Properties

Label 74.8.a.c.1.3
Level $74$
Weight $8$
Character 74.1
Self dual yes
Analytic conductor $23.116$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [74,8,Mod(1,74)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(74, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("74.1");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 74 = 2 \cdot 37 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 74.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(23.1164918858\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 10621x^{4} + 102052x^{3} + 31004503x^{2} - 305547358x - 22608804936 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(44.6523\) of defining polynomial
Character \(\chi\) \(=\) 74.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-8.00000 q^{2} -39.6523 q^{3} +64.0000 q^{4} -332.745 q^{5} +317.219 q^{6} -135.814 q^{7} -512.000 q^{8} -614.693 q^{9} +O(q^{10})\) \(q-8.00000 q^{2} -39.6523 q^{3} +64.0000 q^{4} -332.745 q^{5} +317.219 q^{6} -135.814 q^{7} -512.000 q^{8} -614.693 q^{9} +2661.96 q^{10} -6182.84 q^{11} -2537.75 q^{12} -9398.11 q^{13} +1086.51 q^{14} +13194.1 q^{15} +4096.00 q^{16} -4302.47 q^{17} +4917.54 q^{18} -15806.0 q^{19} -21295.7 q^{20} +5385.34 q^{21} +49462.7 q^{22} -104800. q^{23} +20302.0 q^{24} +32594.0 q^{25} +75184.9 q^{26} +111094. q^{27} -8692.09 q^{28} +93937.7 q^{29} -105553. q^{30} +118220. q^{31} -32768.0 q^{32} +245164. q^{33} +34419.8 q^{34} +45191.4 q^{35} -39340.3 q^{36} -50653.0 q^{37} +126448. q^{38} +372657. q^{39} +170365. q^{40} +578567. q^{41} -43082.7 q^{42} +1.01884e6 q^{43} -395702. q^{44} +204536. q^{45} +838403. q^{46} -1.05076e6 q^{47} -162416. q^{48} -805098. q^{49} -260752. q^{50} +170603. q^{51} -601479. q^{52} -230063. q^{53} -888749. q^{54} +2.05731e6 q^{55} +69536.7 q^{56} +626743. q^{57} -751502. q^{58} -2.22169e6 q^{59} +844422. q^{60} +1.26320e6 q^{61} -945760. q^{62} +83483.9 q^{63} +262144. q^{64} +3.12717e6 q^{65} -1.96131e6 q^{66} +1.31032e6 q^{67} -275358. q^{68} +4.15558e6 q^{69} -361531. q^{70} -2.73160e6 q^{71} +314723. q^{72} -5.21783e6 q^{73} +405224. q^{74} -1.29243e6 q^{75} -1.01158e6 q^{76} +839716. q^{77} -2.98126e6 q^{78} -2.42990e6 q^{79} -1.36292e6 q^{80} -3.06079e6 q^{81} -4.62853e6 q^{82} +1.69149e6 q^{83} +344662. q^{84} +1.43162e6 q^{85} -8.15075e6 q^{86} -3.72485e6 q^{87} +3.16561e6 q^{88} -5.89988e6 q^{89} -1.63629e6 q^{90} +1.27639e6 q^{91} -6.70723e6 q^{92} -4.68770e6 q^{93} +8.40610e6 q^{94} +5.25935e6 q^{95} +1.29933e6 q^{96} -6.48918e6 q^{97} +6.44078e6 q^{98} +3.80055e6 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 48 q^{2} + 28 q^{3} + 384 q^{4} - 14 q^{5} - 224 q^{6} - 980 q^{7} - 3072 q^{8} + 8254 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 6 q - 48 q^{2} + 28 q^{3} + 384 q^{4} - 14 q^{5} - 224 q^{6} - 980 q^{7} - 3072 q^{8} + 8254 q^{9} + 112 q^{10} + 2956 q^{11} + 1792 q^{12} + 2394 q^{13} + 7840 q^{14} - 28820 q^{15} + 24576 q^{16} - 45108 q^{17} - 66032 q^{18} + 11764 q^{19} - 896 q^{20} - 135378 q^{21} - 23648 q^{22} + 21052 q^{23} - 14336 q^{24} + 194744 q^{25} - 19152 q^{26} + 439240 q^{27} - 62720 q^{28} + 288454 q^{29} + 230560 q^{30} + 578868 q^{31} - 196608 q^{32} + 980174 q^{33} + 360864 q^{34} + 1243052 q^{35} + 528256 q^{36} - 303918 q^{37} - 94112 q^{38} + 1735296 q^{39} + 7168 q^{40} + 1176840 q^{41} + 1083024 q^{42} + 2669236 q^{43} + 189184 q^{44} + 2560692 q^{45} - 168416 q^{46} - 131044 q^{47} + 114688 q^{48} + 2460856 q^{49} - 1557952 q^{50} + 2899732 q^{51} + 153216 q^{52} + 983190 q^{53} - 3513920 q^{54} - 1200168 q^{55} + 501760 q^{56} - 163216 q^{57} - 2307632 q^{58} - 1215568 q^{59} - 1844480 q^{60} + 3136358 q^{61} - 4630944 q^{62} - 1444880 q^{63} + 1572864 q^{64} - 1302836 q^{65} - 7841392 q^{66} + 2179276 q^{67} - 2886912 q^{68} - 929514 q^{69} - 9944416 q^{70} + 325164 q^{71} - 4226048 q^{72} + 5011444 q^{73} + 2431344 q^{74} - 9374520 q^{75} + 752896 q^{76} - 26500426 q^{77} - 13882368 q^{78} + 3173032 q^{79} - 57344 q^{80} - 2565226 q^{81} - 9414720 q^{82} - 22567048 q^{83} - 8664192 q^{84} + 1486476 q^{85} - 21353888 q^{86} - 157228 q^{87} - 1513472 q^{88} + 26836996 q^{89} - 20485536 q^{90} + 17942380 q^{91} + 1347328 q^{92} + 16734948 q^{93} + 1048352 q^{94} - 4252048 q^{95} - 917504 q^{96} + 295792 q^{97} - 19686848 q^{98} + 25990712 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −8.00000 −0.707107
\(3\) −39.6523 −0.847899 −0.423950 0.905686i \(-0.639357\pi\)
−0.423950 + 0.905686i \(0.639357\pi\)
\(4\) 64.0000 0.500000
\(5\) −332.745 −1.19046 −0.595232 0.803554i \(-0.702940\pi\)
−0.595232 + 0.803554i \(0.702940\pi\)
\(6\) 317.219 0.599555
\(7\) −135.814 −0.149658 −0.0748292 0.997196i \(-0.523841\pi\)
−0.0748292 + 0.997196i \(0.523841\pi\)
\(8\) −512.000 −0.353553
\(9\) −614.693 −0.281067
\(10\) 2661.96 0.841785
\(11\) −6182.84 −1.40060 −0.700299 0.713849i \(-0.746950\pi\)
−0.700299 + 0.713849i \(0.746950\pi\)
\(12\) −2537.75 −0.423950
\(13\) −9398.11 −1.18642 −0.593211 0.805047i \(-0.702140\pi\)
−0.593211 + 0.805047i \(0.702140\pi\)
\(14\) 1086.51 0.105825
\(15\) 13194.1 1.00939
\(16\) 4096.00 0.250000
\(17\) −4302.47 −0.212396 −0.106198 0.994345i \(-0.533868\pi\)
−0.106198 + 0.994345i \(0.533868\pi\)
\(18\) 4917.54 0.198744
\(19\) −15806.0 −0.528668 −0.264334 0.964431i \(-0.585152\pi\)
−0.264334 + 0.964431i \(0.585152\pi\)
\(20\) −21295.7 −0.595232
\(21\) 5385.34 0.126895
\(22\) 49462.7 0.990373
\(23\) −104800. −1.79604 −0.898019 0.439956i \(-0.854994\pi\)
−0.898019 + 0.439956i \(0.854994\pi\)
\(24\) 20302.0 0.299778
\(25\) 32594.0 0.417203
\(26\) 75184.9 0.838927
\(27\) 111094. 1.08622
