.47275
\(251\) 3.14343e8 1.25472 0.627358 0.778731i \(-0.284136\pi\)
0.627358 + 0.778731i \(0.284136\pi\)
\(252\) 1.32117e8 0.520064
\(253\) 2.26613e8 0.879756
\(254\) −3.59629e7 −0.137701
\(255\) 2.12405e8 0.802183
\(256\) 1.67772e7 0.0625000
\(257\) 3.09191e8 1.13622 0.568108 0.822954i \(-0.307675\pi\)
0.568108 + 0.822954i \(0.307675\pi\)
\(258\) −1.00997e8 −0.366133
\(259\) 8.53724e7 0.305329
\(260\) −1.82217e8 −0.642958
\(261\) −2.29109e7 −0.0797627
\(262\) 1.26112e8 0.433213
\(263\) −3.09539e8 −1.04923 −0.524614 0.851340i \(-0.675790\pi\)
−0.524614 + 0.851340i \(0.675790\pi\)
\(264\) −8.94105e7 −0.299071
\(265\) 9.92718e8 3.27692
\(266\) 2.47653e8 0.806784
\(267\) 3.60080e8 1.15774
\(268\) −1.06723e8 −0.338678
\(269\) −2.59451e8 −0.812686 −0.406343 0.913721i \(-0.633196\pi\)
−0.406343 + 0.913721i \(0.633196\pi\)
\(270\) −4.61011e8 −1.42541
\(271\) 7.90601e7 0.241304 0.120652 0.992695i \(-0.461501\pi\)
0.120652 + 0.992695i \(0.461501\pi\)
\(272\) −5.15094e7 −0.155201
\(273\) −2.73368e8 −0.813164
\(274\) 7.42230e7 0.217977
\(275\) 1.22934e9 3.56457
\(276\) 7.99115e7 0.228785
\(277\) 2.41348e8 0.682283 0.341142 0.940012i \(-0.389186\pi\)
0.341142 + 0.940012i \(0.389186\pi\)
\(278\) −4.24323e8 −1.18451
\(279\) 2.07336e8 0.571557
\(280\) −4.69881e8 −1.27919
\(281\) −1.24454e8 −0.334609 −0.167304 0.985905i \(-0.553506\pi\)
−0.167304 + 0.985905i \(0.553506\pi\)
\(282\) −4.35119e7 −0.115541
\(283\) 4.05747e8 1.06415 0.532074 0.846698i \(-0.321413\pi\)
0.532074 + 0.846698i \(0.321413\pi\)
\(284\) 1.67995e7 0.0435194
\(285\) −3.10226e8 −0.793819
\(286\) −2.35494e8 −0.595249
\(287\) 4.45593e7 0.111263
\(288\) 4.01344e7 0.0990017
\(289\) −2.52195e8 −0.614601
\(290\) 8.14837e7 0.196191
\(291\) 5.07128e8 1.20640
\(292\) 1.71912e8 0.404078
\(293\) 4.99201e8 1.15941 0.579707 0.814825i \(-0.303167\pi\)
0.579707 + 0.814825i \(0.303167\pi\)
\(294\) −5.00565e8 −1.14880
\(295\) 6.76137e8 1.53341
\(296\) 2.59343e7 0.0581238
\(297\) −5.95803e8 −1.31964
\(298\) −2.09086e8 −0.457687
\(299\) 2.10475e8 0.455357
\(300\) 4.33508e8 0.926985
\(301\) −6.85959e8 −1.44983
\(302\) 2.66208e8 0.556156
\(303\) 2.41781e8 0.499312
\(304\) 7.52317e7 0.153583
\(305\) −1.77016e9 −3.57242
\(306\) −1.23220e8 −0.245843
\(307\) −3.21540e8 −0.634235 −0.317118 0.948386i \(-0.602715\pi\)
−0.317118 + 0.948386i \(0.602715\pi\)
\(308\) −6.07266e8 −1.18427
\(309\) 2.52045e8 0.485986
\(310\) −7.37401e8 −1.40585
\(311\) −1.03297e8 −0.194726 −0.0973631 0.995249i \(-0.531041\pi\)
−0.0973631 + 0.995249i \(0.531041\pi\)
\(312\) −8.30434e7 −0.154798
\(313\) 5.25918e8 0.969422 0.484711 0.874674i \(-0.338925\pi\)
0.484711 + 0.874674i \(0.338925\pi\)
\(314\) 1.66507e8 0.303513
\(315\) −1.12405e9 −2.02627
\(316\) 2.32502e7 0.0414497
\(317\) −6.26026e7 −0.110379 −0.0551893 0.998476i \(-0.517576\pi\)
−0.0551893 + 0.998476i \(0.517576\pi\)
\(318\) 4.52420e8 0.788946
\(319\) 1.05308e8 0.181633
\(320\) −1.42740e8 −0.243512
\(321\) 3.57802e7 0.0603775
\(322\) 5.42750e8 0.905950
\(323\) −2.30976e8 −0.381381
\(324\) −3.86675e7 −0.0631595
\(325\) 1.14180e9 1.84500
\(326\) −3.20562e8 −0.512448
\(327\) −2.66877e8 −0.422079
\(328\) 1.35362e7 0.0211806
\(329\) −2.95528e8 −0.457523
\(330\) 7.60701e8 1.16524
\(331\) −3.10780e8 −0.471037 −0.235518 0.971870i \(-0.575679\pi\)
−0.235518 + 0.971870i \(0.575679\pi\)
\(332\) −4.29468e8 −0.644091
\(333\) 6.20400e7 0.0920697
\(334\) −3.41219e8 −0.501095
\(335\) 9.07998e8 1.31956
\(336\) −2.14143e8 −0.307976
\(337\) −9.56000e8 −1.36067 −0.680335 0.732901i \(-0.738166\pi\)
−0.680335 + 0.732901i \(0.738166\pi\)
\(338\) 2.83264e8 0.399009
\(339\) −2.40952e8 −0.335916
\(340\) 4.38240e8 0.604694
\(341\) −9.53003e8 −1.30153
\(342\) 1.79969e8 0.243280
\(343\) −2.01175e9 −2.69181
\(344\) −2.08380e8 −0.275995
