Properties

Label 74.8.a.c.1.2
Level $74$
Weight $8$
Character 74.1
Self dual yes
Analytic conductor $23.116$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [74,8,Mod(1,74)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(74, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("74.1");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 74 = 2 \cdot 37 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 74.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(23.1164918858\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 10621x^{4} + 102052x^{3} + 31004503x^{2} - 305547358x - 22608804936 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(61.6850\) of defining polynomial
Character \(\chi\) \(=\) 74.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-8.00000 q^{2} -56.6850 q^{3} +64.0000 q^{4} +360.557 q^{5} +453.480 q^{6} +1603.66 q^{7} -512.000 q^{8} +1026.19 q^{9} +O(q^{10})\) \(q-8.00000 q^{2} -56.6850 q^{3} +64.0000 q^{4} +360.557 q^{5} +453.480 q^{6} +1603.66 q^{7} -512.000 q^{8} +1026.19 q^{9} -2884.45 q^{10} -6804.46 q^{11} -3627.84 q^{12} +3812.29 q^{13} -12829.3 q^{14} -20438.2 q^{15} +4096.00 q^{16} -4261.18 q^{17} -8209.49 q^{18} +36752.8 q^{19} +23075.6 q^{20} -90903.7 q^{21} +54435.7 q^{22} +43547.9 q^{23} +29022.7 q^{24} +51876.2 q^{25} -30498.3 q^{26} +65800.7 q^{27} +102635. q^{28} -189320. q^{29} +163505. q^{30} +19996.5 q^{31} -32768.0 q^{32} +385711. q^{33} +34089.4 q^{34} +578212. q^{35} +65675.9 q^{36} -50653.0 q^{37} -294023. q^{38} -216099. q^{39} -184605. q^{40} -161085. q^{41} +727229. q^{42} +419058. q^{43} -435485. q^{44} +369998. q^{45} -348383. q^{46} -195644. q^{47} -232182. q^{48} +1.74820e6 q^{49} -415010. q^{50} +241545. q^{51} +243986. q^{52} +1.92611e6 q^{53} -526406. q^{54} -2.45339e6 q^{55} -821076. q^{56} -2.08333e6 q^{57} +1.51456e6 q^{58} +2.34699e6 q^{59} -1.30804e6 q^{60} +1.06839e6 q^{61} -159972. q^{62} +1.64566e6 q^{63} +262144. q^{64} +1.37455e6 q^{65} -3.08569e6 q^{66} +2.76451e6 q^{67} -272715. q^{68} -2.46851e6 q^{69} -4.62570e6 q^{70} +5.36844e6 q^{71} -525407. q^{72} -2.44360e6 q^{73} +405224. q^{74} -2.94060e6 q^{75} +2.35218e6 q^{76} -1.09121e7 q^{77} +1.72880e6 q^{78} -1.90275e6 q^{79} +1.47684e6 q^{80} -5.97418e6 q^{81} +1.28868e6 q^{82} -5.24367e6 q^{83} -5.81783e6 q^{84} -1.53640e6 q^{85} -3.35246e6 q^{86} +1.07316e7 q^{87} +3.48388e6 q^{88} -2.90811e6 q^{89} -2.95999e6 q^{90} +6.11363e6 q^{91} +2.78707e6 q^{92} -1.13350e6 q^{93} +1.56515e6 q^{94} +1.32515e7 q^{95} +1.85745e6 q^{96} -4.20555e6 q^{97} -1.39856e7 q^{98} -6.98264e6 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 48 q^{2} + 28 q^{3} + 384 q^{4} - 14 q^{5} - 224 q^{6} - 980 q^{7} - 3072 q^{8} + 8254 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 6 q - 48 q^{2} + 28 q^{3} + 384 q^{4} - 14 q^{5} - 224 q^{6} - 980 q^{7} - 3072 q^{8} + 8254 q^{9} + 112 q^{10} + 2956 q^{11} + 1792 q^{12} + 2394 q^{13} + 7840 q^{14} - 28820 q^{15} + 24576 q^{16} - 45108 q^{17} - 66032 q^{18} + 11764 q^{19} - 896 q^{20} - 135378 q^{21} - 23648 q^{22} + 21052 q^{23} - 14336 q^{24} + 194744 q^{25} - 19152 q^{26} + 439240 q^{27} - 62720 q^{28} + 288454 q^{29} + 230560 q^{30} + 578868 q^{31} - 196608 q^{32} + 980174 q^{33} + 360864 q^{34} + 1243052 q^{35} + 528256 q^{36} - 303918 q^{37} - 94112 q^{38} + 1735296 q^{39} + 7168 q^{40} + 1176840 q^{41} + 1083024 q^{42} + 2669236 q^{43} + 189184 q^{44} + 2560692 q^{45} - 168416 q^{46} - 131044 q^{47} + 114688 q^{48} + 2460856 q^{49} - 1557952 q^{50} + 2899732 q^{51} + 153216 q^{52} + 983190 q^{53} - 3513920 q^{54} - 1200168 q^{55} + 501760 q^{56} - 163216 q^{57} - 2307632 q^{58} - 1215568 q^{59} - 1844480 q^{60} + 3136358 q^{61} - 4630944 q^{62} - 1444880 q^{63} + 1572864 q^{64} - 1302836 q^{65} - 7841392 q^{66} + 2179276 q^{67} - 2886912 q^{68} - 929514 q^{69} - 9944416 q^{70} + 325164 q^{71} - 4226048 q^{72} + 5011444 q^{73} + 2431344 q^{74} - 9374520 q^{75} + 752896 q^{76} - 26500426 q^{77} - 13882368 q^{78} + 3173032 q^{79} - 57344 q^{80} - 2565226 q^{81} - 9414720 q^{82} - 22567048 q^{83} - 8664192 q^{84} + 1486476 q^{85} - 21353888 q^{86} - 157228 q^{87} - 1513472 q^{88} + 26836996 q^{89} - 20485536 q^{90} + 17942380 q^{91} + 1347328 q^{92} + 16734948 q^{93} + 1048352 q^{94} - 4252048 q^{95} - 917504 q^{96} + 295792 q^{97} - 19686848 q^{98} + 25990712 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −8.00000 −0.707107
\(3\) −56.6850 −1.21211 −0.606057 0.795421i \(-0.707250\pi\)
−0.606057 + 0.795421i \(0.707250\pi\)
\(4\) 64.0000 0.500000
\(5\) 360.557 1.28997 0.644984 0.764196i \(-0.276864\pi\)
0.644984 + 0.764196i \(0.276864\pi\)
\(6\) 453.480 0.857094
\(7\) 1603.66 1.76714 0.883569 0.468302i \(-0.155134\pi\)
0.883569 + 0.468302i \(0.155134\pi\)
\(8\) −512.000 −0.353553
\(9\) 1026.19 0.469221
\(10\) −2884.45 −0.912145
\(11\) −6804.46 −1.54141 −0.770707 0.637190i \(-0.780097\pi\)