\(28\) −8692.09 −0.0748292
\(29\) 93937.7 0.715232 0.357616 0.933869i \(-0.383590\pi\)
0.357616 + 0.933869i \(0.383590\pi\)
\(30\) −105553. −0.713749
\(31\) 118220. 0.712730 0.356365 0.934347i \(-0.384016\pi\)
0.356365 + 0.934347i \(0.384016\pi\)
\(32\) −32768.0 −0.176777
\(33\) 245164. 1.18757
\(34\) 34419.8 0.150187
\(35\) 45191.4 0.178163
\(36\) −39340.3 −0.140533
\(37\) −50653.0 −0.164399
\(38\) 126448. 0.373825
\(39\) 372657. 1.00597
\(40\) 170365. 0.420892
\(41\) 578567. 1.31102 0.655511 0.755186i \(-0.272453\pi\)
0.655511 + 0.755186i \(0.272453\pi\)
\(42\) −43082.7 −0.0897285
\(43\) 1.01884e6 1.95420 0.977098 0.212789i \(-0.0682547\pi\)
0.977098 + 0.212789i \(0.0682547\pi\)
\(44\) −395702. −0.700299
\(45\) 204536. 0.334599
\(46\) 838403. 1.26999
\(47\) −1.05076e6 −1.47626 −0.738129 0.674660i \(-0.764290\pi\)
−0.738129 + 0.674660i \(0.764290\pi\)
\(48\) −162416. −0.211975
\(49\) −805098. −0.977602
\(50\) −260752. −0.295007
\(51\) 170603. 0.180091
\(52\) −601479. −0.593211
\(53\) −230063. −0.212266 −0.106133 0.994352i \(-0.533847\pi\)
−0.106133 + 0.994352i \(0.533847\pi\)
\(54\) −888749. −0.768070
\(55\) 2.05731e6 1.66736
\(56\) 69536.7 0.0529123
\(57\) 626743. 0.448257
\(58\) −751502. −0.505746
\(59\) −2.22169e6 −1.40832 −0.704160 0.710041i \(-0.748676\pi\)
−0.704160 + 0.710041i \(0.748676\pi\)
\(60\) 844422. 0.504697
\(61\) 1.26320e6 0.712552 0.356276 0.934381i \(-0.384046\pi\)
0.356276 + 0.934381i \(0.384046\pi\)
\(62\) −945760. −0.503976
\(63\) 83483.9 0.0420640
\(64\) 262144. 0.125000
\(65\) 3.12717e6 1.41239
\(66\) −1.96131e6 −0.839736
\(67\) 1.31032e6 0.532251 0.266126 0.963938i \(-0.414256\pi\)
0.266126 + 0.963938i \(0.414256\pi\)
\(68\) −275358. −0.106198
\(69\) 4.15558e6 1.52286
\(70\) −361531. −0.125980
\(71\) −2.73160e6 −0.905759 −0.452880 0.891572i \(-0.649603\pi\)
−0.452880 + 0.891572i \(0.649603\pi\)
\(72\) 314723. 0.0993721
\(73\) −5.21783e6 −1.56986 −0.784929 0.619586i \(-0.787300\pi\)
−0.784929 + 0.619586i \(0.787300\pi\)
\(74\) 405224. 0.116248
\(75\) −1.29243e6 −0.353746
\(76\) −1.01158e6 −0.264334
\(77\) 839716. 0.209611
\(78\) −2.98126e6 −0.711325
\(79\) −2.42990e6 −0.554489 −0.277244 0.960799i \(-0.589421\pi\)
−0.277244 + 0.960799i \(0.589421\pi\)
\(80\) −1.36292e6 −0.297616
\(81\) −3.06079e6 −0.639935
\(82\) −4.62853e6 −0.927032
\(83\) 1.69149e6 0.324711 0.162355 0.986732i \(-0.448091\pi\)
0.162355 + 0.986732i \(0.448091\pi\)
\(84\) 344662. 0.0634477
\(85\) 1.43162e6 0.252850
\(86\) −8.15075e6 −1.38183
\(87\) −3.72485e6 −0.606445
\(88\) 3.16561e6 0.495186
\(89\) −5.89988e6 −0.887111 −0.443556 0.896247i \(-0.646283\pi\)
−0.443556 + 0.896247i \(0.646283\pi\)
\(90\) −1.63629e6 −0.236598
\(91\) 1.27639e6 0.177558
\(92\) −6.70723e6 −0.898019
\(93\) −4.68770e6 −0.604323
\(94\) 8.40610e6 1.04387
\(95\) 5.25935e6 0.629360
\(96\) 1.29933e6 0.149889
\(97\) −6.48918e6 −0.721920 −0.360960 0.932581i \(-0.617551\pi\)
−0.360960 + 0.932581i \(0.617551\pi\)
\(98\) 6.44078e6 0.691269
\(99\) 3.80055e6 0.393661
\(100\) 2.08601e6 0.208601
\(101\) −1.25596e6 −0.121297 −0.0606486 0.998159i \(-0.519317\pi\)
−0.0606486 + 0.998159i \(0.519317\pi\)
\(102\) −1.36482e6 −0.127343
\(103\) 1.44149e7 1.29981 0.649907 0.760013i \(-0.274808\pi\)
0.649907 + 0.760013i \(0.274808\pi\)
\(104\) 4.81183e6 0.419463
\(105\) −1.79194e6 −0.151064
\(106\) 1.84050e6 0.150095
\(107\) 1.52113e7 1.20039 0.600196 0.799853i \(-0.295089\pi\)
0.600196 + 0.799853i \(0.295089\pi\)
\(108\) 7.10999e6 0.543108
\(109\) 2.45775e6 0.181780 0.0908899 0.995861i \(-0.471029\pi\)
0.0908899 + 0.995861i \(0.471029\pi\)
\(110\) −1.64585e7 −1.17900
\(111\) 2.00851e6 0.139394
\(112\) −556294. −0.0374146
\(113\) −1.87115e7 −1.21993 −0.609965 0.792429i \(-0.708816\pi\)
−0.609965 + 0.792429i \(0.708816\pi\)
\(114\) −5.01394e6 −0.316966
\(115\) 3.48718e7 2.13812
\(116\) 6.01202e6 0.357616
\(117\) 5.77695e6 0.333463
\(118\) 1.77735e7 0.995833
\(119\) 584336. 0.0317869
\(120\) −6.75538e6 −0.356874
\(121\) 1.87403e7 0.961676
\(122\) −1.01056e7 −0.503851
\(123\) −2.29415e7 −1.11161
\(124\) 7.56608e6 0.356365
\(125\) 1.51502e7 0.693799
\(126\) −667871. −0.0297437
\(127\) −1.52790e7 −0.661883 −0.330941 0.943651i \(-0.607366\pi\)
−0.330941 + 0.943651i \(0.607366\pi\)
\(128\) −2.09715e6 −0.0883883
\(129\) −4.03995e7 −1.65696
\(130\) −2.50174e7 −0.998711
\(131\) 4.60838e6 0.179101 0.0895507 0.995982i \(-0.471457\pi\)
0.0895507 + 0.995982i \(0.471457\pi\)
\(132\) 1.56905e7 0.593783
\(133\) 2.14667e6 0.0791197
\(134\) −1.04826e7 −0.376359
\(135\) −3.69658e7 −1.29310
\(136\) 2.20287e6 0.0750934
\(137\) −1.29302e7 −0.429618 −0.214809 0.976656i \(-0.568913\pi\)
−0.214809 + 0.976656i \(0.568913\pi\)
\(138\) −3.32446e7 −1.07682
\(139\) 4.06836e7 1.28489 0.642447 0.766330i \(-0.277919\pi\)
0.642447 + 0.766330i \(0.277919\pi\)
\(140\) 2.89225e6 0.0890814
\(141\) 4.16652e7 1.25172
\(142\) 2.18528e7 0.640469
\(143\) 5.81070e7 1.66170
\(144\) −2.51778e6 −0.0702667
\(145\) −3.12573e7 −0.851458
\(146\) 4.17427e7 1.11006
\(147\) 3.19240e7 0.828908
\(148\) −3.24179e6 −0.0821995
\(149\) 1.71235e7 0.424072 0.212036 0.977262i \(-0.431991\pi\)
0.212036 + 0.977262i \(0.431991\pi\)
\(150\) 1.03394e7 0.250136
\(151\) 1.14400e7 0.270401 0.135201 0.990818i \(-0.456832\pi\)
0.135201 + 0.990818i \(0.456832\pi\)
\(152\) 8.09265e6 0.186912
\(153\) 2.64470e6 0.0596975
\(154\) −6.71773e6 −0.148218
\(155\) −3.93371e7 −0.848479
\(156\) 2.38501e7 0.502983
\(157\) −5.14403e7 −1.06085 −0.530425 0.847732i \(-0.677968\pi\)
−0.530425 + 0.847732i \(0.677968\pi\)
\(158\) 1.94392e7 0.392083
\(159\) 9.12252e6 0.179980
\(160\) 1.09034e7 0.210446
\(161\) 1.42334e7 0.268792