\(345\) −6.79885e8 −0.891392
\(346\) −5.70822e7 −0.0740858
\(347\) 1.37536e9 1.76711 0.883555 0.468327i \(-0.155143\pi\)
0.883555 + 0.468327i \(0.155143\pi\)
\(348\) 3.71353e7 0.0472345
\(349\) −1.38134e9 −1.73945 −0.869725 0.493537i \(-0.835704\pi\)
−0.869725 + 0.493537i \(0.835704\pi\)
\(350\) 2.94434e9 3.67070
\(351\) −5.53374e8 −0.683037
\(352\) −1.84475e8 −0.225443
\(353\) −6.48672e8 −0.784899 −0.392450 0.919774i \(-0.628372\pi\)
−0.392450 + 0.919774i \(0.628372\pi\)
\(354\) 3.08142e8 0.369181
\(355\) −1.42930e8 −0.169560
\(356\) 7.42929e8 0.872715
\(357\) 6.57462e8 0.764772
\(358\) −1.11339e9 −1.28250
\(359\) 3.64068e8 0.415291 0.207645 0.978204i \(-0.433420\pi\)
0.207645 + 0.978204i \(0.433420\pi\)
\(360\) −3.41462e8 −0.385730
\(361\) −5.56521e8 −0.622596
\(362\) 4.88922e8 0.541701
\(363\) 3.78638e8 0.415481
\(364\) −5.64021e8 −0.612972
\(365\) −1.46262e9 −1.57437
\(366\) −8.06729e8 −0.860090
\(367\) 3.90647e8 0.412528 0.206264 0.978496i \(-0.433869\pi\)
0.206264 + 0.978496i \(0.433869\pi\)
\(368\) 1.64876e8 0.172461
\(369\) 3.23812e7 0.0335506
\(370\) −2.20649e8 −0.226462
\(371\) 3.07279e9 3.12409
\(372\) −3.36062e8 −0.338469
\(373\) −8.58735e7 −0.0856797 −0.0428399 0.999082i \(-0.513641\pi\)
−0.0428399 + 0.999082i \(0.513641\pi\)
\(374\) 5.66373e8 0.559825
\(375\) −2.36872e9 −2.31955
\(376\) −8.97752e7 −0.0870961
\(377\) 9.78089e7 0.0940121
\(378\) −1.42698e9 −1.35893
\(379\) 3.53330e8 0.333383 0.166691 0.986009i \(-0.446692\pi\)
0.166691 + 0.986009i \(0.446692\pi\)
\(380\) −6.40069e8 −0.598390
\(381\) 1.39443e8 0.129169
\(382\) 1.41855e9 1.30203
\(383\) −4.90315e8 −0.445943 −0.222971 0.974825i \(-0.571576\pi\)
−0.222971 + 0.974825i \(0.571576\pi\)
\(384\) −6.50522e7 −0.0586277
\(385\) 5.16660e9 4.61415
\(386\) 5.40033e8 0.477931
\(387\) −4.98486e8 −0.437184
\(388\) 1.04632e9 0.909400
\(389\) 9.97474e7 0.0859168 0.0429584 0.999077i \(-0.486322\pi\)
0.0429584 + 0.999077i \(0.486322\pi\)
\(390\) 7.06530e8 0.603121
\(391\) −5.06202e8 −0.428258
\(392\) −1.03278e9 −0.865979
\(393\) −4.88988e8 −0.406372
\(394\) 8.24778e8 0.679361
\(395\) −1.97812e8 −0.161496
\(396\) −4.41299e8 −0.357108
\(397\) −2.09994e8 −0.168438 −0.0842189 0.996447i \(-0.526839\pi\)
−0.0842189 + 0.996447i \(0.526839\pi\)
\(398\) −1.43024e9 −1.13715
\(399\) −9.60252e8 −0.756798
\(400\) 8.94428e8 0.698772
\(401\) 5.55414e8 0.430141 0.215071 0.976598i \(-0.431002\pi\)
0.215071 + 0.976598i \(0.431002\pi\)
\(402\) 4.13810e8 0.317695
\(403\) −8.85138e8 −0.673664
\(404\) 4.98849e8 0.376387
\(405\) 3.28982e8 0.246082
\(406\) 2.52219e8 0.187041
\(407\) −2.85162e8 −0.209658
\(408\) 1.99723e8 0.145585
\(409\) 1.80096e9 1.30158 0.650792 0.759256i \(-0.274437\pi\)
0.650792 + 0.759256i \(0.274437\pi\)
\(410\) −1.15165e8 −0.0825237
\(411\) −2.87793e8 −0.204472
\(412\) 5.20027e8 0.366341
\(413\) 2.09286e9 1.46189
\(414\) 3.94416e8 0.273182
\(415\) 3.65390e9 2.50951
\(416\) −1.71338e8 −0.116688
\(417\) 1.64527e9 1.11112
\(418\) −8.27213e8 −0.553988
\(419\) −1.69929e7 −0.0112854 −0.00564272 0.999984i \(-0.501796\pi\)
−0.00564272 + 0.999984i \(0.501796\pi\)
\(420\) 1.82192e9 1.19993
\(421\) 2.76374e9 1.80514 0.902568 0.430548i \(-0.141680\pi\)
0.902568 + 0.430548i \(0.141680\pi\)
\(422\) −1.76666e9 −1.14435
\(423\) −2.14760e8 −0.137963
\(424\) 9.33448e8 0.594716
\(425\) −2.74607e9 −1.73520
\(426\) −6.51387e7 −0.0408230
\(427\) −5.47921e9 −3.40581
\(428\) 7.38228e7 0.0455132
\(429\) 9.13107e8 0.558369
\(430\) 1.77289e9 1.07533
\(431\) −2.95133e9 −1.77561 −0.887804 0.460222i \(-0.847770\pi\)
−0.887804 + 0.460222i \(0.847770\pi\)
\(432\) −4.33487e8 −0.258692
\(433\) −2.29366e9 −1.35776 −0.678878 0.734251i \(-0.737533\pi\)
−0.678878 + 0.734251i \(0.737533\pi\)
\(434\) −2.28250e9 −1.34028