−0.770707 + 0.637190i \(0.780097\pi\)
\(12\) −3627.84 −0.606057
\(13\) 3812.29 0.481265 0.240632 0.970616i \(-0.422645\pi\)
0.240632 + 0.970616i \(0.422645\pi\)
\(14\) −12829.3 −1.24955
\(15\) −20438.2 −1.56359
\(16\) 4096.00 0.250000
\(17\) −4261.18 −0.210358 −0.105179 0.994453i \(-0.533542\pi\)
−0.105179 + 0.994453i \(0.533542\pi\)
\(18\) −8209.49 −0.331789
\(19\) 36752.8 1.22929 0.614643 0.788805i \(-0.289300\pi\)
0.614643 + 0.788805i \(0.289300\pi\)
\(20\) 23075.6 0.644984
\(21\) −90903.7 −2.14197
\(22\) 54435.7 1.08994
\(23\) 43547.9 0.746311 0.373156 0.927769i \(-0.378276\pi\)
0.373156 + 0.927769i \(0.378276\pi\)
\(24\) 29022.7 0.428547
\(25\) 51876.2 0.664016
\(26\) −30498.3 −0.340306
\(27\) 65800.7 0.643365
\(28\) 102635. 0.883569
\(29\) −189320. −1.44146 −0.720732 0.693214i \(-0.756194\pi\)
−0.720732 + 0.693214i \(0.756194\pi\)
\(30\) 163505. 1.10562
\(31\) 19996.5 0.120556 0.0602780 0.998182i \(-0.480801\pi\)
0.0602780 + 0.998182i \(0.480801\pi\)
\(32\) −32768.0 −0.176777
\(33\) 385711. 1.86837
\(34\) 34089.4 0.148745
\(35\) 578212. 2.27955
\(36\) 65675.9 0.234610
\(37\) −50653.0 −0.164399
\(38\) −294023. −0.869237
\(39\) −216099. −0.583348
\(40\) −184605. −0.456072
\(41\) −161085. −0.365015 −0.182507 0.983204i \(-0.558421\pi\)
−0.182507 + 0.983204i \(0.558421\pi\)
\(42\) 727229. 1.51460
\(43\) 419058. 0.803775 0.401888 0.915689i \(-0.368354\pi\)
0.401888 + 0.915689i \(0.368354\pi\)
\(44\) −435485. −0.770707
\(45\) 369998. 0.605279
\(46\) −348383. −0.527722
\(47\) −195644. −0.274868 −0.137434 0.990511i \(-0.543886\pi\)
−0.137434 + 0.990511i \(0.543886\pi\)
\(48\) −232182. −0.303029
\(49\) 1.74820e6 2.12277
\(50\) −415010. −0.469530
\(51\) 241545. 0.254978
\(52\) 243986. 0.240632
\(53\) 1.92611e6 1.77711 0.888556 0.458768i \(-0.151709\pi\)
0.888556 + 0.458768i \(0.151709\pi\)
\(54\) −526406. −0.454928
\(55\) −2.45339e6 −1.98837
\(56\) −821076. −0.624777
\(57\) −2.08333e6 −1.49004
\(58\) 1.51456e6 1.01927
\(59\) 2.34699e6 1.48775 0.743873 0.668321i \(-0.232987\pi\)
0.743873 + 0.668321i \(0.232987\pi\)
\(60\) −1.30804e6 −0.781794
\(61\) 1.06839e6 0.602666 0.301333 0.953519i \(-0.402568\pi\)
0.301333 + 0.953519i \(0.402568\pi\)
\(62\) −159972. −0.0852460
\(63\) 1.64566e6 0.829177
\(64\) 262144. 0.125000
\(65\) 1.37455e6 0.620816
\(66\) −3.08569e6 −1.32114
\(67\) 2.76451e6 1.12294 0.561470 0.827497i \(-0.310236\pi\)
0.561470 + 0.827497i \(0.310236\pi\)
\(68\) −272715. −0.105179
\(69\) −2.46851e6 −0.904614
\(70\) −4.62570e6 −1.61188
\(71\) 5.36844e6 1.78010 0.890049 0.455865i \(-0.150670\pi\)
0.890049 + 0.455865i \(0.150670\pi\)
\(72\) −525407. −0.165895
\(73\) −2.44360e6 −0.735192 −0.367596 0.929986i \(-0.619819\pi\)
−0.367596 + 0.929986i \(0.619819\pi\)
\(74\) 405224. 0.116248
\(75\) −2.94060e6 −0.804863
\(76\) 2.35218e6 0.614643
\(77\) −1.09121e7 −2.72389
\(78\) 1.72880e6 0.412489
\(79\) −1.90275e6 −0.434196 −0.217098 0.976150i \(-0.569659\pi\)
−0.217098 + 0.976150i \(0.569659\pi\)
\(80\) 1.47684e6 0.322492
\(81\) −5.97418e6 −1.24905
\(82\) 1.28868e6 0.258104
\(83\) −5.24367e6 −1.00661 −0.503306 0.864108i \(-0.667883\pi\)
−0.503306 + 0.864108i \(0.667883\pi\)
\(84\) −5.81783e6 −1.07099
\(85\) −1.53640e6 −0.271355
\(86\) −3.35246e6 −0.568355
\(87\) 1.07316e7 1.74722
\(88\) 3.48388e6 0.544972
\(89\) −2.90811e6 −0.437267 −0.218633 0.975807i \(-0.570160\pi\)
−0.218633 + 0.975807i \(0.570160\pi\)
\(90\) −2.95999e6 −0.427997
\(91\) 6.11363e6 0.850461
\(92\) 2.78707e6 0.373156
\(93\) −1.13350e6 −0.146128
\(94\) 1.56515e6 0.194361
\(95\) 1.32515e7 1.58574
\(96\) 1.85745e6 0.214274
\(97\) −4.20555e6 −0.467867 −0.233933 0.972253i \(-0.575160\pi\)
−0.233933 + 0.972253i \(0.575160\pi\)
\(98\) −1.39856e7 −1.50103
\(99\) −6.98264e6 −0.723263
\(100\) 3.32008e6 0.332008
\(101\) 1.38804e7 1.34053 0.670266 0.742121i \(-0.266180\pi\)
0.670266 + 0.742121i \(0.266180\pi\)
\(102\) −1.93236e6 −0.180296
\(103\) −1.96461e6 −0.177152 −0.0885760 0.996069i \(-0.528232\pi\)
−0.0885760 + 0.996069i \(0.528232\pi\)
\(104\) −1.95189e6 −0.170153
\(105\) −3.27759e7 −2.76307
\(106\) −1.54089e7 −1.25661
\(107\) 7.37489e6 0.581985 0.290993 0.956725i \(-0.406014\pi\)
0.290993 + 0.956725i \(0.406014\pi\)
\(108\) 4.21125e6 0.321683
\(109\) 5.72494e6 0.423427 0.211713 0.977332i \(-0.432096\pi\)
0.211713 + 0.977332i \(0.432096\pi\)
\(110\) 1.96272e7 1.40599
\(111\) 2.87126e6 0.199270
\(112\) 6.56861e6 0.441784
\(113\) 2.76008e7 1.79948 0.899741 0.436424i \(-0.143755\pi\)
0.899741 + 0.436424i \(0.143755\pi\)
\(114\) 1.66667e7 1.05361
\(115\) 1.57015e7 0.962717
\(116\) −1.21165e7 −0.720732
\(117\) 3.91212e6 0.225819
\(118\) −1.87759e7 −1.05200
\(119\) −6.83350e6 −0.371731
\(120\) 1.04643e7 0.552812
\(121\) 2.68135e7 1.37596
\(122\) −8.54715e6 −0.426149
\(123\) 9.13107e6 0.442440
\(124\) 1.27978e6 0.0602780
\(125\) −9.46417e6 −0.433409
\(126\) −1.31653e7 −0.586317