\(162\) 2.44863e7 0.452502
\(163\) −1.13404e7 −0.205103 −0.102551 0.994728i \(-0.532701\pi\)
−0.102551 + 0.994728i \(0.532701\pi\)
\(164\) 3.70283e7 0.655511
\(165\) −8.15770e7 −1.41375
\(166\) −1.35319e7 −0.229605
\(167\) −5.75704e7 −0.956515 −0.478258 0.878220i \(-0.658731\pi\)
−0.478258 + 0.878220i \(0.658731\pi\)
\(168\) −2.75729e6 −0.0448643
\(169\) 2.55760e7 0.407596
\(170\) −1.14530e7 −0.178792
\(171\) 9.71581e6 0.148591
\(172\) 6.52060e7 0.977098
\(173\) −7.49139e7 −1.10002 −0.550011 0.835158i \(-0.685376\pi\)
−0.550011 + 0.835158i \(0.685376\pi\)
\(174\) 2.97988e7 0.428821
\(175\) −4.42671e6 −0.0624379
\(176\) −2.53249e7 −0.350150
\(177\) 8.80952e7 1.19411
\(178\) 4.71990e7 0.627282
\(179\) −7.29134e7 −0.950215 −0.475107 0.879928i \(-0.657591\pi\)
−0.475107 + 0.879928i \(0.657591\pi\)
\(180\) 1.30903e7 0.167300
\(181\) −9.81117e7 −1.22983 −0.614916 0.788592i \(-0.710810\pi\)
−0.614916 + 0.788592i \(0.710810\pi\)
\(182\) −1.02112e7 −0.125552
\(183\) −5.00887e7 −0.604173
\(184\) 5.36578e7 0.634995
\(185\) 1.68545e7 0.195711
\(186\) 3.75016e7 0.427321
\(187\) 2.66015e7 0.297482
\(188\) −6.72488e7 −0.738129
\(189\) −1.50881e7 −0.162561
\(190\) −4.20748e7 −0.445025
\(191\) 1.74491e8 1.81199 0.905995 0.423287i \(-0.139124\pi\)
0.905995 + 0.423287i \(0.139124\pi\)
\(192\) −1.03946e7 −0.105987
\(193\) −1.65444e7 −0.165653 −0.0828266 0.996564i \(-0.526395\pi\)
−0.0828266 + 0.996564i \(0.526395\pi\)
\(194\) 5.19135e7 0.510474
\(195\) −1.24000e8 −1.19757
\(196\) −5.15262e7 −0.488801
\(197\) −9.87434e7 −0.920187 −0.460094 0.887870i \(-0.652184\pi\)
−0.460094 + 0.887870i \(0.652184\pi\)
\(198\) −3.04044e7 −0.278361
\(199\) −1.03751e8 −0.933273 −0.466636 0.884449i \(-0.654534\pi\)
−0.466636 + 0.884449i \(0.654534\pi\)
\(200\) −1.66881e7 −0.147503
\(201\) −5.19574e7 −0.451296
\(202\) 1.00477e7 0.0857700
\(203\) −1.27581e7 −0.107041
\(204\) 1.09186e7 0.0900454
\(205\) −1.92515e8 −1.56072
\(206\) −1.15319e8 −0.919108
\(207\) 6.44201e7 0.504806
\(208\) −3.84947e7 −0.296605
\(209\) 9.77257e7 0.740452
\(210\) 1.43355e7 0.106819
\(211\) 1.83610e8 1.34558 0.672789 0.739835i \(-0.265096\pi\)
0.672789 + 0.739835i \(0.265096\pi\)
\(212\) −1.47240e7 −0.106133
\(213\) 1.08314e8 0.767993
\(214\) −1.21690e8 −0.848806
\(215\) −3.39015e8 −2.32640
\(216\) −5.68799e7 −0.384035
\(217\) −1.60559e7 −0.106666
\(218\) −1.96620e7 −0.128538
\(219\) 2.06899e8 1.33108
\(220\) 1.31668e8 0.833680
\(221\) 4.04351e7 0.251992
\(222\) −1.60681e7 −0.0985663
\(223\) −9.64274e7 −0.582282 −0.291141 0.956680i \(-0.594035\pi\)
−0.291141 + 0.956680i \(0.594035\pi\)
\(224\) 4.45035e6 0.0264561
\(225\) −2.00353e7 −0.117262
\(226\) 1.49692e8 0.862620
\(227\) −2.90044e8 −1.64578 −0.822892 0.568197i \(-0.807641\pi\)
−0.822892 + 0.568197i \(0.807641\pi\)
\(228\) 4.01116e7 0.224129
\(229\) 2.84731e8 1.56679 0.783396 0.621523i \(-0.213486\pi\)
0.783396 + 0.621523i \(0.213486\pi\)
\(230\) −2.78974e8 −1.51188
\(231\) −3.32967e7 −0.177729
\(232\) −4.80961e7 −0.252873
\(233\) −3.55271e8 −1.83998 −0.919991 0.391940i \(-0.871804\pi\)
−0.919991 + 0.391940i \(0.871804\pi\)
\(234\) −4.62156e7 −0.235794
\(235\) 3.49636e8 1.75743
\(236\) −1.42188e8 −0.704160
\(237\) 9.63510e7 0.470151
\(238\) −4.67469e6 −0.0224767
\(239\) 9.85614e7 0.466997 0.233498 0.972357i \(-0.424983\pi\)
0.233498 + 0.972357i \(0.424983\pi\)
\(240\) 5.40430e7 0.252348
\(241\) 2.63867e8 1.21430 0.607148 0.794589i \(-0.292313\pi\)
0.607148 + 0.794589i \(0.292313\pi\)
\(242\) −1.49923e8 −0.680007
\(243\) −1.21594e8 −0.543615
\(244\) 8.08446e7 0.356276
\(245\) 2.67892e8 1.16380
\(246\) 1.83532e8 0.786030
\(247\) 1.48546e8 0.627223
\(248\) −6.05287e7 −0.251988
\(249\) −6.70716e7 −0.275322
\(250\) −1.21202e8 −0.490590
\(251\) 2.74241e8 1.09465 0.547324 0.836921i \(-0.315647\pi\)
0.547324 + 0.836921i \(0.315647\pi\)
\(252\) 5.34297e6 0.0210320
\(253\) 6.47964e8 2.51553
\(254\) 1.22232e8 0.468022
\(255\) −5.67673e7 −0.214391
\(256\) 1.67772e7 0.0625000
\(257\) −1.03836e7 −0.0381577 −0.0190789 0.999818i \(-0.506073\pi\)
−0.0190789 + 0.999818i \(0.506073\pi\)
\(258\) 3.23196e8 1.17165
\(259\) 6.87938e6 0.0246037
\(260\) 2.00139e8 0.706195
\(261\) −5.77428e7 −0.201028
\(262\) −3.68671e7 −0.126644
\(263\) −1.51247e7 −0.0512673 −0.0256336 0.999671i \(-0.508160\pi\)
−0.0256336 + 0.999671i \(0.508160\pi\)
\(264\) −1.25524e8 −0.419868
\(265\) 7.65521e7 0.252695
\(266\) −1.71734e7 −0.0559461
\(267\) 2.33944e8 0.752181
\(268\) 8.38607e7 0.266126
\(269\) 2.20262e7 0.0689933 0.0344966 0.999405i \(-0.489017\pi\)
0.0344966 + 0.999405i \(0.489017\pi\)
\(270\) 2.95726e8 0.914360
\(271\) 3.98102e8 1.21507 0.607536 0.794292i \(-0.292158\pi\)
0.607536 + 0.794292i \(0.292158\pi\)
\(272\) −1.76229e7 −0.0530991
\(273\) −5.06120e7 −0.150551
\(274\) 1.03441e8 0.303785
\(275\) −2.01523e8 −0.584333
\(276\) 2.65957e8 0.761430
\(277\) −6.59305e8 −1.86383 −0.931917 0.362671i \(-0.881865\pi\)
−0.931917 + 0.362671i \(0.881865\pi\)
\(278\) −3.25469e8 −0.908557
\(279\) −7.26690e7 −0.200325
\(280\) −2.31380e7 −0.0629901
\(281\) 1.53543e8 0.412816 0.206408 0.978466i \(-0.433823\pi\)
0.206408 + 0.978466i \(0.433823\pi\)
\(282\) −3.33322e8 −0.885098
\(283\) 2.92491e8 0.767113 0.383557 0.923517i \(-0.374699\pi\)
0.383557 + 0.923517i \(0.374699\pi\)
\(284\) −1.74822e8 −0.452880
\(285\) −2.08545e8 −0.533634
\(286\) −4.64856e8 −1.17500
\(287\) −7.85774e7 −0.196205
\(288\) 2.01423e7 0.0496860
\(289\) −3.91827e8 −0.954888
\(290\) 2.50058e8 0.602072
\(291\) 2.57311e8 0.612115
\(292\) −3.33941e8 −0.784929
\(293\) 2.60323e8 0.604610 0.302305 0.953211i \(-0.402244\pi\)
0.302305 + 0.953211i \(0.402244\pi\)
\(294\) −2.55392e8 −0.586127