\(435\) −3.15946e8 −0.184035
\(436\) −5.50629e8 −0.318168
\(437\) 7.39331e8 0.423793
\(438\) −6.66573e8 −0.379043
\(439\) 2.21394e9 1.24893 0.624467 0.781052i \(-0.285316\pi\)
0.624467 + 0.781052i \(0.285316\pi\)
\(440\) 1.56950e9 0.878371
\(441\) −2.47061e9 −1.37173
\(442\) 5.26041e8 0.289762
\(443\) −2.80148e9 −1.53100 −0.765498 0.643438i \(-0.777507\pi\)
−0.765498 + 0.643438i \(0.777507\pi\)
\(444\) −1.00558e8 −0.0545226
\(445\) −6.32082e9 −3.40027
\(446\) −1.81612e9 −0.969334
\(447\) 8.10713e8 0.429330
\(448\) −4.41827e8 −0.232156
\(449\) −1.24071e9 −0.646856 −0.323428 0.946253i \(-0.604835\pi\)
−0.323428 + 0.946253i \(0.604835\pi\)
\(450\) 2.13964e9 1.10687
\(451\) −1.48838e8 −0.0764003
\(452\) −4.97139e8 −0.253217
\(453\) −1.03220e9 −0.521698
\(454\) 1.81645e9 0.911020
\(455\) 4.79867e9 2.38826
\(456\) −2.91704e8 −0.144067
\(457\) 8.16764e8 0.400304 0.200152 0.979765i \(-0.435856\pi\)
0.200152 + 0.979765i \(0.435856\pi\)
\(458\) −1.39794e9 −0.679923
\(459\) 1.33089e9 0.642389
\(460\) −1.40276e9 −0.671941
\(461\) 1.07694e9 0.511962 0.255981 0.966682i \(-0.417601\pi\)
0.255981 + 0.966682i \(0.417601\pi\)
\(462\) 2.35462e9 1.11090
\(463\) 3.16535e9 1.48214 0.741068 0.671430i \(-0.234320\pi\)
0.741068 + 0.671430i \(0.234320\pi\)
\(464\) 7.66188e7 0.0356059
\(465\) 2.85921e9 1.31874
\(466\) −2.13293e9 −0.976398
\(467\) 2.37777e9 1.08034 0.540171 0.841555i \(-0.318360\pi\)
0.540171 + 0.841555i \(0.318360\pi\)
\(468\) −4.09873e8 −0.184837
\(469\) 2.81055e9 1.25802
\(470\) 7.63804e8 0.339344
\(471\) −6.45614e8 −0.284708
\(472\) 6.35768e8 0.278293
\(473\) 2.29125e9 0.995540
\(474\) −9.01504e7 −0.0388816
\(475\) 4.01076e9 1.71711
\(476\) 1.35650e9 0.576493
\(477\) 2.23299e9 0.942047
\(478\) −6.35784e8 −0.266264
\(479\) 3.68467e9 1.53188 0.765939 0.642914i \(-0.222275\pi\)
0.765939 + 0.642914i \(0.222275\pi\)
\(480\) 5.53462e8 0.228425
\(481\) −2.64855e8 −0.108518
\(482\) −4.63768e8 −0.188641
\(483\) −2.10447e9 −0.849820
\(484\) 7.81218e8 0.313194
\(485\) −8.90209e9 −3.54320
\(486\) −1.70170e9 −0.672445
\(487\) −1.99019e9 −0.780807 −0.390404 0.920644i \(-0.627665\pi\)
−0.390404 + 0.920644i \(0.627665\pi\)
\(488\) −1.66447e9 −0.648345
\(489\) 1.24295e9 0.480698
\(490\) 8.78687e9 3.37402
\(491\) −1.03457e9 −0.394433 −0.197217 0.980360i \(-0.563190\pi\)
−0.197217 + 0.980360i \(0.563190\pi\)
\(492\) −5.24854e7 −0.0198683
\(493\) −2.35235e8 −0.0884173
\(494\) −7.68306e8 −0.286741
\(495\) 3.75456e9 1.39136
\(496\) −6.93374e8 −0.255142
\(497\) −4.42414e8 −0.161652
\(498\) 1.66522e9 0.604185
\(499\) −1.69821e9 −0.611843 −0.305922 0.952057i \(-0.598965\pi\)
−0.305922 + 0.952057i \(0.598965\pi\)
\(500\) −4.88721e9 −1.74850
\(501\) 1.32305e9 0.470049
\(502\) −2.51474e9 −0.887218
\(503\) 9.98691e8 0.349899 0.174950 0.984577i \(-0.444024\pi\)
0.174950 + 0.984577i \(0.444024\pi\)
\(504\) −1.05694e9 −0.367741
\(505\) −4.24420e9 −1.46648
\(506\) −1.81290e9 −0.622082
\(507\) −1.09833e9 −0.374288
\(508\) 2.87703e8 0.0973691
\(509\) 4.86581e9 1.63547 0.817735 0.575594i \(-0.195229\pi\)
0.817735 + 0.575594i \(0.195229\pi\)
\(510\) −1.69924e9 −0.567229
\(511\) −4.52729e9 −1.50094
\(512\) −1.34218e8 −0.0441942
\(513\) −1.94382e9 −0.635691
\(514\) −2.47353e9 −0.803427
\(515\) −4.42438e9 −1.42734
\(516\) 8.07975e8 0.258895
\(517\) 9.87127e8 0.314164
\(518\) −6.82979e8 −0.215900
\(519\) 2.21331e8 0.0694956
\(520\) 1.45774e9 0.454640
\(521\) −2.29363e9 −0.710544 −0.355272 0.934763i \(-0.615612\pi\)
−0.355272 + 0.934763i \(0.615612\pi\)
\(522\) 1.83287e8 0.0564007
\(523\) −1.41986e8 −0.0434000 −0.0217000 0.999765i \(-0.506908\pi\)
−0.0217000 + 0.999765i \(0.506908\pi\)
\(524\) −1.00890e9 −0.306328
\(525\) −1.14164e10 −3.44328
\(526\) 2.47631e9 0.741916
\(527\) 2.12880e9 0.633574
\(528\) 7.15284e8 0.211475