\(127\) 1.76605e7 0.765050 0.382525 0.923945i \(-0.375055\pi\)
0.382525 + 0.923945i \(0.375055\pi\)
\(128\) −2.09715e6 −0.0883883
\(129\) −2.37543e7 −0.974267
\(130\) −1.09964e7 −0.438983
\(131\) −79274.7 −0.00308095 −0.00154048 0.999999i \(-0.500490\pi\)
−0.00154048 + 0.999999i \(0.500490\pi\)
\(132\) 2.46855e7 0.934185
\(133\) 5.89392e7 2.17232
\(134\) −2.21161e7 −0.794038
\(135\) 2.37249e7 0.829920
\(136\) 2.18172e6 0.0743727
\(137\) −5.54352e7 −1.84189 −0.920945 0.389694i \(-0.872581\pi\)
−0.920945 + 0.389694i \(0.872581\pi\)
\(138\) 1.97481e7 0.639659
\(139\) −1.58433e7 −0.500373 −0.250187 0.968198i \(-0.580492\pi\)
−0.250187 + 0.968198i \(0.580492\pi\)
\(140\) 3.70056e7 1.13977
\(141\) 1.10901e7 0.333171
\(142\) −4.29475e7 −1.25872
\(143\) −2.59406e7 −0.741828
\(144\) 4.20326e6 0.117305
\(145\) −6.82606e7 −1.85944
\(146\) 1.95488e7 0.519860
\(147\) −9.90964e7 −2.57304
\(148\) −3.24179e6 −0.0821995
\(149\) −3.12918e7 −0.774959 −0.387479 0.921878i \(-0.626654\pi\)
−0.387479 + 0.921878i \(0.626654\pi\)
\(150\) 2.35248e7 0.569124
\(151\) 7.18061e7 1.69724 0.848618 0.529007i \(-0.177435\pi\)
0.848618 + 0.529007i \(0.177435\pi\)
\(152\) −1.88174e7 −0.434618
\(153\) −4.37276e6 −0.0987042
\(154\) 8.72966e7 1.92608
\(155\) 7.20989e6 0.155513
\(156\) −1.38304e7 −0.291674
\(157\) 6.92052e7 1.42722 0.713608 0.700545i \(-0.247060\pi\)
0.713608 + 0.700545i \(0.247060\pi\)
\(158\) 1.52220e7 0.307023
\(159\) −1.09181e8 −2.15406
\(160\) −1.18147e7 −0.228036
\(161\) 6.98362e7 1.31883
\(162\) 4.77934e7 0.883214
\(163\) 5.19124e7 0.938889 0.469445 0.882962i \(-0.344454\pi\)
0.469445 + 0.882962i \(0.344454\pi\)
\(164\) −1.03094e7 −0.182507
\(165\) 1.39071e8 2.41014
\(166\) 4.19494e7 0.711782
\(167\) −8.67223e7 −1.44087 −0.720433 0.693525i \(-0.756057\pi\)
−0.720433 + 0.693525i \(0.756057\pi\)
\(168\) 4.65427e7 0.757302
\(169\) −4.82150e7 −0.768384
\(170\) 1.22912e7 0.191877
\(171\) 3.77152e7 0.576807
\(172\) 2.68197e7 0.401888
\(173\) −3.39160e7 −0.498016 −0.249008 0.968501i \(-0.580105\pi\)
−0.249008 + 0.968501i \(0.580105\pi\)
\(174\) −8.58528e7 −1.23547
\(175\) 8.31921e7 1.17341
\(176\) −2.78711e7 −0.385353
\(177\) −1.33039e8 −1.80332
\(178\) 2.32649e7 0.309194
\(179\) 1.35818e7 0.176999 0.0884994 0.996076i \(-0.471793\pi\)
0.0884994 + 0.996076i \(0.471793\pi\)
\(180\) 2.36799e7 0.302640
\(181\) 5.88225e7 0.737341 0.368671 0.929560i \(-0.379813\pi\)
0.368671 + 0.929560i \(0.379813\pi\)
\(182\) −4.89091e7 −0.601367
\(183\) −6.05619e7 −0.730500
\(184\) −2.22965e7 −0.263861
\(185\) −1.82633e7 −0.212069
\(186\) 9.06803e6 0.103328
\(187\) 2.89950e7 0.324248
\(188\) −1.25212e7 −0.137434
\(189\) 1.05522e8 1.13691
\(190\) −1.06012e8 −1.12129
\(191\) −1.15450e8 −1.19888 −0.599442 0.800418i \(-0.704611\pi\)
−0.599442 + 0.800418i \(0.704611\pi\)
\(192\) −1.48596e7 −0.151514
\(193\) −1.96135e8 −1.96383 −0.981917 0.189311i \(-0.939375\pi\)
−0.981917 + 0.189311i \(0.939375\pi\)
\(194\) 3.36444e7 0.330832
\(195\) −7.79161e7 −0.752500
\(196\) 1.11885e8 1.06139
\(197\) −7.50680e7 −0.699557 −0.349778 0.936832i \(-0.613743\pi\)
−0.349778 + 0.936832i \(0.613743\pi\)
\(198\) 5.58611e7 0.511424
\(199\) 2.19532e8 1.97475 0.987375 0.158401i \(-0.0506340\pi\)
0.987375 + 0.158401i \(0.0506340\pi\)
\(200\) −2.65606e7 −0.234765
\(201\) −1.56706e8 −1.36113
\(202\) −1.11043e8 −0.947900
\(203\) −3.03606e8 −2.54726
\(204\) 1.54589e7 0.127489
\(205\) −5.80801e7 −0.470857
\(206\) 1.57169e7 0.125265
\(207\) 4.46882e7 0.350185
\(208\) 1.56151e7 0.120316
\(209\) −2.50083e8 −1.89484
\(210\) 2.62207e8 1.95379
\(211\) 1.64717e8 1.20712 0.603558 0.797319i \(-0.293749\pi\)
0.603558 + 0.797319i \(0.293749\pi\)
\(212\) 1.23271e8 0.888556
\(213\) −3.04310e8 −2.15768
\(214\) −5.89991e7 −0.411526
\(215\) 1.51094e8 1.03684
\(216\) −3.36900e7 −0.227464
\(217\) 3.20677e7 0.213039
\(218\) −4.57995e7 −0.299408
\(219\) 1.38516e8 0.891137
\(220\) −1.57017e8 −0.994187
\(221\) −1.62448e7 −0.101238
\(222\) −2.29701e7 −0.140905
\(223\) −2.83974e8 −1.71479 −0.857395 0.514659i \(-0.827918\pi\)
−0.857395 + 0.514659i \(0.827918\pi\)
\(224\) −5.25489e7 −0.312389
\(225\) 5.32347e7 0.311570
\(226\) −2.20807e8 −1.27243
\(227\) 1.12496e8 0.638332 0.319166 0.947699i \(-0.396597\pi\)
0.319166 + 0.947699i \(0.396597\pi\)
\(228\) −1.33333e8 −0.745018
\(229\) −2.41992e8 −1.33161 −0.665805 0.746125i \(-0.731912\pi\)
−0.665805 + 0.746125i \(0.731912\pi\)
\(230\) −1.25612e8 −0.680744
\(231\) 6.18550e8 3.30167
\(232\) 9.69319e7 0.509634
\(233\) 3.30346e8 1.71089 0.855447 0.517891i \(-0.173283\pi\)
0.855447 + 0.517891i \(0.173283\pi\)
\(234\) −3.12969e7 −0.159678
\(235\) −7.05408e7 −0.354571
\(236\) 1.50207e8 0.743873
\(237\) 1.07857e8 0.526295
\(238\) 5.46680e7 0.262853
\(239\) −2.89292e7 −0.137070 −0.0685352 0.997649i \(-0.521833\pi\)
−0.0685352 + 0.997649i \(0.521833\pi\)
\(240\) −8.37147e7 −0.390897
\(241\) 1.09930e8 0.505891 0.252946 0.967480i \(-0.418601\pi\)