\(295\) 7.39256e8 1.67655
\(296\) 2.59343e7 0.0581238
\(297\) −6.86874e8 −1.52135
\(298\) −1.36988e8 −0.299864
\(299\) 9.84926e8 2.13086
\(300\) −8.27153e7 −0.176873
\(301\) −1.38373e8 −0.292462
\(302\) −9.15203e7 −0.191202
\(303\) 4.98017e7 0.102848
\(304\) −6.47412e7 −0.132167
\(305\) −4.20322e8 −0.848267
\(306\) −2.11576e7 −0.0422125
\(307\) 5.91427e8 1.16659 0.583293 0.812262i \(-0.301764\pi\)
0.583293 + 0.812262i \(0.301764\pi\)
\(308\) 5.37418e7 0.104806
\(309\) −5.71584e8 −1.10211
\(310\) 3.14697e8 0.599965
\(311\) 7.28404e7 0.137313 0.0686564 0.997640i \(-0.478129\pi\)
0.0686564 + 0.997640i \(0.478129\pi\)
\(312\) −1.90800e8 −0.355663
\(313\) 2.94761e8 0.543332 0.271666 0.962392i \(-0.412425\pi\)
0.271666 + 0.962392i \(0.412425\pi\)
\(314\) 4.11522e8 0.750135
\(315\) −2.77788e7 −0.0500756
\(316\) −1.55513e8 −0.277244
\(317\) −1.03976e9 −1.83326 −0.916632 0.399733i \(-0.869103\pi\)
−0.916632 + 0.399733i \(0.869103\pi\)
\(318\) −7.29801e7 −0.127265
\(319\) −5.80802e8 −1.00175
\(320\) −8.72270e7 −0.148808
\(321\) −6.03164e8 −1.01781
\(322\) −1.13867e8 −0.190065
\(323\) 6.80047e7 0.112287
\(324\) −1.95890e8 −0.319967
\(325\) −3.06322e8 −0.494978
\(326\) 9.07232e7 0.145030
\(327\) −9.74557e7 −0.154131
\(328\) −2.96226e8 −0.463516
\(329\) 1.42708e8 0.220934
\(330\) 6.52616e8 0.999675
\(331\) −6.20361e8 −0.940257 −0.470129 0.882598i \(-0.655792\pi\)
−0.470129 + 0.882598i \(0.655792\pi\)
\(332\) 1.08256e8 0.162355
\(333\) 3.11360e7 0.0462071
\(334\) 4.60564e8 0.676358
\(335\) −4.36003e8 −0.633626
\(336\) 2.20584e7 0.0317238
\(337\) 5.85781e8 0.833741 0.416870 0.908966i \(-0.363127\pi\)
0.416870 + 0.908966i \(0.363127\pi\)
\(338\) −2.04608e8 −0.288214
\(339\) 7.41956e8 1.03438
\(340\) 9.16240e7 0.126425
\(341\) −7.30936e8 −0.998249
\(342\) −7.77265e7 −0.105070
\(343\) 2.21192e8 0.295965
\(344\) −5.21648e8 −0.690913
\(345\) −1.38275e9 −1.81291
\(346\) 5.99311e8 0.777832
\(347\) 1.17427e9 1.50874 0.754370 0.656449i \(-0.227942\pi\)
0.754370 + 0.656449i \(0.227942\pi\)
\(348\) −2.38390e8 −0.303223
\(349\) 1.11586e9 1.40514 0.702571 0.711614i \(-0.252035\pi\)
0.702571 + 0.711614i \(0.252035\pi\)
\(350\) 3.54137e7 0.0441503
\(351\) −1.04407e9 −1.28871
\(352\) 2.02599e8 0.247593
\(353\) −1.20291e9 −1.45553 −0.727766 0.685826i \(-0.759441\pi\)
−0.727766 + 0.685826i \(0.759441\pi\)
\(354\) −7.04762e8 −0.844366
\(355\) 9.08925e8 1.07827
\(356\) −3.77592e8 −0.443556
\(357\) −2.31703e7 −0.0269521
\(358\) 5.83307e8 0.671903
\(359\) −3.19392e8 −0.364329 −0.182164 0.983268i \(-0.558310\pi\)
−0.182164 + 0.983268i \(0.558310\pi\)
\(360\) −1.04722e8 −0.118299
\(361\) −6.44043e8 −0.720510
\(362\) 7.84894e8 0.869623
\(363\) −7.43098e8 −0.815404
\(364\) 8.16893e7 0.0887790
\(365\) 1.73621e9 1.86886
\(366\) 4.00710e8 0.427215
\(367\) 1.16632e9 1.23165 0.615824 0.787883i \(-0.288823\pi\)
0.615824 + 0.787883i \(0.288823\pi\)
\(368\) −4.29263e8 −0.449010
\(369\) −3.55641e8 −0.368484
\(370\) −1.34836e8 −0.138389
\(371\) 3.12457e7 0.0317674
\(372\) −3.00013e8 −0.302162
\(373\) −5.33726e8 −0.532522 −0.266261 0.963901i \(-0.585788\pi\)
−0.266261 + 0.963901i \(0.585788\pi\)
\(374\) −2.12812e8 −0.210352
\(375\) −6.00741e8 −0.588272
\(376\) 5.37991e8 0.521936
\(377\) −8.82838e8 −0.848567
\(378\) 1.20705e8 0.114948
\(379\) −3.14085e8 −0.296354 −0.148177 0.988961i \(-0.547340\pi\)
−0.148177 + 0.988961i \(0.547340\pi\)
\(380\) 3.36598e8 0.314680
\(381\) 6.05847e8 0.561210
\(382\) −1.39593e9 −1.28127
\(383\) −2.41300e8 −0.219464 −0.109732 0.993961i \(-0.534999\pi\)
−0.109732 + 0.993961i \(0.534999\pi\)
\(384\) 8.31570e7 0.0749444
\(385\) −2.79411e8 −0.249535
\(386\) 1.32355e8 0.117134
\(387\) −6.26276e8 −0.549259
\(388\) −4.15308e8 −0.360960
\(389\) 2.65354e7 0.0228561 0.0114280 0.999935i \(-0.496362\pi\)
0.0114280 + 0.999935i \(0.496362\pi\)
\(390\) 9.91997e8 0.846807
\(391\) 4.50901e8 0.381472
\(392\) 4.12210e8 0.345635
\(393\) −1.82733e8 −0.151860
\(394\) 7.89947e8 0.650671
\(395\) 8.08535e8 0.660099
\(396\) 2.43235e8 0.196831
\(397\) −7.61463e8 −0.610776 −0.305388 0.952228i \(-0.598786\pi\)
−0.305388 + 0.952228i \(0.598786\pi\)
\(398\) 8.30012e8 0.659923
\(399\) −8.51205e7 −0.0670855
\(400\) 1.33505e8 0.104301
\(401\) 5.43529e8 0.420937 0.210469 0.977601i \(-0.432501\pi\)
0.210469 + 0.977601i \(0.432501\pi\)
\(402\) 4.15659e8 0.319114
\(403\) −1.11105e9 −0.845598
\(404\) −8.03814e7 −0.0606486
\(405\) 1.01846e9 0.761819
\(406\) 1.02064e8 0.0756891
\(407\) 3.13179e8 0.230257
\(408\) −8.73488e7 −0.0636717
\(409\) 1.86062e9 1.34470 0.672352 0.740232i \(-0.265284\pi\)
0.672352 + 0.740232i \(0.265284\pi\)
\(410\) 1.54012e9 1.10360
\(411\) 5.12711e8 0.364272
\(412\) 9.22554e8 0.649907
\(413\) 3.01737e8 0.210767
\(414\) −5.15360e8 −0.356952
\(415\) −5.62835e8 −0.386556
\(416\) 3.07957e8 0.209732
\(417\) −1.61320e9 −1.08946
\(418\) −7.81806e8 −0.523578
\(419\) −6.51525e8 −0.432695 −0.216347 0.976316i \(-0.569414\pi\)
−0.216347 + 0.976316i \(0.569414\pi\)
\(420\) −1.14684e8 −0.0755321
\(421\) −4.61099e8 −0.301167 −0.150583 0.988597i \(-0.548115\pi\)
−0.150583 + 0.988597i \(0.548115\pi\)
\(422\) −1.46888e9 −0.951467
\(423\) 6.45896e8 0.414927
\(424\) 1.17792e8 0.0750474
\(425\) −1.40235e8 −0.0886123
\(426\) −8.66514e8 −0.543053
\(427\) −1.71560e8 −0.106639
\(428\) 9.73523e8 0.600196
\(429\) −2.30408e9 −1.40895
\(430\) 2.71212e9 1.64501
\(431\) 2.00760e9 1.20783 0.603916 0.797048i \(-0.293606\pi\)
0.603916 + 0.797048i \(0.293606\pi\)
\(432\) 4.55040e8 0.271554
\(433\) 1.05358e8 0.0623679 0.0311840 0.999514i \(-0.490072\pi\)
0.0311840 + 0.999514i \(0.490072\pi\)
\(434\) 1.28447e8 0.0754243
\(435\) 1.23942e9 0.721950