\(529\) −1.78453e9 −0.524117
\(530\) −7.94175e9 −2.31713
\(531\) 1.52088e9 0.440823
\(532\) −1.98122e9 −0.570483
\(533\) −1.38239e8 −0.0395444
\(534\) −2.88064e9 −0.818644
\(535\) −6.28082e8 −0.177328
\(536\) 8.53786e8 0.239482
\(537\) 4.31709e9 1.20304
\(538\) 2.07561e9 0.574656
\(539\) 1.13560e10 3.12366
\(540\) 3.68809e9 1.00791
\(541\) 6.73035e9 1.82746 0.913729 0.406324i \(-0.133190\pi\)
0.913729 + 0.406324i \(0.133190\pi\)
\(542\) −6.32481e8 −0.170628
\(543\) −1.89575e9 −0.508139
\(544\) 4.12075e8 0.109744
\(545\) 4.68474e9 1.23964
\(546\) 2.18694e9 0.574994
\(547\) −2.10936e9 −0.551056 −0.275528 0.961293i \(-0.588853\pi\)
−0.275528 + 0.961293i \(0.588853\pi\)
\(548\) −5.93784e8 −0.154133
\(549\) −3.98173e9 −1.02700
\(550\) −9.83471e9 −2.52053
\(551\) 3.43571e8 0.0874955
\(552\) −6.39292e8 −0.161775
\(553\) −6.12291e8 −0.153964
\(554\) −1.93078e9 −0.482447
\(555\) 8.55545e8 0.212431
\(556\) 3.39458e9 0.837577
\(557\) −5.46338e9 −1.33958 −0.669790 0.742551i \(-0.733616\pi\)
−0.669790 + 0.742551i \(0.733616\pi\)
\(558\) −1.65869e9 −0.404152
\(559\) 2.12809e9 0.515286
\(560\) 3.75905e9 0.904524
\(561\) −2.19606e9 −0.525140
\(562\) 9.95634e8 0.236604
\(563\) −2.38438e9 −0.563113 −0.281557 0.959545i \(-0.590851\pi\)
−0.281557 + 0.959545i \(0.590851\pi\)
\(564\) 3.48095e8 0.0816999
\(565\) 4.22964e9 0.986584
\(566\) −3.24597e9 −0.752467
\(567\) 1.01831e9 0.234605
\(568\) −1.34396e8 −0.0307729
\(569\) 4.69886e9 1.06930 0.534650 0.845073i \(-0.320443\pi\)
0.534650 + 0.845073i \(0.320443\pi\)
\(570\) 2.48181e9 0.561315
\(571\) 2.04617e9 0.459954 0.229977 0.973196i \(-0.426135\pi\)
0.229977 + 0.973196i \(0.426135\pi\)
\(572\) 1.88395e9 0.420905
\(573\) −5.50029e9 −1.22136
\(574\) −3.56475e8 −0.0786751
\(575\) 8.78988e9 1.92817
\(576\) −3.21075e8 −0.0700048
\(577\) −6.13969e9 −1.33055 −0.665274 0.746599i \(-0.731685\pi\)
−0.665274 + 0.746599i \(0.731685\pi\)
\(578\) 2.01756e9 0.434589
\(579\) −2.09393e9 −0.448319
\(580\) −6.51870e8 −0.138728
\(581\) 1.13100e10 2.39247
\(582\) −4.05703e9 −0.853056
\(583\) −1.02638e10 −2.14520
\(584\) −1.37529e9 −0.285727
\(585\) 3.48719e9 0.720161
\(586\) −3.99360e9 −0.819829
\(587\) −1.29772e9 −0.264819 −0.132410 0.991195i \(-0.542271\pi\)
−0.132410 + 0.991195i \(0.542271\pi\)
\(588\) 4.00452e9 0.812325
\(589\) −3.10920e9 −0.626968
\(590\) −5.40910e9 −1.08428
\(591\) −3.19800e9 −0.637269
\(592\) −2.07475e8 −0.0410997
\(593\) −1.01765e9 −0.200404 −0.100202 0.994967i \(-0.531949\pi\)
−0.100202 + 0.994967i \(0.531949\pi\)
\(594\) 4.76642e9 0.933125
\(595\) −1.15410e10 −2.24613
\(596\) 1.67269e9 0.323633
\(597\) 5.54562e9 1.06670
\(598\) −1.68380e9 −0.321986
\(599\) 1.36024e9 0.258595 0.129298 0.991606i \(-0.458728\pi\)
0.129298 + 0.991606i \(0.458728\pi\)
\(600\) −3.46806e9 −0.655477
\(601\) 5.83436e9 1.09631 0.548154 0.836378i \(-0.315331\pi\)
0.548154 + 0.836378i \(0.315331\pi\)
\(602\) 5.48768e9 1.02518
\(603\) 2.04242e9 0.379346
\(604\) −2.12966e9 −0.393261
\(605\) −6.64658e9 −1.22027
\(606\) −1.93424e9 −0.353067
\(607\) 4.09613e9 0.743384 0.371692 0.928356i \(-0.378778\pi\)
0.371692 + 0.928356i \(0.378778\pi\)
\(608\) −6.01854e8 −0.108600
\(609\) −9.77956e8 −0.175452
\(610\) 1.41613e10 2.52608
\(611\) 9.16831e8 0.162609
\(612\) 9.85764e8 0.173837
\(613\) −5.20044e8 −0.0911861 −0.0455930 0.998960i \(-0.514518\pi\)
−0.0455930 + 0.998960i \(0.514518\pi\)
\(614\) 2.57232e9 0.448472
\(615\) 4.46544e8 0.0774108
\(616\) 4.85813e9 0.837406
\(617\) 3.87499e9 0.664160 0.332080 0.943251i \(-0.392250\pi\)
0.332080 + 0.943251i \(0.392250\pi\)
\(618\) −2.01636e9 −0.343644
\(619\) −6.93110e9 −1.17459 −0.587293 0.809375i \(-0.699806\pi\)
−0.587293 + 0.809375i \(0.699806\pi\)
\(620\) 5.89921e9 0.994083
\(621\) −4.26004e9 −0.713827