0.252946 + 0.967480i \(0.418601\pi\)
\(242\) −2.14508e8 −0.972949
\(243\) 1.94740e8 0.870629
\(244\) 6.83772e7 0.301333
\(245\) 6.30324e8 2.73831
\(246\) −7.30486e7 −0.312852
\(247\) 1.40112e8 0.591612
\(248\) −1.02382e7 −0.0426230
\(249\) 2.97237e8 1.22013
\(250\) 7.57134e7 0.306466
\(251\) −1.14733e8 −0.457962 −0.228981 0.973431i \(-0.573539\pi\)
−0.228981 + 0.973431i \(0.573539\pi\)
\(252\) 1.05322e8 0.414589
\(253\) −2.96320e8 −1.15037
\(254\) −1.41284e8 −0.540972
\(255\) 8.70906e7 0.328913
\(256\) 1.67772e7 0.0625000
\(257\) 5.37256e7 0.197431 0.0987154 0.995116i \(-0.468527\pi\)
0.0987154 + 0.995116i \(0.468527\pi\)
\(258\) 1.90034e8 0.688911
\(259\) −8.12304e7 −0.290516
\(260\) 8.79710e7 0.310408
\(261\) −1.94278e8 −0.676364
\(262\) 634197. 0.00217856
\(263\) 2.14600e8 0.727419 0.363709 0.931513i \(-0.381510\pi\)
0.363709 + 0.931513i \(0.381510\pi\)
\(264\) −1.97484e8 −0.660568
\(265\) 6.94471e8 2.29242
\(266\) −4.71513e8 −1.53606
\(267\) 1.64846e8 0.530017
\(268\) 1.76929e8 0.561470
\(269\) 4.40021e8 1.37829 0.689145 0.724623i \(-0.257986\pi\)
0.689145 + 0.724623i \(0.257986\pi\)
\(270\) −1.89799e8 −0.586842
\(271\) 3.43478e8 1.04835 0.524175 0.851611i \(-0.324374\pi\)
0.524175 + 0.851611i \(0.324374\pi\)
\(272\) −1.74538e7 −0.0525894
\(273\) −3.46551e8 −1.03086
\(274\) 4.43481e8 1.30241
\(275\) −3.52990e8 −1.02352
\(276\) −1.57985e8 −0.452307
\(277\) −1.11251e8 −0.314502 −0.157251 0.987559i \(-0.550263\pi\)
−0.157251 + 0.987559i \(0.550263\pi\)
\(278\) 1.26746e8 0.353817
\(279\) 2.05202e7 0.0565674
\(280\) −2.96045e8 −0.805942
\(281\) −3.99045e8 −1.07288 −0.536438 0.843940i \(-0.680231\pi\)
−0.536438 + 0.843940i \(0.680231\pi\)
\(282\) −8.87206e7 −0.235588
\(283\) −2.26808e8 −0.594847 −0.297423 0.954746i \(-0.596127\pi\)
−0.297423 + 0.954746i \(0.596127\pi\)
\(284\) 3.43580e8 0.890049
\(285\) −7.51160e8 −1.92210
\(286\) 2.07525e8 0.524552
\(287\) −2.58326e8 −0.645031
\(288\) −3.36261e7 −0.0829473
\(289\) −3.92181e8 −0.955750
\(290\) 5.46085e8 1.31482
\(291\) 2.38392e8 0.567108
\(292\) −1.56391e8 −0.367596
\(293\) 3.64309e8 0.846122 0.423061 0.906101i \(-0.360956\pi\)
0.423061 + 0.906101i \(0.360956\pi\)
\(294\) 7.92771e8 1.81942
\(295\) 8.46223e8 1.91914
\(296\) 2.59343e7 0.0581238
\(297\) −4.47738e8 −0.991692
\(298\) 2.50334e8 0.547979
\(299\) 1.66017e8 0.359173
\(300\) −1.88199e8 −0.402432
\(301\) 6.72028e8 1.42038
\(302\) −5.74449e8 −1.20013
\(303\) −7.86810e8 −1.62488
\(304\) 1.50540e8 0.307322
\(305\) 3.85217e8 0.777420
\(306\) 3.49821e7 0.0697944
\(307\) −6.39929e8 −1.26226 −0.631129 0.775678i \(-0.717408\pi\)
−0.631129 + 0.775678i \(0.717408\pi\)
\(308\) −6.98372e8 −1.36195
\(309\) 1.11364e8 0.214729
\(310\) −5.76791e7 −0.109965
\(311\) −1.02265e9 −1.92781 −0.963907 0.266239i \(-0.914219\pi\)
−0.963907 + 0.266239i \(0.914219\pi\)
\(312\) 1.10643e8 0.206245
\(313\) 7.97524e7 0.147007 0.0735036 0.997295i \(-0.476582\pi\)
0.0735036 + 0.997295i \(0.476582\pi\)
\(314\) −5.53641e8 −1.00919
\(315\) 5.93353e8 1.06961
\(316\) −1.21776e8 −0.217098
\(317\) −7.88946e8 −1.39104 −0.695520 0.718507i \(-0.744826\pi\)
−0.695520 + 0.718507i \(0.744826\pi\)
\(318\) 8.73451e8 1.52315
\(319\) 1.28822e9 2.22189
\(320\) 9.45178e7 0.161246
\(321\) −4.18045e8 −0.705433
\(322\) −5.58690e8 −0.932557
\(323\) −1.56610e8 −0.258590
\(324\) −3.82348e8 −0.624526
\(325\) 1.97767e8 0.319567
\(326\) −4.15299e8 −0.663895
\(327\) −3.24518e8 −0.513241
\(328\) 8.24753e7 0.129052
\(329\) −3.13747e8 −0.485730
\(330\) −1.11256e9 −1.70422
\(331\) −4.83577e8 −0.732938 −0.366469 0.930430i \(-0.619433\pi\)
−0.366469 + 0.930430i \(0.619433\pi\)
\(332\) −3.35595e8 −0.503306
\(333\) −5.19794e7 −0.0771394
\(334\) 6.93779e8 1.01885
\(335\) 9.96763e8 1.44856
\(336\) −3.72341e8 −0.535493
\(337\) −1.42527e8 −0.202858 −0.101429 0.994843i \(-0.532342\pi\)
−0.101429 + 0.994843i \(0.532342\pi\)
\(338\) 3.85720e8 0.543330
\(339\) −1.56455e9 −2.18118
\(340\) −9.83294e7 −0.135677
\(341\) −1.36066e8 −0.185827
\(342\) −3.01722e8 −0.407864
\(343\) 1.48283e9 1.98410
\(344\) −2.14558e8 −0.284177
\(345\) −8.90039e8 −1.16692
\(346\) 2.71328e8 0.352151
\(347\) −8.85934e8 −1.13828 −0.569139 0.822241i \(-0.692723\pi\)
−0.569139 + 0.822241i \(0.692723\pi\)
\(348\) 6.86822e8 0.873609
\(349\) −3.31914e8 −0.417961 −0.208981 0.977920i \(-0.567015\pi\)
−0.208981 + 0.977920i \(0.567015\pi\)
\(350\) −6.65537e8 −0.829724
\(351\) 2.50851e8 0.309629
\(352\) 2.22969e8 0.272486
\(353\) −4.34687e8 −0.525975 −0.262988 0.964799i \(-0.584708\pi\)
−0.262988 + 0.964799i \(0.584708\pi\)
\(354\) 1.06431e9 1.27514
\(355\) 1.93563e9 2.29627
\(356\) −1.86119e8 −0.218633
\(357\) 3.87357e8 0.450580
\(358\) −1.08654e8 −0.125157
\(359\) 1.68930e9 1.92697 0.963486 0.267758i \(-0.0862829\pi\)
0.963486 + 0.267758i \(0.0862829\pi\)
\(360\) −1.89439e8 −0.213999
\(361\) 4.56898e8 0.511145
\(362\) −4.70580e8 −0.521379
\(363\) −1.51992e9 −1.66782