\(436\) 1.57296e8 0.0908899
\(437\) 1.65647e9 0.949508
\(438\) −1.65519e9 −0.941216
\(439\) 1.80594e9 1.01877 0.509386 0.860538i \(-0.329873\pi\)
0.509386 + 0.860538i \(0.329873\pi\)
\(440\) −1.05334e9 −0.589501
\(441\) 4.94888e8 0.274771
\(442\) −3.23481e8 −0.178185
\(443\) −1.16679e9 −0.637647 −0.318823 0.947814i \(-0.603288\pi\)
−0.318823 + 0.947814i \(0.603288\pi\)
\(444\) 1.28545e8 0.0696969
\(445\) 1.96315e9 1.05607
\(446\) 7.71420e8 0.411736
\(447\) −6.78985e8 −0.359570
\(448\) −3.56028e7 −0.0187073
\(449\) 3.32318e8 0.173257 0.0866287 0.996241i \(-0.472391\pi\)
0.0866287 + 0.996241i \(0.472391\pi\)
\(450\) 1.60282e8 0.0829166
\(451\) −3.57718e9 −1.83621
\(452\) −1.19754e9 −0.609965
\(453\) −4.53624e8 −0.229273
\(454\) 2.32035e9 1.16375
\(455\) −4.24714e8 −0.211376
\(456\) −3.20892e8 −0.158483
\(457\) −2.10552e9 −1.03194 −0.515969 0.856608i \(-0.672568\pi\)
−0.515969 + 0.856608i \(0.672568\pi\)
\(458\) −2.27785e9 −1.10789
\(459\) −4.77978e8 −0.230708
\(460\) 2.23179e9 1.06906
\(461\) 3.02900e9 1.43995 0.719973 0.694002i \(-0.244154\pi\)
0.719973 + 0.694002i \(0.244154\pi\)
\(462\) 2.66374e8 0.125674
\(463\) −1.38922e9 −0.650487 −0.325244 0.945630i \(-0.605446\pi\)
−0.325244 + 0.945630i \(0.605446\pi\)
\(464\) 3.84769e8 0.178808
\(465\) 1.55981e9 0.719425
\(466\) 2.84216e9 1.30106
\(467\) 3.43946e9 1.56272 0.781361 0.624079i \(-0.214526\pi\)
0.781361 + 0.624079i \(0.214526\pi\)
\(468\) 3.69725e8 0.166732
\(469\) −1.77960e8 −0.0796559
\(470\) −2.79709e9 −1.24269
\(471\) 2.03973e9 0.899495
\(472\) 1.13751e9 0.497917
\(473\) −6.29935e9 −2.73704
\(474\) −7.70808e8 −0.332447
\(475\) −5.15179e8 −0.220562
\(476\) 3.73975e7 0.0158935
\(477\) 1.41418e8 0.0596609
\(478\) −7.88491e8 −0.330217
\(479\) 1.69344e8 0.0704038 0.0352019 0.999380i \(-0.488793\pi\)
0.0352019 + 0.999380i \(0.488793\pi\)
\(480\) −4.32344e8 −0.178437
\(481\) 4.76043e8 0.195046
\(482\) −2.11093e9 −0.858637
\(483\) −5.64386e8 −0.227909
\(484\) 1.19938e9 0.480838
\(485\) 2.15924e9 0.859419
\(486\) 9.72755e8 0.384394
\(487\) 2.18619e9 0.857700 0.428850 0.903376i \(-0.358919\pi\)
0.428850 + 0.903376i \(0.358919\pi\)
\(488\) −6.46757e8 −0.251925
\(489\) 4.49673e8 0.173907
\(490\) −2.14313e9 −0.822931
\(491\) 1.74859e9 0.666658 0.333329 0.942811i \(-0.391828\pi\)
0.333329 + 0.942811i \(0.391828\pi\)
\(492\) −1.46826e9 −0.555807
\(493\) −4.04165e8 −0.151913
\(494\) −1.18837e9 −0.443514
\(495\) −1.26461e9 −0.468639
\(496\) 4.84229e8 0.178183
\(497\) 3.70989e8 0.135555
\(498\) 5.36573e8 0.194682
\(499\) −3.48601e9 −1.25596 −0.627981 0.778229i \(-0.716119\pi\)
−0.627981 + 0.778229i \(0.716119\pi\)
\(500\) 9.69613e8 0.346899
\(501\) 2.28280e9 0.811029
\(502\) −2.19393e9 −0.774033
\(503\) 3.19726e9 1.12019 0.560093 0.828430i \(-0.310765\pi\)
0.560093 + 0.828430i \(0.310765\pi\)
\(504\) −4.27437e7 −0.0148719
\(505\) 4.17913e8 0.144400
\(506\) −5.18371e9 −1.77875
\(507\) −1.01415e9 −0.345600
\(508\) −9.77854e8 −0.330941
\(509\) −4.50646e9 −1.51469 −0.757345 0.653015i \(-0.773504\pi\)
−0.757345 + 0.653015i \(0.773504\pi\)
\(510\) 4.54138e8 0.151598
\(511\) 7.08655e8 0.234942
\(512\) −1.34218e8 −0.0441942
\(513\) −1.75594e9 −0.574248
\(514\) 8.30689e7 0.0269816
\(515\) −4.79648e9 −1.54738
\(516\) −2.58557e9 −0.828481
\(517\) 6.49670e9 2.06764
\(518\) −5.50351e7 −0.0173974
\(519\) 2.97051e9 0.932707
\(520\) −1.60111e9 −0.499356
\(521\) −1.28857e9 −0.399185 −0.199593 0.979879i \(-0.563962\pi\)
−0.199593 + 0.979879i \(0.563962\pi\)
\(522\) 4.61943e8 0.142148
\(523\) 5.00338e8 0.152935 0.0764676 0.997072i \(-0.475636\pi\)
0.0764676 + 0.997072i \(0.475636\pi\)
\(524\) 2.94936e8 0.0895507
\(525\) 1.75530e8 0.0529411
\(526\) 1.20997e8 0.0362514
\(527\) −5.08639e8 −0.151381
\(528\) 1.00419e9 0.296892
\(529\) 7.57830e9 2.22575
\(530\) −6.12417e8 −0.178682
\(531\) 1.36566e9 0.395832
\(532\) 1.37387e8 0.0395598
\(533\) −5.43743e9 −1.55542
\(534\) −1.87155e9 −0.531872
\(535\) −5.06148e9 −1.42902
\(536\) −6.70886e8 −0.188179
\(537\) 2.89119e9 0.805687
\(538\) −1.76210e8 −0.0487856
\(539\) 4.97779e9 1.36923
\(540\) −2.36581e9 −0.646550
\(541\) −9.71999e7 −0.0263922 −0.0131961 0.999913i \(-0.504201\pi\)
−0.0131961 + 0.999913i \(0.504201\pi\)
\(542\) −3.18482e9 −0.859186
\(543\) 3.89036e9 1.04277
\(544\) 1.40983e8 0.0375467
\(545\) −8.17804e8 −0.216402
\(546\) 4.04896e8 0.106456
\(547\) −5.01201e9 −1.30935 −0.654676 0.755910i \(-0.727195\pi\)
−0.654676 + 0.755910i \(0.727195\pi\)
\(548\) −8.27530e8 −0.214809
\(549\) −7.76478e8 −0.200275
\(550\) 1.61219e9 0.413186
\(551\) −1.48478e9 −0.378121
\(552\) −2.12766e9 −0.538412
\(553\) 3.30014e8 0.0829840
\(554\) 5.27444e9 1.31793
\(555\) −6.68321e8 −0.165943
\(556\) 2.60375e9 0.642447
\(557\) 4.42995e9 1.08619 0.543095 0.839671i \(-0.317252\pi\)
0.543095 + 0.839671i \(0.317252\pi\)
\(558\) 5.81352e8 0.141651
\(559\) −9.57521e9 −2.31850
\(560\) 1.85104e8 0.0445407
\(561\) −1.05481e9 −0.252235
\(562\) −1.22834e9 −0.291905
\(563\) −3.38013e9 −0.798277 −0.399139 0.916891i \(-0.630691\pi\)
−0.399139 + 0.916891i \(0.630691\pi\)
\(564\) 2.66657e9 0.625859
\(565\) 6.22616e9 1.45228
\(566\) −2.33992e9 −0.542431
\(567\) 4.15698e8 0.0957717
\(568\) 1.39858e9 0.320234
\(569\) 4.53131e9 1.03117 0.515585 0.856838i \(-0.327575\pi\)
0.515585 + 0.856838i \(0.327575\pi\)
\(570\) 1.66836e9 0.377336
\(571\) −5.25584e9 −1.18145 −0.590726 0.806872i \(-0.701159\pi\)
−0.590726 + 0.806872i \(0.701159\pi\)
\(572\) 3.71885e9 0.830850
\(573\) −6.91897e9 −1.53639
\(574\) 6.28619e8 0.138738
\(575\) −3.41586e9 −0.749312
\(576\) −1.61138e8 −0.0351333
\(577\) 3.46461e9 0.750825 0.375412 0.926858i \(-0.377501\pi\)
0.375412 + 0.926858i \(0.377501\pi\)