\(622\) 8.26372e8 0.137692
\(623\) −1.95650e10 −3.24169
\(624\) 6.64347e8 0.109458
\(625\) 2.45204e10 4.01742
\(626\) −4.20734e9 −0.685485
\(627\) 3.20745e9 0.519665
\(628\) −1.33205e9 −0.214616
\(629\) 6.36988e8 0.102060
\(630\) 8.99238e9 1.43279
\(631\) 1.27564e9 0.202128 0.101064 0.994880i \(-0.467775\pi\)
0.101064 + 0.994880i \(0.467775\pi\)
\(632\) −1.86001e8 −0.0293093
\(633\) 6.85006e9 1.07345
\(634\) 5.00821e8 0.0780494
\(635\) −2.44777e9 −0.379369
\(636\) −3.61936e9 −0.557869
\(637\) 1.05473e10 1.61679
\(638\) −8.42465e8 −0.128434
\(639\) −3.21502e8 −0.0487450
\(640\) 1.14192e9 0.172189
\(641\) 8.45969e9 1.26868 0.634339 0.773055i \(-0.281272\pi\)
0.634339 + 0.773055i \(0.281272\pi\)
\(642\) −2.86242e8 −0.0426933
\(643\) −2.53383e9 −0.375871 −0.187935 0.982181i \(-0.560180\pi\)
−0.187935 + 0.982181i \(0.560180\pi\)
\(644\) −4.34200e9 −0.640604
\(645\) −6.87423e9 −1.00871
\(646\) 1.84781e9 0.269677
\(647\) −9.30854e8 −0.135119 −0.0675595 0.997715i \(-0.521521\pi\)
−0.0675595 + 0.997715i \(0.521521\pi\)
\(648\) 3.09340e8 0.0446605
\(649\) −6.99061e9 −1.00383
\(650\) −9.13437e9 −1.30461
\(651\) 8.85018e9 1.25724
\(652\) 2.56449e9 0.362355
\(653\) 4.54702e9 0.639044 0.319522 0.947579i \(-0.396478\pi\)
0.319522 + 0.947579i \(0.396478\pi\)
\(654\) 2.13502e9 0.298455
\(655\) 8.58365e9 1.19351
\(656\) −1.08290e8 −0.0149769
\(657\) −3.28997e9 −0.452599
\(658\) 2.36422e9 0.323518
\(659\) 5.26043e9 0.716015 0.358007 0.933719i \(-0.383456\pi\)
0.358007 + 0.933719i \(0.383456\pi\)
\(660\) −6.08561e9 −0.823949
\(661\) −9.97829e8 −0.134385 −0.0671925 0.997740i \(-0.521404\pi\)
−0.0671925 + 0.997740i \(0.521404\pi\)
\(662\) 2.48624e9 0.333073
\(663\) −2.03968e9 −0.271809
\(664\) 3.43574e9 0.455441
\(665\) 1.68562e10 2.22271
\(666\) −4.96320e8 −0.0651031
\(667\) 7.52962e8 0.0982500
\(668\) 2.72975e9 0.354328
\(669\) 7.04186e9 0.909276
\(670\) −7.26399e9 −0.933068
\(671\) 1.83017e10 2.33864
\(672\) 1.71314e9 0.217772
\(673\) −2.48723e9 −0.314530 −0.157265 0.987556i \(-0.550268\pi\)
−0.157265 + 0.987556i \(0.550268\pi\)
\(674\) 7.64800e9 0.962140
\(675\) −2.31101e10 −2.89226
\(676\) −2.26611e9 −0.282142
\(677\) −6.47115e9 −0.801532 −0.400766 0.916180i \(-0.631256\pi\)
−0.400766 + 0.916180i \(0.631256\pi\)
\(678\) 1.92761e9 0.237529
\(679\) −2.75549e10 −3.37796
\(680\) −3.50592e9 −0.427584
\(681\) −7.04312e9 −0.854575
\(682\) 7.62403e9 0.920320
\(683\) −4.86398e9 −0.584143 −0.292071 0.956397i \(-0.594345\pi\)
−0.292071 + 0.956397i \(0.594345\pi\)
\(684\) −1.43975e9 −0.172025
\(685\) 5.05189e9 0.600533
\(686\) 1.60940e10 1.90340
\(687\) 5.42040e9 0.637797
\(688\) 1.66704e9 0.195158
\(689\) −9.53287e9 −1.11034
\(690\) 5.43908e9 0.630309
\(691\) 7.51546e9 0.866527 0.433264 0.901267i \(-0.357362\pi\)
0.433264 + 0.901267i \(0.357362\pi\)
\(692\) 4.56658e8 0.0523865
\(693\) 1.16216e10 1.32647
\(694\) −1.10029e10 −1.24954
\(695\) −2.88810e10 −3.26336
\(696\) −2.97082e8 −0.0333999
\(697\) 3.32470e8 0.0371910
\(698\) 1.10507e10 1.22998
\(699\) 8.27026e9 0.915902
\(700\) −2.35547e10 −2.59558
\(701\) −1.02509e10 −1.12396 −0.561978 0.827152i \(-0.689960\pi\)
−0.561978 + 0.827152i \(0.689960\pi\)
\(702\) 4.42700e9 0.482980
\(703\) −9.30350e8 −0.100996
\(704\) 1.47580e9 0.159412
\(705\) −2.96158e9 −0.318319
\(706\) 5.18938e9 0.555007
\(707\) −1.31372e10 −1.39809
\(708\) −2.46513e9 −0.261050
\(709\) 5.01078e9 0.528012 0.264006 0.964521i \(-0.414956\pi\)
0.264006 + 0.964521i \(0.414956\pi\)
\(710\) 1.14344e9 0.119897
\(711\) −4.44951e8 −0.0464268
\(712\) −5.94344e9 −0.617103
\(713\) −6.81405e9 −0.704032
\(714\) −5.25969e9 −0.540775
\(715\) −1.60286e10 −1.63993
\(716\) 8.90715e9 0.906866
\(717\) 2.46520e9 0.249767
\(718\) −2.91255e9 −0.293655
\(719\) 1.55089e10 1.55607 0.778035 0.628221i \(-0.216217\pi\)