\(364\) 3.91272e8 0.425230
\(365\) −8.81059e8 −0.948374
\(366\) 4.84495e8 0.516542
\(367\) −3.39873e8 −0.358910 −0.179455 0.983766i \(-0.557433\pi\)
−0.179455 + 0.983766i \(0.557433\pi\)
\(368\) 1.78372e8 0.186578
\(369\) −1.65303e8 −0.171272
\(370\) 1.46106e8 0.149956
\(371\) 3.08883e9 3.14040
\(372\) −7.25442e7 −0.0730639
\(373\) −7.78423e8 −0.776667 −0.388333 0.921519i \(-0.626949\pi\)
−0.388333 + 0.921519i \(0.626949\pi\)
\(374\) −2.31960e8 −0.229278
\(375\) 5.36476e8 0.525341
\(376\) 1.00170e8 0.0971805
\(377\) −7.21743e8 −0.693725
\(378\) −8.44178e8 −0.803920
\(379\) 1.47561e9 1.39231 0.696153 0.717893i \(-0.254893\pi\)
0.696153 + 0.717893i \(0.254893\pi\)
\(380\) 8.48095e8 0.792870
\(381\) −1.00108e9 −0.927328
\(382\) 9.23600e8 0.847739
\(383\) −1.53681e9 −1.39773 −0.698867 0.715252i \(-0.746312\pi\)
−0.698867 + 0.715252i \(0.746312\pi\)
\(384\) 1.18877e8 0.107137
\(385\) −3.93442e9 −3.51373
\(386\) 1.56908e9 1.38864
\(387\) 4.30031e8 0.377148
\(388\) −2.69155e8 −0.233933
\(389\) 9.07053e8 0.781284 0.390642 0.920543i \(-0.372253\pi\)
0.390642 + 0.920543i \(0.372253\pi\)
\(390\) 6.23329e8 0.532098
\(391\) −1.85565e8 −0.156992
\(392\) −8.95076e8 −0.750514
\(393\) 4.49368e6 0.00373446
\(394\) 6.00544e8 0.494661
\(395\) −6.86048e8 −0.560099
\(396\) −4.46889e8 −0.361632
\(397\) 5.73804e8 0.460253 0.230127 0.973161i \(-0.426086\pi\)
0.230127 + 0.973161i \(0.426086\pi\)
\(398\) −1.75626e9 −1.39636
\(399\) −3.34097e9 −2.63310
\(400\) 2.12485e8 0.166004
\(401\) −3.21010e8 −0.248607 −0.124303 0.992244i \(-0.539670\pi\)
−0.124303 + 0.992244i \(0.539670\pi\)
\(402\) 1.25365e9 0.962465
\(403\) 7.62326e7 0.0580194
\(404\) 8.88346e8 0.670266
\(405\) −2.15403e9 −1.61124
\(406\) 2.42885e9 1.80119
\(407\) 3.44666e8 0.253407
\(408\) −1.23671e8 −0.0901482
\(409\) −1.27539e9 −0.921743 −0.460872 0.887467i \(-0.652463\pi\)
−0.460872 + 0.887467i \(0.652463\pi\)
\(410\) 4.64641e8 0.332946
\(411\) 3.14234e9 2.23258
\(412\) −1.25735e8 −0.0885760
\(413\) 3.76378e9 2.62905
\(414\) −3.57506e8 −0.247618
\(415\) −1.89064e9 −1.29850
\(416\) −1.24921e8 −0.0850764
\(417\) 8.98077e8 0.606509
\(418\) 2.00066e9 1.33985
\(419\) −2.17661e9 −1.44554 −0.722771 0.691087i \(-0.757132\pi\)
−0.722771 + 0.691087i \(0.757132\pi\)
\(420\) −2.09766e9 −1.38154
\(421\) −1.01489e9 −0.662875 −0.331438 0.943477i \(-0.607534\pi\)
−0.331438 + 0.943477i \(0.607534\pi\)
\(422\) −1.31773e9 −0.853560
\(423\) −2.00767e8 −0.128974
\(424\) −9.86167e8 −0.628304
\(425\) −2.21054e8 −0.139681
\(426\) 2.43448e9 1.52571
\(427\) 1.71334e9 1.06499
\(428\) 4.71993e8 0.290993
\(429\) 1.47044e9 0.899181
\(430\) −1.20875e9 −0.733159
\(431\) 7.43582e8 0.447361 0.223681 0.974662i \(-0.428193\pi\)
0.223681 + 0.974662i \(0.428193\pi\)
\(432\) 2.69520e8 0.160841
\(433\) −1.66611e9 −0.986273 −0.493136 0.869952i \(-0.664150\pi\)
−0.493136 + 0.869952i \(0.664150\pi\)
\(434\) −2.56542e8 −0.150641
\(435\) 3.86935e9 2.25385
\(436\) 3.66396e8 0.211713
\(437\) 1.60051e9 0.917430
\(438\) −1.10813e9 −0.630129
\(439\) 2.65790e9 1.49938 0.749692 0.661786i \(-0.230201\pi\)
0.749692 + 0.661786i \(0.230201\pi\)
\(440\) 1.25614e9 0.702996
\(441\) 1.79397e9 0.996050
\(442\) 1.29959e8 0.0715859
\(443\) 1.20975e9 0.661123 0.330561 0.943784i \(-0.392762\pi\)
0.330561 + 0.943784i \(0.392762\pi\)
\(444\) 1.83761e8 0.0996352
\(445\) −1.04854e9 −0.564060
\(446\) 2.27179e9 1.21254
\(447\) 1.77377e9 0.939338
\(448\) 4.20391e8 0.220892
\(449\) 1.40983e9 0.735032 0.367516 0.930017i \(-0.380208\pi\)
0.367516 + 0.930017i \(0.380208\pi\)
\(450\) −4.25877e8 −0.220313
\(451\) 1.09609e9 0.562639
\(452\) 1.76645e9 0.899741
\(453\) −4.07033e9 −2.05724
\(454\) −8.99969e8 −0.451369
\(455\) 2.20431e9 1.09707
\(456\) 1.06667e9 0.526807
\(457\) −1.67800e9 −0.822407 −0.411203 0.911544i \(-0.634891\pi\)
−0.411203 + 0.911544i \(0.634891\pi\)
\(458\) 1.93594e9 0.941591
\(459\) −2.80389e8 −0.135337
\(460\) 1.00490e9 0.481359
\(461\) −5.09611e8 −0.242262 −0.121131 0.992637i \(-0.538652\pi\)
−0.121131 + 0.992637i \(0.538652\pi\)
\(462\) −4.94840e9 −2.33463
\(463\) −2.45905e9 −1.15142 −0.575711 0.817653i \(-0.695275\pi\)
−0.575711 + 0.817653i \(0.695275\pi\)
\(464\) −7.75455e8 −0.360366
\(465\) −4.08692e8 −0.188500
\(466\) −2.64277e9 −1.20978
\(467\) −1.18787e9 −0.539710 −0.269855 0.962901i \(-0.586976\pi\)
−0.269855 + 0.962901i \(0.586976\pi\)
\(468\) 2.50375e8 0.112910
\(469\) 4.43335e9 1.98439
\(470\) 5.64327e8 0.250719
\(471\) −3.92289e9 −1.72995
\(472\) −1.20166e9 −0.525998
\(473\) −2.85146e9 −1.23895
\(474\) −8.62857e8 −0.372147
\(475\) 1.90660e9 0.816266
\(476\) −4.37344e8 −0.185865
\(477\) 1.97654e9 0.833858
\(478\) 2.31434e8 0.0969234
\(479\) −4.52784e9 −1.88242 −0.941211 0.337819i \(-0.890311\pi\)
−0.941211 + 0.337819i \(0.890311\pi\)
\(480\) 6.69717e8 0.276406
\(481\) −1.93104e8 −0.0791194
\(482\) −8.79441e8 −0.357719
\(483\) −3.95866e9 −1.59858