\(578\) 3.13462e9 0.675208
\(579\) 6.56023e8 0.140457
\(580\) −2.00047e9 −0.425729
\(581\) −2.29728e8 −0.0485957
\(582\) −2.05849e9 −0.432831
\(583\) 1.42244e9 0.297299
\(584\) 2.67153e9 0.555028
\(585\) −1.92225e9 −0.396976
\(586\) −2.08258e9 −0.427524
\(587\) 3.03352e9 0.619032 0.309516 0.950894i \(-0.399833\pi\)
0.309516 + 0.950894i \(0.399833\pi\)
\(588\) 2.04314e9 0.414454
\(589\) −1.86858e9 −0.376798
\(590\) −5.91404e9 −1.18550
\(591\) 3.91541e9 0.780226
\(592\) −2.07475e8 −0.0410997
\(593\) −2.64373e9 −0.520626 −0.260313 0.965524i \(-0.583826\pi\)
−0.260313 + 0.965524i \(0.583826\pi\)
\(594\) 5.49499e9 1.07576
\(595\) −1.94435e8 −0.0378411
\(596\) 1.09590e9 0.212036
\(597\) 4.11399e9 0.791321
\(598\) −7.87941e9 −1.50674
\(599\) −6.93679e9 −1.31876 −0.659378 0.751811i \(-0.729180\pi\)
−0.659378 + 0.751811i \(0.729180\pi\)
\(600\) 6.61722e8 0.125068
\(601\) 2.91911e9 0.548517 0.274259 0.961656i \(-0.411568\pi\)
0.274259 + 0.961656i \(0.411568\pi\)
\(602\) 1.10699e9 0.206802
\(603\) −8.05447e8 −0.149598
\(604\) 7.32163e8 0.135201
\(605\) −6.23575e9 −1.14484
\(606\) −3.98413e8 −0.0727244
\(607\) 3.49174e8 0.0633696 0.0316848 0.999498i \(-0.489913\pi\)
0.0316848 + 0.999498i \(0.489913\pi\)
\(608\) 5.17930e8 0.0934562
\(609\) 5.05887e8 0.0907596
\(610\) 3.36258e9 0.599816
\(611\) 9.87519e9 1.75146
\(612\) 1.69261e8 0.0298488
\(613\) −6.10495e9 −1.07046 −0.535230 0.844706i \(-0.679775\pi\)
−0.535230 + 0.844706i \(0.679775\pi\)
\(614\) −4.73142e9 −0.824901
\(615\) 7.63366e9 1.32334
\(616\) −4.29935e8 −0.0741088
\(617\) 8.55646e9 1.46655 0.733273 0.679934i \(-0.237992\pi\)
0.733273 + 0.679934i \(0.237992\pi\)
\(618\) 4.57268e9 0.779311
\(619\) 2.81893e9 0.477713 0.238857 0.971055i \(-0.423227\pi\)
0.238857 + 0.971055i \(0.423227\pi\)
\(620\) −2.51757e9 −0.424240
\(621\) −1.16427e10 −1.95088
\(622\) −5.82723e8 −0.0970948
\(623\) 8.01286e8 0.132764
\(624\) 1.52640e9 0.251491
\(625\) −7.58755e9 −1.24314
\(626\) −2.35809e9 −0.384194
\(627\) −3.87505e9 −0.627829
\(628\) −3.29218e9 −0.530425
\(629\) 2.17933e8 0.0349177
\(630\) 2.22230e8 0.0354088
\(631\) −1.12195e10 −1.77776 −0.888879 0.458142i \(-0.848515\pi\)
−0.888879 + 0.458142i \(0.848515\pi\)
\(632\) 1.24411e9 0.196041
\(633\) −7.28058e9 −1.14091
\(634\) 8.31806e9 1.29631
\(635\) 5.08399e9 0.787947
\(636\) 5.83841e8 0.0899901
\(637\) 7.56640e9 1.15985
\(638\) 4.64642e9 0.708346
\(639\) 1.67909e9 0.254579
\(640\) 6.97816e8 0.105223
\(641\) 5.81709e9 0.872374 0.436187 0.899856i \(-0.356329\pi\)
0.436187 + 0.899856i \(0.356329\pi\)
\(642\) 4.82531e9 0.719702
\(643\) 7.46250e9 1.10700 0.553498 0.832850i \(-0.313293\pi\)
0.553498 + 0.832850i \(0.313293\pi\)
\(644\) 9.10935e8 0.134396
\(645\) 1.34427e10 1.97255
\(646\) −5.44038e8 −0.0793990
\(647\) 9.73439e9 1.41300 0.706502 0.707711i \(-0.250272\pi\)
0.706502 + 0.707711i \(0.250272\pi\)
\(648\) 1.56712e9 0.226251
\(649\) 1.37364e10 1.97249
\(650\) 2.45057e9 0.350002
\(651\) 6.36655e8 0.0904421
\(652\) −7.25786e8 −0.102551
\(653\) 1.29780e10 1.82395 0.911974 0.410247i \(-0.134558\pi\)
0.911974 + 0.410247i \(0.134558\pi\)
\(654\) 7.79645e8 0.108987
\(655\) −1.53341e9 −0.213214
\(656\) 2.36981e9 0.327755
\(657\) 3.20736e9 0.441234
\(658\) −1.14167e9 −0.156224
\(659\) −4.90320e9 −0.667391 −0.333696 0.942681i \(-0.608296\pi\)
−0.333696 + 0.942681i \(0.608296\pi\)
\(660\) −5.22093e9 −0.706877
\(661\) −6.10485e9 −0.822185 −0.411093 0.911594i \(-0.634853\pi\)
−0.411093 + 0.911594i \(0.634853\pi\)
\(662\) 4.96289e9 0.664862
\(663\) −1.60335e9 −0.213663
\(664\) −8.66044e8 −0.114803
\(665\) −7.14293e8 −0.0941891
\(666\) −2.49088e8 −0.0326733
\(667\) −9.84472e9 −1.28458
\(668\) −3.68451e9 −0.478258
\(669\) 3.82357e9 0.493717
\(670\) 3.48803e9 0.448041
\(671\) −7.81015e9 −0.997999
\(672\) −1.76467e8 −0.0224321
\(673\) −9.24214e9 −1.16875 −0.584373 0.811485i \(-0.698659\pi\)
−0.584373 + 0.811485i \(0.698659\pi\)
\(674\) −4.68625e9 −0.589544
\(675\) 3.62098e9 0.453172
\(676\) 1.63687e9 0.203798
\(677\) 8.75032e9 1.08384 0.541918 0.840432i \(-0.317698\pi\)
0.541918 + 0.840432i \(0.317698\pi\)
\(678\) −5.93564e9 −0.731415
\(679\) 8.81322e8 0.108041
\(680\) −7.32992e8 −0.0893960
\(681\) 1.15009e10 1.39546
\(682\) 5.84748e9 0.705868
\(683\) 1.70705e9 0.205009 0.102505 0.994733i \(-0.467314\pi\)
0.102505 + 0.994733i \(0.467314\pi\)
\(684\) 6.21812e8 0.0742955
\(685\) 4.30244e9 0.511444
\(686\) −1.76954e9 −0.209279
\(687\) −1.12903e10 −1.32848
\(688\) 4.17319e9 0.488549
\(689\) 2.16215e9 0.251837
\(690\) 1.10620e10 1.28192
\(691\) 2.24664e9 0.259036 0.129518 0.991577i \(-0.458657\pi\)
0.129518 + 0.991577i \(0.458657\pi\)
\(692\) −4.79449e9 −0.550011
\(693\) −5.16167e8 −0.0589148
\(694\) −9.39415e9 −1.06684
\(695\) −1.35372e10 −1.52962
\(696\) 1.90712e9 0.214411
\(697\) −2.48927e9 −0.278456
\(698\) −8.92687e9 −0.993585
\(699\) 1.40873e10 1.56012
\(700\) −2.83310e8 −0.0312190
\(701\) −9.30412e8 −0.102015 −0.0510073 0.998698i \(-0.516243\pi\)
−0.0510073 + 0.998698i \(0.516243\pi\)
\(702\) 8.35257e9 0.911255
\(703\) 8.00619e8 0.0869125
\(704\) −1.62079e9 −0.175075
\(705\) −1.38639e10 −1.49012
\(706\) 9.62328e9 1.02922
\(707\) 1.70577e8 0.0181531
\(708\) 5.63809e9 0.597057
\(709\) −9.04625e9 −0.953250 −0.476625 0.879107i \(-0.658140\pi\)
−0.476625 + 0.879107i \(0.658140\pi\)
\(710\) −7.27140e9 −0.762454
\(711\) 1.49364e9 0.155848
\(712\) 3.02074e9 0.313641
\(713\) −1.23895e10 −1.28009
\(714\) 1.85362e8 0.0190580
\(715\) −1.93348e10 −1.97819
\(716\) −4.66646e9 −0.475107
\(717\) −3.90819e9 −0.395966
\(718\) 2.55514e9 0.257619
\(719\) −8.12286e9 −0.815001 −0.407500 0.913205i \(-0.633599\pi\)