0.778035 + 0.628221i \(0.216217\pi\)
\(720\) 2.73169e9 0.272752
\(721\) −1.36949e10 −1.36077
\(722\) 4.45217e9 0.440242
\(723\) 1.79822e9 0.176953
\(724\) −3.91138e9 −0.383041
\(725\) 4.08470e9 0.398086
\(726\) −3.02911e9 −0.293789
\(727\) −9.09964e8 −0.0878322 −0.0439161 0.999035i \(-0.513983\pi\)
−0.0439161 + 0.999035i \(0.513983\pi\)
\(728\) 4.51217e9 0.433437
\(729\) 7.91954e9 0.757101
\(730\) 1.17010e10 1.11325
\(731\) −5.11814e9 −0.484620
\(732\) 6.45383e9 0.608176
\(733\) −6.80412e9 −0.638128 −0.319064 0.947733i \(-0.603369\pi\)
−0.319064 + 0.947733i \(0.603369\pi\)
\(734\) −3.12518e9 −0.291701
\(735\) −3.40703e10 −3.16498
\(736\) −1.31901e9 −0.121948
\(737\) −9.38784e9 −0.863832
\(738\) −2.59050e8 −0.0237239
\(739\) 9.88530e9 0.901020 0.450510 0.892771i \(-0.351242\pi\)
0.450510 + 0.892771i \(0.351242\pi\)
\(740\) 1.76519e9 0.160133
\(741\) 2.97904e9 0.268975
\(742\) −2.45823e10 −2.20907
\(743\) −1.40609e10 −1.25763 −0.628814 0.777556i \(-0.716459\pi\)
−0.628814 + 0.777556i \(0.716459\pi\)
\(744\) 2.68850e9 0.239334
\(745\) −1.42312e10 −1.26094
\(746\) 6.86988e8 0.0605847
\(747\) 8.21897e9 0.721432
\(748\) −4.53099e9 −0.395856
\(749\) −1.94412e9 −0.169058
\(750\) 1.89497e10 1.64017
\(751\) 1.89107e10 1.62918 0.814590 0.580038i \(-0.196962\pi\)
0.814590 + 0.580038i \(0.196962\pi\)
\(752\) 7.18201e8 0.0615863
\(753\) 9.75069e9 0.832248
\(754\) −7.82471e8 −0.0664766
\(755\) 1.81191e10 1.53222
\(756\) 1.14158e10 0.960908
\(757\) −1.68703e9 −0.141348 −0.0706738 0.997499i \(-0.522515\pi\)
−0.0706738 + 0.997499i \(0.522515\pi\)
\(758\) −2.82664e9 −0.235737
\(759\) 7.02936e9 0.583539
\(760\) 5.12055e9 0.423126
\(761\) 1.35093e10 1.11118 0.555591 0.831456i \(-0.312492\pi\)
0.555591 + 0.831456i \(0.312492\pi\)
\(762\) −1.11554e9 −0.0913363
\(763\) 1.45008e10 1.18183
\(764\) −1.13484e10 −0.920676
\(765\) −8.38685e9 −0.677304
\(766\) 3.92252e9 0.315329
\(767\) −6.49280e9 −0.519575
\(768\) 5.20417e8 0.0414560
\(769\) −2.04375e10 −1.62064 −0.810318 0.585990i \(-0.800706\pi\)
−0.810318 + 0.585990i \(0.800706\pi\)
\(770\) −4.13328e10 −3.26270
\(771\) 9.59089e9 0.753648
\(772\) −4.32026e9 −0.337948
\(773\) −3.22437e9 −0.251083 −0.125541 0.992088i \(-0.540067\pi\)
−0.125541 + 0.992088i \(0.540067\pi\)
\(774\) 3.98788e9 0.309136
\(775\) −3.69652e10 −2.85258
\(776\) −8.37059e9 −0.643043
\(777\) 2.64819e9 0.202524
\(778\) −7.97979e8 −0.0607524
\(779\) −4.85588e8 −0.0368033
\(780\) −5.65224e9 −0.426471
\(781\) 1.47776e9 0.111000
\(782\) 4.04962e9 0.302824
\(783\) −1.97966e9 −0.147375
\(784\) 8.26225e9 0.612339
\(785\) 1.13331e10 0.836187
\(786\) 3.91190e9 0.287349
\(787\) −1.34167e10 −0.981147 −0.490574 0.871400i \(-0.663213\pi\)
−0.490574 + 0.871400i \(0.663213\pi\)
\(788\) −6.59822e9 −0.480380
\(789\) −9.60167e9 −0.695949
\(790\) 1.58249e9 0.114195
\(791\) 1.30921e10 0.940573
\(792\) 3.53039e9 0.252514
\(793\) 1.69984e10 1.21047
\(794\) 1.67995e9 0.119104
\(795\) 3.07934e10 2.17357
\(796\) 1.14419e10 0.804086
\(797\) 1.04838e10 0.733528 0.366764 0.930314i \(-0.380466\pi\)
0.366764 + 0.930314i \(0.380466\pi\)
\(798\) 7.68201e9 0.535137
\(799\) −2.20502e9 −0.152932
\(800\) −7.15542e9 −0.494106
\(801\) −1.42179e10 −0.977508
\(802\) −4.44331e9 −0.304156
\(803\) 1.51221e10 1.03064
\(804\) −3.31048e9 −0.224644
\(805\) 3.69416e10 2.49592
\(806\) 7.08110e9 0.476352
\(807\) −8.04800e9 −0.539052
\(808\) −3.99080e9 −0.266146
\(809\) 8.66031e9 0.575060 0.287530 0.957772i \(-0.407166\pi\)
0.287530 + 0.957772i \(0.407166\pi\)
\(810\) −2.63186e9 −0.174006
\(811\) 7.78352e9 0.512393 0.256196 0.966625i \(-0.417531\pi\)
0.256196 + 0.966625i \(0.417531\pi\)
\(812\) −2.01775e9 −0.132258
\(813\) 2.45239e9 0.160056
\(814\) 2.28130e9 0.148251
\(815\) −2.18186e10 −1.41181