\(484\) 1.71606e9 0.687979
\(485\) −1.51634e9 −0.603533
\(486\) −1.55792e9 −0.615628
\(487\) 1.83779e9 0.721014 0.360507 0.932757i \(-0.382604\pi\)
0.360507 + 0.932757i \(0.382604\pi\)
\(488\) −5.47018e8 −0.213075
\(489\) −2.94265e9 −1.13804
\(490\) −5.04259e9 −1.93628
\(491\) −5.11971e9 −1.95191 −0.975956 0.217965i \(-0.930058\pi\)
−0.975956 + 0.217965i \(0.930058\pi\)
\(492\) 5.84389e8 0.221220
\(493\) 8.06726e8 0.303223
\(494\) −1.12090e9 −0.418333
\(495\) −2.51764e9 −0.932986
\(496\) 8.19058e7 0.0301390
\(497\) 8.60918e9 3.14568
\(498\) −2.37790e9 −0.862761
\(499\) −1.51982e9 −0.547570 −0.273785 0.961791i \(-0.588276\pi\)
−0.273785 + 0.961791i \(0.588276\pi\)
\(500\) −6.05707e8 −0.216704
\(501\) 4.91585e9 1.74649
\(502\) 9.17863e8 0.323828
\(503\) 2.54603e9 0.892021 0.446011 0.895028i \(-0.352844\pi\)
0.446011 + 0.895028i \(0.352844\pi\)
\(504\) −8.42577e8 −0.293159
\(505\) 5.00468e9 1.72924
\(506\) 2.37056e9 0.813438
\(507\) 2.73306e9 0.931369
\(508\) 1.13027e9 0.382525
\(509\) 2.44937e9 0.823269 0.411635 0.911349i \(-0.364958\pi\)
0.411635 + 0.911349i \(0.364958\pi\)
\(510\) −6.96725e8 −0.232576
\(511\) −3.91872e9 −1.29919
\(512\) −1.34218e8 −0.0441942
\(513\) 2.41836e9 0.790880
\(514\) −4.29805e8 −0.139605
\(515\) −7.08354e8 −0.228520
\(516\) −1.52027e9 −0.487134
\(517\) 1.33125e9 0.423685
\(518\) 6.49843e8 0.205426
\(519\) 1.92253e9 0.603653
\(520\) −7.03768e8 −0.219492
\(521\) 3.65748e9 1.13305 0.566526 0.824044i \(-0.308287\pi\)
0.566526 + 0.824044i \(0.308287\pi\)
\(522\) 1.55422e9 0.478262
\(523\) 4.56015e9 1.39387 0.696937 0.717133i \(-0.254546\pi\)
0.696937 + 0.717133i \(0.254546\pi\)
\(524\) −5.07358e6 −0.00154048
\(525\) −4.71574e9 −1.42230
\(526\) −1.71680e9 −0.514363
\(527\) −8.52088e7 −0.0253599
\(528\) 1.57987e9 0.467092
\(529\) −1.50840e9 −0.443020
\(530\) −5.55577e9 −1.62098
\(531\) 2.40845e9 0.698082
\(532\) 3.77211e9 1.08616
\(533\) −6.14101e8 −0.175669
\(534\) −1.31877e9 −0.374779
\(535\) 2.65907e9 0.750742
\(536\) −1.41543e9 −0.397019
\(537\) −7.69882e8 −0.214543
\(538\) −3.52017e9 −0.974599
\(539\) −1.18955e10 −3.27207
\(540\) 1.51839e9 0.414960
\(541\) 1.44423e9 0.392145 0.196073 0.980589i \(-0.437181\pi\)
0.196073 + 0.980589i \(0.437181\pi\)
\(542\) −2.74782e9 −0.741295
\(543\) −3.33435e9 −0.893742
\(544\) 1.39630e8 0.0371863
\(545\) 2.06417e9 0.546206
\(546\) 2.77241e9 0.728925
\(547\) −2.42116e9 −0.632511 −0.316256 0.948674i \(-0.602426\pi\)
−0.316256 + 0.948674i \(0.602426\pi\)
\(548\) −3.54785e9 −0.920945
\(549\) 1.09637e9 0.282784
\(550\) 2.82392e9 0.723740
\(551\) −6.95804e9 −1.77197
\(552\) 1.26388e9 0.319829
\(553\) −3.05136e9 −0.767284
\(554\) 8.90006e8 0.222387
\(555\) 1.03525e9 0.257052
\(556\) −1.01397e9 −0.250187
\(557\) 7.78342e8 0.190843 0.0954217 0.995437i \(-0.469580\pi\)
0.0954217 + 0.995437i \(0.469580\pi\)
\(558\) −1.64161e8 −0.0399992
\(559\) 1.59757e9 0.386829
\(560\) 2.36836e9 0.569887
\(561\) −1.64358e9 −0.393026
\(562\) 3.19236e9 0.758638
\(563\) −1.52702e9 −0.360632 −0.180316 0.983609i \(-0.557712\pi\)
−0.180316 + 0.983609i \(0.557712\pi\)
\(564\) 7.09765e8 0.166586
\(565\) 9.95167e9 2.32127
\(566\) 1.81446e9 0.420620
\(567\) −9.58058e9 −2.20725
\(568\) −2.74864e9 −0.629360
\(569\) −6.14617e9 −1.39866 −0.699329 0.714800i \(-0.746518\pi\)
−0.699329 + 0.714800i \(0.746518\pi\)
\(570\) 6.00928e9 1.35913
\(571\) 7.49905e8 0.168570 0.0842849 0.996442i \(-0.473139\pi\)
0.0842849 + 0.996442i \(0.473139\pi\)
\(572\) −1.66020e9 −0.370914
\(573\) 6.54428e9 1.45318
\(574\) 2.06660e9 0.456106
\(575\) 2.25910e9 0.495562
\(576\) 2.69008e8 0.0586526
\(577\) −1.51301e9 −0.327888 −0.163944 0.986470i \(-0.552422\pi\)
−0.163944 + 0.986470i \(0.552422\pi\)
\(578\) 3.13745e9 0.675817
\(579\) 1.11179e10 2.38039
\(580\) −4.36868e9 −0.929720
\(581\) −8.40909e9 −1.77882
\(582\) −1.90713e9 −0.401006
\(583\) −1.31061e10 −2.73927
\(584\) 1.25113e9 0.259930
\(585\) 1.41054e9 0.291300
\(586\) −2.91447e9 −0.598299
\(587\) 5.97756e9 1.21980 0.609902 0.792476i \(-0.291209\pi\)
0.609902 + 0.792476i \(0.291209\pi\)
\(588\) −6.34217e9 −1.28652
\(589\) 7.34929e8 0.148198
\(590\) −6.76978e9 −1.35704
\(591\) 4.25523e9 0.847943
\(592\) −2.07475e8 −0.0410997
\(593\) −7.24895e8 −0.142752 −0.0713762 0.997449i \(-0.522739\pi\)
−0.0713762 + 0.997449i \(0.522739\pi\)
\(594\) 3.58191e9 0.701232
\(595\) −2.46386e9 −0.479521
\(596\) −2.00268e9 −0.387479
\(597\) −1.24442e10 −2.39362
\(598\) −1.32814e9 −0.253974
\(599\) 3.20378e9 0.609073 0.304536 0.952501i \(-0.401498\pi\)
0.304536 + 0.952501i \(0.401498\pi\)
\(600\) 1.50559e9 0.284562
\(601\) 1.82721e9 0.343343 0.171672 0.985154i \(-0.445083\pi\)
0.171672 + 0.985154i \(0.445083\pi\)
\(602\) −5.37623e9 −1.00436
\(603\) 2.83690e9 0.526906
\(604\) 4.59559e9 0.848618
\(605\) 9.66780e9 1.77494
\(606\) 6.29448e9 1.14896
\(607\) −2.06764e9 −0.375245 −0.187623 0.982241i \(-0.560078\pi\)
−0.187623 + 0.982241i \(0.560078\pi\)