−0.407500 + 0.913205i \(0.633599\pi\)
\(720\) 8.37778e8 0.0836499
\(721\) −1.95775e9 −0.194528
\(722\) 5.15235e9 0.509477
\(723\) −1.04629e10 −1.02960
\(724\) −6.27915e9 −0.614916
\(725\) 3.06180e9 0.298397
\(726\) 5.94478e9 0.576578
\(727\) −1.76633e10 −1.70491 −0.852456 0.522799i \(-0.824888\pi\)
−0.852456 + 0.522799i \(0.824888\pi\)
\(728\) −6.53514e8 −0.0627762
\(729\) 1.15154e10 1.10087
\(730\) −1.38896e10 −1.32148
\(731\) −4.38355e9 −0.415064
\(732\) −3.20568e9 −0.302086
\(733\) −1.65936e10 −1.55624 −0.778122 0.628113i \(-0.783828\pi\)
−0.778122 + 0.628113i \(0.783828\pi\)
\(734\) −9.33057e9 −0.870907
\(735\) −1.06225e10 −0.986785
\(736\) 3.43410e9 0.317498
\(737\) −8.10152e9 −0.745470
\(738\) 2.84513e9 0.260558
\(739\) 4.26353e9 0.388610 0.194305 0.980941i \(-0.437755\pi\)
0.194305 + 0.980941i \(0.437755\pi\)
\(740\) 1.07869e9 0.0978555
\(741\) −5.89020e9 −0.531822
\(742\) −2.49966e8 −0.0224629
\(743\) 3.50446e7 0.00313445 0.00156722 0.999999i \(-0.499501\pi\)
0.00156722 + 0.999999i \(0.499501\pi\)
\(744\) 2.40010e9 0.213661
\(745\) −5.69774e9 −0.504842
\(746\) 4.26981e9 0.376550
\(747\) −1.03975e9 −0.0912654
\(748\) 1.70250e9 0.148741
\(749\) −2.06591e9 −0.179649
\(750\) 4.80593e9 0.415971
\(751\) 4.69640e9 0.404600 0.202300 0.979324i \(-0.435158\pi\)
0.202300 + 0.979324i \(0.435158\pi\)
\(752\) −4.30393e9 −0.369064
\(753\) −1.08743e10 −0.928151
\(754\) 7.06270e9 0.600027
\(755\) −3.80661e9 −0.321902
\(756\) −9.65636e8 −0.0812807
\(757\) 6.98128e9 0.584924 0.292462 0.956277i \(-0.405526\pi\)
0.292462 + 0.956277i \(0.405526\pi\)
\(758\) 2.51268e9 0.209554
\(759\) −2.56933e10 −2.13291
\(760\) −2.69279e9 −0.222512
\(761\) 1.35602e10 1.11537 0.557687 0.830051i \(-0.311689\pi\)
0.557687 + 0.830051i \(0.311689\pi\)
\(762\) −4.84677e9 −0.396835
\(763\) −3.33797e8 −0.0272049
\(764\) 1.11674e10 0.905995
\(765\) −8.80009e8 −0.0710677
\(766\) 1.93040e9 0.155184
\(767\) 2.08797e10 1.67086
\(768\) −6.65256e8 −0.0529937
\(769\) 7.68820e9 0.609653 0.304826 0.952408i \(-0.401402\pi\)
0.304826 + 0.952408i \(0.401402\pi\)
\(770\) 2.23529e9 0.176448
\(771\) 4.11734e8 0.0323539
\(772\) −1.05884e9 −0.0828266
\(773\) 1.21761e10 0.948156 0.474078 0.880483i \(-0.342782\pi\)
0.474078 + 0.880483i \(0.342782\pi\)
\(774\) 5.01021e9 0.388385
\(775\) 3.85326e9 0.297353
\(776\) 3.32246e9 0.255237
\(777\) −2.72784e8 −0.0208615
\(778\) −2.12283e8 −0.0161617
\(779\) −9.14480e9 −0.693095
\(780\) −7.93598e9 −0.598783
\(781\) 1.68890e10 1.26861
\(782\) −3.60721e9 −0.269741
\(783\) 1.04359e10 0.776896
\(784\) −3.29768e9 −0.244401
\(785\) 1.71165e10 1.26290
\(786\) 1.46186e9 0.107381
\(787\) 2.47203e10 1.80777 0.903884 0.427778i \(-0.140703\pi\)
0.903884 + 0.427778i \(0.140703\pi\)
\(788\) −6.31958e9 −0.460094
\(789\) 5.99728e8 0.0434695
\(790\) −6.46828e9 −0.466760
\(791\) 2.54129e9 0.182573
\(792\) −1.94588e9 −0.139180
\(793\) −1.18717e10 −0.845387
\(794\) 6.09170e9 0.431884
\(795\) −3.03547e9 −0.214260
\(796\) −6.64009e9 −0.466636
\(797\) −4.06997e9 −0.284765 −0.142383 0.989812i \(-0.545476\pi\)
−0.142383 + 0.989812i \(0.545476\pi\)
\(798\) 6.80964e8 0.0474366
\(799\) 4.52088e9 0.313552
\(800\) −1.06804e9 −0.0737517
\(801\) 3.62661e9 0.249337
\(802\) −4.34823e9 −0.297648
\(803\) 3.22610e10 2.19874
\(804\) −3.32527e9 −0.225648
\(805\) −4.73607e9 −0.319987
\(806\) 8.88836e9 0.597928
\(807\) −8.73391e8 −0.0584994
\(808\) 6.43051e8 0.0428850
\(809\) 1.98136e10 1.31566 0.657831 0.753166i \(-0.271474\pi\)
0.657831 + 0.753166i \(0.271474\pi\)
\(810\) −8.14769e9 −0.538687
\(811\) −1.60671e10 −1.05771 −0.528854 0.848713i \(-0.677378\pi\)
−0.528854 + 0.848713i \(0.677378\pi\)
\(812\) −8.16516e8 −0.0535203
\(813\) −1.57857e10 −1.03026
\(814\) −2.50544e9 −0.162816
\(815\) 3.77346e9 0.244167
\(816\) 6.98790e8 0.0450227
\(817\) −1.61038e10 −1.03312
\(818\) −1.48850e10 −0.950849
\(819\) −7.84591e8 −0.0499056
\(820\) −1.23210e10 −0.780361
\(821\) −4.94372e9 −0.311783 −0.155892 0.987774i \(-0.549825\pi\)
−0.155892 + 0.987774i \(0.549825\pi\)
\(822\) −4.10169e9 −0.257580
\(823\) −2.16097e10 −1.35129 −0.675647 0.737225i \(-0.736136\pi\)
−0.675647 + 0.737225i \(0.736136\pi\)
\(824\) −7.38043e9 −0.459554
\(825\) 7.99087e9 0.495456
\(826\) −2.41389e9 −0.149035
\(827\) 3.17672e10 1.95303 0.976517 0.215439i \(-0.0691182\pi\)
0.976517 + 0.215439i \(0.0691182\pi\)
\(828\) 4.12288e9 0.252403
\(829\) −1.56227e10 −0.952391 −0.476196 0.879339i \(-0.657985\pi\)
−0.476196 + 0.879339i \(0.657985\pi\)
\(830\) 4.50268e9 0.273337
\(831\) 2.61430e10 1.58034
\(832\) −2.46366e9 −0.148303
\(833\) 3.46391e9 0.207639
\(834\) 1.29056e10 0.770365
\(835\) 1.91563e10 1.13870
\(836\) 6.25444e9 0.370226
\(837\) 1.31335e10 0.774179
\(838\) 5.21220e9 0.305962
\(839\) −1.62058e10 −0.947334 −0.473667 0.880704i \(-0.657070\pi\)
−0.473667 + 0.880704i \(0.657070\pi\)
\(840\) 9.17475e8 0.0534093
\(841\) −8.42558e9 −0.488443
\(842\) 3.68879e9 0.212957
\(843\) −6.08832e9 −0.350026
\(844\) 1.17511e10 0.672789
\(845\) −8.51028e9 −0.485228
\(846\) −5.16717e9 −0.293398
\(847\) −2.54520e9 −0.143923
\(848\) −9.42336e8 −0.0530665
\(849\) −1.15979e10 −0.650435
\(850\) 1.12188e9 0.0626584
\(851\) 5.30846e9 0.295267
\(852\) 6.93212e9 0.383996
\(853\) 1.28784e10 0.710459 0.355229 0.934779i \(-0.384403\pi\)
0.355229 + 0.934779i \(0.384403\pi\)
\(854\) 1.37248e9 0.0754055
\(855\) −3.23288e9 −0.176892
\(856\) −7.78819e9 −0.424403
\(857\) 2.80045e10 1.51983 0.759914 0.650023i \(-0.225241\pi\)
0.759914 + 0.650023i \(0.225241\pi\)
\(858\) 1.84326e10 0.996281
\(859\) 3.67599e10 1.97878 0.989390 0.145281i \(-0.0464085\pi\)
0.989390 + 0.145281i \(0.0464085\pi\)
\(860\) −2.16970e10 −1.16320