\(816\) −1.59778e9 −0.102944
\(817\) 7.47528e9 0.479568
\(818\) −1.44077e10 −0.920359
\(819\) 1.07940e10 0.686575
\(820\) 9.21324e8 0.0583531
\(821\) 7.91243e9 0.499009 0.249505 0.968374i \(-0.419732\pi\)
0.249505 + 0.968374i \(0.419732\pi\)
\(822\) 2.30234e9 0.144584
\(823\) −4.48091e9 −0.280199 −0.140100 0.990137i \(-0.544742\pi\)
−0.140100 + 0.990137i \(0.544742\pi\)
\(824\) −4.16022e9 −0.259042
\(825\) 3.81332e10 2.36437
\(826\) −1.67429e10 −1.03372
\(827\) −7.15443e8 −0.0439851 −0.0219926 0.999758i \(-0.507001\pi\)
−0.0219926 + 0.999758i \(0.507001\pi\)
\(828\) −3.15532e9 −0.193169
\(829\) −2.36866e10 −1.44398 −0.721990 0.691903i \(-0.756773\pi\)
−0.721990 + 0.691903i \(0.756773\pi\)
\(830\) −2.92312e10 −1.77449
\(831\) 7.48645e9 0.452556
\(832\) 1.37070e9 0.0825109
\(833\) −2.53668e10 −1.52057
\(834\) −1.31622e10 −0.785683
\(835\) −2.32246e10 −1.38053
\(836\) 6.61771e9 0.391729
\(837\) 1.79153e10 1.05605
\(838\) 1.35943e8 0.00798002
\(839\) 2.37629e10 1.38909 0.694547 0.719447i \(-0.255605\pi\)
0.694547 + 0.719447i \(0.255605\pi\)
\(840\) −1.45754e10 −0.848482
\(841\) −1.69000e10 −0.979715
\(842\) −2.21099e10 −1.27642
\(843\) −3.86048e9 −0.221945
\(844\) 1.41333e10 0.809178
\(845\) 1.92800e10 1.09928
\(846\) 1.71808e9 0.0975543
\(847\) −2.05733e10 −1.16336
\(848\) −7.46759e9 −0.420528
\(849\) 1.25860e10 0.705846
\(850\) 2.19686e10 1.22697
\(851\) −2.03893e9 −0.113409
\(852\) 5.21109e8 0.0288662
\(853\) −3.28503e10 −1.81225 −0.906126 0.423009i \(-0.860974\pi\)
−0.906126 + 0.423009i \(0.860974\pi\)
\(854\) 4.38337e10 2.40827
\(855\) 1.22494e10 0.670242
\(856\) −5.90583e8 −0.0321827
\(857\) −5.67832e9 −0.308168 −0.154084 0.988058i \(-0.549243\pi\)
−0.154084 + 0.988058i \(0.549243\pi\)
\(858\) −7.30485e9 −0.394826
\(859\) −1.22964e10 −0.661914 −0.330957 0.943646i \(-0.607372\pi\)
−0.330957 + 0.943646i \(0.607372\pi\)
\(860\) −1.41831e10 −0.760374
\(861\) 1.38220e9 0.0738006
\(862\) 2.36106e10 1.25554
\(863\) 1.75550e10 0.929743 0.464871 0.885378i \(-0.346101\pi\)
0.464871 + 0.885378i \(0.346101\pi\)
\(864\) 3.46789e9 0.182923
\(865\) −3.88523e9 −0.204108
\(866\) 1.83493e10 0.960078
\(867\) −7.82290e9 −0.407663
\(868\) 1.82600e10 0.947722
\(869\) 2.04518e9 0.105721
\(870\) 2.52757e9 0.130132
\(871\) −8.71931e9 −0.447115
\(872\) 4.40503e9 0.224979
\(873\) −2.00241e10 −1.01860
\(874\) −5.91465e9 −0.299667
\(875\) 1.28704e11 6.49479
\(876\) 5.33258e9 0.268024
\(877\) −9.75144e7 −0.00488169 −0.00244084 0.999997i \(-0.500777\pi\)
−0.00244084 + 0.999997i \(0.500777\pi\)
\(878\) −1.77115e10 −0.883129
\(879\) 1.54848e10 0.769035
\(880\) −1.25560e10 −0.621102
\(881\) −1.68618e10 −0.830786 −0.415393 0.909642i \(-0.636356\pi\)
−0.415393 + 0.909642i \(0.636356\pi\)
\(882\) 1.97649e10 0.969962
\(883\) 2.81287e10 1.37495 0.687476 0.726207i \(-0.258719\pi\)
0.687476 + 0.726207i \(0.258719\pi\)
\(884\) −4.20833e9 −0.204893
\(885\) 2.09733e10 1.01710
\(886\) 2.24118e10 1.08258
\(887\) 1.49073e10 0.717241 0.358621 0.933483i \(-0.383247\pi\)
0.358621 + 0.933483i \(0.383247\pi\)
\(888\) 8.04465e8 0.0385533
\(889\) −7.57664e9 −0.361676
\(890\) 5.05666e10 2.40435
\(891\) −3.40136e9 −0.161095
\(892\) 1.45290e10 0.685423
\(893\) 3.22053e9 0.151338
\(894\) −6.48570e9 −0.303582
\(895\) −7.57817e10 −3.53333
\(896\) 3.53462e9 0.164159
\(897\) 6.52879e9 0.302036
\(898\) 9.92567e9 0.457396
\(899\) −3.16653e9 −0.145353
\(900\) −1.71172e10 −0.782677
\(901\) 2.29270e10 1.04426
\(902\) 1.19070e9 0.0540232
\(903\) −2.12780e10 −0.961664
\(904\) 3.97711e9 0.179052
\(905\) 3.32779e10 1.49240
\(906\) 8.25757e9 0.368896
\(907\) 2.00171e10 0.890790 0.445395 0.895334i \(-0.353063\pi\)
0.445395 + 0.895334i \(0.353063\pi\)
\(908\) −1.45316e10 −0.644188
\(909\) −9.54676e9 −0.421582