\(608\) −1.20432e9 −0.217309
\(609\) 1.72099e10 3.08757
\(610\) −3.08173e9 −0.549719
\(611\) −7.45852e8 −0.132284
\(612\) −2.79857e8 −0.0493521
\(613\) −4.54512e9 −0.796955 −0.398477 0.917178i \(-0.630461\pi\)
−0.398477 + 0.917178i \(0.630461\pi\)
\(614\) 5.11944e9 0.892551
\(615\) 3.29227e9 0.570733
\(616\) 5.58698e9 0.963041
\(617\) −4.98415e9 −0.854265 −0.427132 0.904189i \(-0.640476\pi\)
−0.427132 + 0.904189i \(0.640476\pi\)
\(618\) −8.90911e8 −0.151836
\(619\) −4.52382e9 −0.766635 −0.383317 0.923617i \(-0.625218\pi\)
−0.383317 + 0.923617i \(0.625218\pi\)
\(620\) 4.61433e8 0.0777567
\(621\) 2.86548e9 0.480151
\(622\) 8.18119e9 1.36317
\(623\) −4.66364e9 −0.772710
\(624\) −8.85143e8 −0.145837
\(625\) −7.46520e9 −1.22310
\(626\) −6.38019e8 −0.103950
\(627\) 1.41760e10 2.29676
\(628\) 4.42913e9 0.713608
\(629\) 2.15841e8 0.0345826
\(630\) −4.74682e9 −0.756330
\(631\) 1.02552e9 0.162495 0.0812475 0.996694i \(-0.474110\pi\)
0.0812475 + 0.996694i \(0.474110\pi\)
\(632\) 9.74206e8 0.153511
\(633\) −9.33696e9 −1.46316
\(634\) 6.31157e9 0.983614
\(635\) 6.36761e9 0.986890
\(636\) −6.98761e9 −1.07703
\(637\) 6.66463e9 1.02162
\(638\) −1.03058e10 −1.57111
\(639\) 5.50902e9 0.835259
\(640\) −7.56143e8 −0.114018
\(641\) −6.46595e8 −0.0969682 −0.0484841 0.998824i \(-0.515439\pi\)
−0.0484841 + 0.998824i \(0.515439\pi\)
\(642\) 3.34436e9 0.498816
\(643\) 2.97547e9 0.441384 0.220692 0.975344i \(-0.429168\pi\)
0.220692 + 0.975344i \(0.429168\pi\)
\(644\) 4.46952e9 0.659417
\(645\) −8.56477e9 −1.25677
\(646\) 1.25288e9 0.182851
\(647\) 8.15019e9 1.18305 0.591525 0.806287i \(-0.298526\pi\)
0.591525 + 0.806287i \(0.298526\pi\)
\(648\) 3.05878e9 0.441607
\(649\) −1.59700e10 −2.29323
\(650\) −1.58214e9 −0.225968
\(651\) −1.81776e9 −0.258228
\(652\) 3.32239e9 0.469445
\(653\) 7.22353e9 1.01520 0.507602 0.861592i \(-0.330532\pi\)
0.507602 + 0.861592i \(0.330532\pi\)
\(654\) 2.59614e9 0.362916
\(655\) −2.85830e7 −0.00397433
\(656\) −6.59802e8 −0.0912537
\(657\) −2.50759e9 −0.344968
\(658\) 2.50998e9 0.343463
\(659\) −2.91517e9 −0.396794 −0.198397 0.980122i \(-0.563574\pi\)
−0.198397 + 0.980122i \(0.563574\pi\)
\(660\) 8.90052e9 1.20507
\(661\) 1.21040e10 1.63013 0.815065 0.579369i \(-0.196701\pi\)
0.815065 + 0.579369i \(0.196701\pi\)
\(662\) 3.86861e9 0.518266
\(663\) 9.20838e8 0.122712
\(664\) 2.68476e9 0.355891
\(665\) 2.12509e10 2.80222
\(666\) 4.15835e8 0.0545458
\(667\) −8.24449e9 −1.07578
\(668\) −5.55023e9 −0.720433
\(669\) 1.60970e10 2.07852
\(670\) −7.97410e9 −1.02428
\(671\) −7.26984e9 −0.928958
\(672\) 2.97873e9 0.378651
\(673\) −4.16140e9 −0.526243 −0.263122 0.964763i \(-0.584752\pi\)
−0.263122 + 0.964763i \(0.584752\pi\)
\(674\) 1.14022e9 0.143443
\(675\) 3.41349e9 0.427205
\(676\) −3.08576e9 −0.384192
\(677\) 4.12996e9 0.511547 0.255773 0.966737i \(-0.417670\pi\)
0.255773 + 0.966737i \(0.417670\pi\)
\(678\) 1.25164e10 1.54233
\(679\) −6.74430e9 −0.826785
\(680\) 7.86635e8 0.0959383
\(681\) −6.37684e9 −0.773732
\(682\) 1.08853e9 0.131399
\(683\) 1.54270e9 0.185272 0.0926361 0.995700i \(-0.470471\pi\)
0.0926361 + 0.995700i \(0.470471\pi\)
\(684\) 2.41377e9 0.288403
\(685\) −1.99875e10 −2.37598
\(686\) −1.18627e10 −1.40297
\(687\) 1.37173e10 1.61406
\(688\) 1.71646e9 0.200944
\(689\) 7.34288e9 0.855262
\(690\) 7.12031e9 0.825139
\(691\) −8.98607e9 −1.03609 −0.518044 0.855354i \(-0.673340\pi\)
−0.518044 + 0.855354i \(0.673340\pi\)
\(692\) −2.17063e9 −0.249008
\(693\) −1.11978e10 −1.27811
\(694\) 7.08747e9 0.804884
\(695\) −5.71241e9 −0.645465
\(696\) −5.49458e9 −0.617735
\(697\) 6.86410e8 0.0767837
\(698\) 2.65531e9 0.295543
\(699\) −1.87256e10 −2.07380
\(700\) 5.32429e9 0.586704
\(701\) 2.72692e9 0.298992 0.149496 0.988762i \(-0.452235\pi\)
0.149496 + 0.988762i \(0.452235\pi\)
\(702\) −2.00681e9 −0.218941
\(703\) −1.86164e9 −0.202093
\(704\) −1.78375e9 −0.192677
\(705\) 3.99860e9 0.429780
\(706\) 3.47750e9 0.371921
\(707\) 2.22595e10 2.36891
\(708\) −8.51450e9 −0.901659
\(709\) 8.71252e9 0.918083 0.459041 0.888415i \(-0.348193\pi\)
0.459041 + 0.888415i \(0.348193\pi\)
\(710\) −1.54850e10 −1.62371
\(711\) −1.95257e9 −0.203734
\(712\) 1.48895e9 0.154597
\(713\) 8.70808e8 0.0899723
\(714\) −3.09885e9 −0.318608
\(715\) −9.35305e9 −0.956934
\(716\) 8.69233e8 0.0884994
\(717\) 1.63985e9 0.166145
\(718\) −1.35144e10 −1.36258
\(719\) −1.14538e10 −1.14921 −0.574606 0.818430i \(-0.694845\pi\)
−0.574606 + 0.818430i \(0.694845\pi\)
\(720\) 1.51551e9 0.151320
\(721\) −3.15058e9 −0.313052
\(722\) −3.65518e9 −0.361434
\(723\) −6.23139e9 −0.613198
\(724\) 3.76464e9 0.368671
\(725\) −9.82121e9 −0.957155
\(726\) 1.21594e10 1.17932
\(727\) 7.31928e8 0.0706477 0.0353239 0.999376i \(-0.488754\pi\)
0.0353239 + 0.999376i \(0.488754\pi\)
\(728\) −3.13018e9 −0.300683
\(729\) 2.02670e9 0.193750
\(730\) 7.04847e9 0.670602
\(731\) −1.78568e9 −0.169080
\(732\) −3.87596e9 −0.365250