\(861\) 3.11578e9 0.166362
\(862\) −1.60608e10 −0.854067
\(863\) −2.41181e10 −1.27734 −0.638668 0.769483i \(-0.720514\pi\)
−0.638668 + 0.769483i \(0.720514\pi\)
\(864\) −3.64032e9 −0.192018
\(865\) 2.49272e10 1.30953
\(866\) −8.42867e8 −0.0441008
\(867\) 1.55369e10 0.809649
\(868\) −1.02758e9 −0.0533330
\(869\) 1.50237e10 0.776616
\(870\) −9.91539e9 −0.510496
\(871\) −1.23146e10 −0.631474
\(872\) −1.25837e9 −0.0642689
\(873\) 3.98885e9 0.202908
\(874\) −1.32518e10 −0.671404
\(875\) −2.05761e9 −0.103833
\(876\) 1.32416e10 0.665540
\(877\) −1.05101e10 −0.526150 −0.263075 0.964775i \(-0.584737\pi\)
−0.263075 + 0.964775i \(0.584737\pi\)
\(878\) −1.44475e10 −0.720380
\(879\) −1.03224e10 −0.512648
\(880\) 8.42673e9 0.416840
\(881\) 2.45876e10 1.21143 0.605717 0.795680i \(-0.292886\pi\)
0.605717 + 0.795680i \(0.292886\pi\)
\(882\) −3.95910e9 −0.194293
\(883\) −2.90742e10 −1.42117 −0.710583 0.703613i \(-0.751569\pi\)
−0.710583 + 0.703613i \(0.751569\pi\)
\(884\) 2.58785e9 0.125996
\(885\) −2.93132e10 −1.42155
\(886\) 9.33433e9 0.450884
\(887\) 2.62983e10 1.26530 0.632652 0.774436i \(-0.281966\pi\)
0.632652 + 0.774436i \(0.281966\pi\)
\(888\) −1.02836e9 −0.0492832
\(889\) 2.07510e9 0.0990563
\(890\) −1.57052e10 −0.746757
\(891\) 1.89244e10 0.896292
\(892\) −6.17136e9 −0.291141
\(893\) 1.66083e10 0.780451
\(894\) 5.43188e9 0.254255
\(895\) 2.42615e10 1.13120
\(896\) 2.84823e8 0.0132281
\(897\) −3.90546e10 −1.80675
\(898\) −2.65854e9 −0.122511
\(899\) 1.11053e10 0.509768
\(900\) −1.28226e9 −0.0586309
\(901\) 9.89838e8 0.0450845
\(902\) 2.86175e10 1.29840
\(903\) 5.48682e9 0.247978
\(904\) 9.58030e9 0.431310
\(905\) 3.26461e10 1.46407
\(906\) 3.62899e9 0.162120
\(907\) 4.46329e9 0.198623 0.0993115 0.995056i \(-0.468336\pi\)
0.0993115 + 0.995056i \(0.468336\pi\)
\(908\) −1.85628e10 −0.822892
\(909\) 7.72029e8 0.0340926
\(910\) 3.39771e9 0.149466
\(911\) −2.83469e10 −1.24220 −0.621100 0.783731i \(-0.713314\pi\)
−0.621100 + 0.783731i \(0.713314\pi\)
\(912\) 2.56714e9 0.112064
\(913\) −1.04582e10 −0.454789
\(914\) 1.68442e10 0.729690
\(915\) 1.66667e10 0.719245
\(916\) 1.82228e10 0.783396
\(917\) −6.25883e8 −0.0268040
\(918\) 3.82382e9 0.163135
\(919\) −1.72914e10 −0.734896 −0.367448 0.930044i \(-0.619768\pi\)
−0.367448 + 0.930044i \(0.619768\pi\)
\(920\) −1.78543e10 −0.755939
\(921\) −2.34515e10 −0.989148
\(922\) −2.42320e10 −1.01820
\(923\) 2.56719e10 1.07461
\(924\) −2.13099e9 −0.0888647
\(925\) −1.65098e9 −0.0685877
\(926\) 1.11138e10 0.459964
\(927\) −8.86074e9 −0.365335
\(928\) −3.07815e9 −0.126436
\(929\) −7.21679e9 −0.295317 −0.147659 0.989038i \(-0.547174\pi\)
−0.147659 + 0.989038i \(0.547174\pi\)
\(930\) −1.24785e10 −0.508710
\(931\) 1.27253e10 0.516827
\(932\) −2.27373e10 −0.919991
\(933\) −2.88829e9 −0.116427
\(934\) −2.75157e10 −1.10501
\(935\) −8.85151e9 −0.354141
\(936\) −2.95780e9 −0.117897
\(937\) −1.50607e10 −0.598078 −0.299039 0.954241i \(-0.596666\pi\)
−0.299039 + 0.954241i \(0.596666\pi\)
\(938\) 1.42368e9 0.0563252
\(939\) −1.16880e10 −0.460691
\(940\) 2.23767e10 0.878715
\(941\) −1.89579e10 −0.741695 −0.370848 0.928694i \(-0.620933\pi\)
−0.370848 + 0.928694i \(0.620933\pi\)
\(942\) −1.63178e10 −0.636039
\(943\) −6.06340e10 −2.35464
\(944\) −9.10005e9 −0.352080
\(945\) 5.02047e9 0.193523
\(946\) 5.03948e10 1.93538
\(947\) −4.51533e10 −1.72769 −0.863843 0.503760i \(-0.831949\pi\)
−0.863843 + 0.503760i \(0.831949\pi\)
\(948\) 6.16647e9 0.235075
\(949\) 4.90378e10 1.86251
\(950\) 4.12143e9 0.155961
\(951\) 4.12288e10 1.55442
\(952\) −2.99180e8 −0.0112384
\(953\) 3.57354e10 1.33744 0.668718 0.743516i \(-0.266843\pi\)
0.668718 + 0.743516i \(0.266843\pi\)
\(954\) −1.13134e9 −0.0421866
\(955\) −5.80609e10 −2.15711
\(956\) 6.30793e9 0.233498
\(957\) 2.30302e10 0.849386
\(958\) −1.35475e9 −0.0497830
\(959\) 1.75610e9 0.0642959
\(960\) 3.45875e9 0.126174
\(961\) −1.35366e10 −0.492016
\(962\) −3.80834e9 −0.137919
\(963\) −9.35028e9 −0.337390
\(964\) 1.68875e10 0.607148
\(965\) 5.50505e9 0.197204
\(966\) 4.51509e9 0.161156
\(967\) −3.28651e10 −1.16881 −0.584403 0.811464i \(-0.698671\pi\)
−0.584403 + 0.811464i \(0.698671\pi\)
\(968\) −9.59505e9 −0.340004
\(969\) −2.69655e9 −0.0952082
\(970\) −1.72739e10 −0.607701
\(971\) 1.23913e10 0.434361 0.217181 0.976131i \(-0.430314\pi\)
0.217181 + 0.976131i \(0.430314\pi\)
\(972\) −7.78204e9 −0.271808
\(973\) −5.52540e9 −0.192295
\(974\) −1.74895e10 −0.606486
\(975\) 1.21464e10 0.419692
\(976\) 5.17406e9 0.178138
\(977\) 2.14546e10 0.736021 0.368010 0.929822i \(-0.380039\pi\)
0.368010 + 0.929822i \(0.380039\pi\)
\(978\) −3.59739e9 −0.122971
\(979\) 3.64780e10 1.24249
\(980\) 1.71451e10 0.581900
\(981\) −1.51076e9 −0.0510922
\(982\) −1.39887e10 −0.471398
\(983\) −8.92113e9 −0.299559 −0.149780 0.988719i \(-0.547856\pi\)
−0.149780 + 0.988719i \(0.547856\pi\)
\(984\) 1.17461e10 0.393015
\(985\) 3.28563e10 1.09545
\(986\) 3.23332e9 0.107419
\(987\) −5.65872e9 −0.187330
\(988\) 9.50696e9 0.313612
\(989\) −1.06775e11 −3.50981
\(990\) 1.01169e10 0.331378
\(991\) 2.80580e10 0.915798 0.457899 0.889004i \(-0.348602\pi\)
0.457899 + 0.889004i \(0.348602\pi\)
\(992\) −3.87383e9 −0.125994
\(993\) 2.45988e10 0.797243
\(994\) −2.96792e9 −0.0958516
\(995\) 3.45227e10 1.11103
\(996\) −4.29258e9 −0.137661
\(997\) 1.99813e10 0.638544 0.319272 0.947663i \(-0.396562\pi\)
0.319272 + 0.947663i \(0.396562\pi\)
\(998\) 2.78881e10 0.888099
\(999\) −5.62723e9 −0.178573
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 74.8.a.c.1.3 6
4.3 odd 2 592.8.a.c.1.4 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
74.8.a.c.1.3 6 1.1 even 1 trivial
592.8.a.c.1.4 6 4.3 odd 2