\(910\) −3.83894e10 −1.68875
\(911\) −1.55429e10 −0.681113 −0.340556 0.940224i \(-0.610615\pi\)
−0.340556 + 0.940224i \(0.610615\pi\)
\(912\) 2.33363e9 0.101871
\(913\) −3.77779e10 −1.64282
\(914\) −6.53412e9 −0.283058
\(915\) −5.49090e10 −2.36957
\(916\) 1.11835e10 0.480778
\(917\) 2.65692e10 1.13785
\(918\) −1.06471e10 −0.454237
\(919\) −7.07850e9 −0.300841 −0.150420 0.988622i \(-0.548063\pi\)
−0.150420 + 0.988622i \(0.548063\pi\)
\(920\) 1.12221e10 0.475134
\(921\) −9.97394e9 −0.420686
\(922\) −8.61552e9 −0.362012
\(923\) 1.37252e9 0.0574532
\(924\) −1.88370e10 −0.785523
\(925\) −1.10609e10 −0.459509
\(926\) −2.53228e10 −1.04803
\(927\) −9.95205e9 −0.410330
\(928\) −6.12950e8 −0.0251772
\(929\) −9.26783e9 −0.379248 −0.189624 0.981857i \(-0.560727\pi\)
−0.189624 + 0.981857i \(0.560727\pi\)
\(930\) −2.28737e10 −0.932492
\(931\) 3.70493e10 1.50472
\(932\) 1.70635e10 0.690417
\(933\) −3.20419e9 −0.129161
\(934\) −1.90222e10 −0.763917
\(935\) 3.85495e10 1.54233
\(936\) 3.27899e9 0.130700
\(937\) −2.95508e10 −1.17349 −0.586746 0.809771i \(-0.699591\pi\)
−0.586746 + 0.809771i \(0.699591\pi\)
\(938\) −2.24844e10 −0.889552
\(939\) 1.63136e10 0.643014
\(940\) −6.11043e9 −0.239952
\(941\) 1.39298e10 0.544979 0.272489 0.962159i \(-0.412153\pi\)
0.272489 + 0.962159i \(0.412153\pi\)
\(942\) 5.16492e9 0.201319
\(943\) −1.06420e9 −0.0413269
\(944\) −5.08615e9 −0.196783
\(945\) −9.71257e10 −3.74389
\(946\) −1.83300e10 −0.703953
\(947\) −2.48316e10 −0.950122 −0.475061 0.879953i \(-0.657574\pi\)
−0.475061 + 0.879953i \(0.657574\pi\)
\(948\) 7.21203e8 0.0274934
\(949\) 1.40452e10 0.533454
\(950\) −3.20860e10 −1.21418
\(951\) −1.94189e9 −0.0732137
\(952\) −1.08520e10 −0.407642
\(953\) −3.01791e10 −1.12949 −0.564744 0.825266i \(-0.691025\pi\)
−0.564744 + 0.825266i \(0.691025\pi\)
\(954\) −1.78639e10 −0.666127
\(955\) 9.65515e10 3.58713
\(956\) 5.08627e9 0.188277
\(957\) 3.26658e9 0.120476
\(958\) −2.94773e10 −1.08320
\(959\) 1.56373e10 0.572526
\(960\) −4.42769e9 −0.161521
\(961\) 1.14339e9 0.0415589
\(962\) 2.11884e9 0.0767336
\(963\) −1.41279e9 −0.0509783
\(964\) 3.71015e9 0.133389
\(965\) 3.67567e10 1.31671
\(966\) 1.68357e10 0.600913
\(967\) −2.93661e10 −1.04437 −0.522184 0.852833i \(-0.674882\pi\)
−0.522184 + 0.852833i \(0.674882\pi\)
\(968\) −6.24975e9 −0.221462
\(969\) −7.16472e9 −0.252968
\(970\) 7.12167e10 2.50542
\(971\) −2.39542e10 −0.839683 −0.419841 0.907598i \(-0.637914\pi\)
−0.419841 + 0.907598i \(0.637914\pi\)
\(972\) 1.36136e10 0.475490
\(973\) −8.93961e10 −3.11117
\(974\) 1.59215e10 0.552114
\(975\) 3.54177e10 1.22378
\(976\) 1.33158e10 0.458449
\(977\) 2.91663e10 1.00058 0.500289 0.865859i \(-0.333227\pi\)
0.500289 + 0.865859i \(0.333227\pi\)
\(978\) −9.94359e9 −0.339905
\(979\) 6.53513e10 2.22595
\(980\) −7.02950e10 −2.38579
\(981\) 1.05377e10 0.356372
\(982\) 8.27654e9 0.278906
\(983\) 4.44637e9 0.149303 0.0746514 0.997210i \(-0.476216\pi\)
0.0746514 + 0.997210i \(0.476216\pi\)
\(984\) 4.19883e8 0.0140490
\(985\) 5.61375e10 1.87166
\(986\) 1.88188e9 0.0625205
\(987\) −9.16707e9 −0.303473
\(988\) 6.14645e9 0.202757
\(989\) 1.63826e10 0.538514
\(990\) −3.00365e10 −0.983842
\(991\) 3.36917e10 1.09968 0.549838 0.835271i \(-0.314689\pi\)
0.549838 + 0.835271i \(0.314689\pi\)
\(992\) 5.54700e9 0.180413
\(993\) −9.64017e9 −0.312437
\(994\) 3.53931e9 0.114305
\(995\) −9.73474e10 −3.13288
\(996\) −1.33218e10 −0.427223
\(997\) −7.98360e9 −0.255132 −0.127566 0.991830i \(-0.540717\pi\)
−0.127566 + 0.991830i \(0.540717\pi\)
\(998\) 1.35857e10 0.432638
\(999\) 5.36069e9 0.170115
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 74.8.a.c.1.4 6
4.3 odd 2 592.8.a.c.1.3 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
74.8.a.c.1.4 6 1.1 even 1 trivial
592.8.a.c.1.3 6 4.3 odd 2