\(733\) −3.27720e9 −0.307354 −0.153677 0.988121i \(-0.549112\pi\)
−0.153677 + 0.988121i \(0.549112\pi\)
\(734\) 2.71899e9 0.253788
\(735\) −3.57299e10 −3.31914
\(736\) −1.42698e9 −0.131930
\(737\) −1.88110e10 −1.73091
\(738\) 1.32242e9 0.121108
\(739\) −1.16807e10 −1.06467 −0.532334 0.846534i \(-0.678685\pi\)
−0.532334 + 0.846534i \(0.678685\pi\)
\(740\) −1.16885e9 −0.106035
\(741\) −7.94227e9 −0.717102
\(742\) −2.47106e10 −2.22060
\(743\) −1.40226e10 −1.25420 −0.627102 0.778937i \(-0.715759\pi\)
−0.627102 + 0.778937i \(0.715759\pi\)
\(744\) 5.80354e8 0.0516639
\(745\) −1.12825e10 −0.999672
\(746\) 6.22738e9 0.549186
\(747\) −5.38098e9 −0.472323
\(748\) 1.85568e9 0.162124
\(749\) 1.18268e10 1.02845
\(750\) −4.29181e9 −0.371472
\(751\) 2.59621e9 0.223666 0.111833 0.993727i \(-0.464328\pi\)
0.111833 + 0.993727i \(0.464328\pi\)
\(752\) −8.01358e8 −0.0687170
\(753\) 6.50363e9 0.555103
\(754\) 5.77394e9 0.490538
\(755\) 2.58902e10 2.18938
\(756\) 6.75342e9 0.568457
\(757\) 1.52457e10 1.27735 0.638676 0.769476i \(-0.279482\pi\)
0.638676 + 0.769476i \(0.279482\pi\)
\(758\) −1.18049e10 −0.984509
\(759\) 1.67969e10 1.39439
\(760\) −6.78476e9 −0.560643
\(761\) 5.69847e9 0.468718 0.234359 0.972150i \(-0.424701\pi\)
0.234359 + 0.972150i \(0.424701\pi\)
\(762\) 8.00868e9 0.655720
\(763\) 9.18088e9 0.748253
\(764\) −7.38880e9 −0.599442
\(765\) −1.57663e9 −0.127325
\(766\) 1.22945e10 0.988347
\(767\) 8.94740e9 0.716000
\(768\) −9.51016e8 −0.0757571
\(769\) −1.52942e10 −1.21279 −0.606395 0.795164i \(-0.707385\pi\)
−0.606395 + 0.795164i \(0.707385\pi\)
\(770\) 3.14754e10 2.48458
\(771\) −3.04543e9 −0.239309
\(772\) −1.25526e10 −0.981917
\(773\) −1.28508e10 −1.00070 −0.500349 0.865824i \(-0.666795\pi\)
−0.500349 + 0.865824i \(0.666795\pi\)
\(774\) −3.44025e9 −0.266684
\(775\) 1.03735e9 0.0800511
\(776\) 2.15324e9 0.165416
\(777\) 4.60454e9 0.352138
\(778\) −7.25643e9 −0.552452
\(779\) −5.92031e9 −0.448708
\(780\) −4.98663e9 −0.376250
\(781\) −3.65293e10 −2.74387
\(782\) 1.48452e9 0.111010
\(783\) −1.24574e10 −0.927387
\(784\) 7.16061e9 0.530694
\(785\) 2.49524e10 1.84106
\(786\) −3.59495e7 −0.00264067
\(787\) 4.14648e9 0.303227 0.151613 0.988440i \(-0.451553\pi\)
0.151613 + 0.988440i \(0.451553\pi\)
\(788\) −4.80435e9 −0.349778
\(789\) −1.21646e10 −0.881714
\(790\) 5.48838e9 0.396050
\(791\) 4.42625e10 3.17993
\(792\) 3.57511e9 0.255712
\(793\) 4.07303e9 0.290042
\(794\) −4.59043e9 −0.325448
\(795\) −3.93661e10 −2.77867
\(796\) 1.40500e10 0.987375
\(797\) 1.79688e10 1.25723 0.628614 0.777717i \(-0.283623\pi\)
0.628614 + 0.777717i \(0.283623\pi\)
\(798\) 2.67277e10 1.86188
\(799\) 8.33674e8 0.0578206
\(800\) −1.69988e9 −0.117383
\(801\) −2.98426e9 −0.205175
\(802\) 2.56808e9 0.175791
\(803\) 1.66274e10 1.13324
\(804\) −1.00292e10 −0.680565
\(805\) 2.51799e10 1.70125
\(806\) −6.09861e8 −0.0410259
\(807\) −2.49426e10 −1.67065
\(808\) −7.10677e9 −0.473950
\(809\) 2.12029e10 1.40791 0.703957 0.710243i \(-0.251415\pi\)
0.703957 + 0.710243i \(0.251415\pi\)
\(810\) 1.72323e10 1.13932
\(811\) −2.29918e10 −1.51356 −0.756782 0.653668i \(-0.773229\pi\)
−0.756782 + 0.653668i \(0.773229\pi\)
\(812\) −1.94308e10 −1.27363
\(813\) −1.94700e10 −1.27072
\(814\) −2.75733e9 −0.179186
\(815\) 1.87174e10 1.21114
\(816\) 9.89367e8 0.0637444
\(817\) 1.54016e10 0.988070
\(818\) 1.02031e10 0.651771
\(819\) 6.27372e9 0.399054
\(820\) −3.71713e9 −0.235429
\(821\) −4.78390e9 −0.301704 −0.150852 0.988556i \(-0.548202\pi\)
−0.150852 + 0.988556i \(0.548202\pi\)
\(822\) −2.51387e10 −1.57867
\(823\) −1.60455e10 −1.00336 −0.501678 0.865054i \(-0.667284\pi\)
−0.501678 + 0.865054i \(0.667284\pi\)
\(824\) 1.00588e9 0.0626327
\(825\) 2.00092e10 1.24063
\(826\) −3.01103e10 −1.85902
\(827\) 2.87357e10 1.76666 0.883328 0.468755i \(-0.155297\pi\)
0.883328 + 0.468755i \(0.155297\pi\)
\(828\) 2.86005e9 0.175092
\(829\) 1.71065e10 1.04285 0.521423 0.853298i \(-0.325401\pi\)
0.521423 + 0.853298i \(0.325401\pi\)
\(830\) 1.51251e10 0.918176
\(831\) 6.30625e9 0.381213
\(832\) 9.99369e8 0.0601581
\(833\) −7.44937e9 −0.446542
\(834\) −7.18462e9 −0.428867
\(835\) −3.12683e10 −1.85867
\(836\) −1.60053e10 −0.947420
\(837\) 1.31579e9 0.0775616
\(838\) 1.74129e10 1.02215
\(839\) 1.40929e8 0.00823823 0.00411911 0.999992i \(-0.498689\pi\)
0.00411911 + 0.999992i \(0.498689\pi\)
\(840\) 1.67813e10 0.976894
\(841\) 1.85922e10 1.07782
\(842\) 8.11912e9 0.468723
\(843\) 2.26198e10 1.30045
\(844\) 1.05419e10 0.603558
\(845\) −1.73842e10 −0.991191
\(846\) 1.60614e9 0.0911982
\(847\) 4.29999e10 2.43151
\(848\) 7.88934e9 0.444278
\(849\) 1.28566e10 0.721022
\(850\) 1.76843e9 0.0987693
\(851\) −2.20583e9 −0.122693
\(852\) −1.94758e10 −1.07884
\(853\) −3.18982e9 −0.175973 −0.0879863 0.996122i \(-0.528043\pi\)
−0.0879863 + 0.996122i \(0.528043\pi\)
\(854\) −1.37068e10 −0.753065
\(855\) 1.35985e10 0.744062
\(856\) −3.77594e9 −0.205763
\(857\) 6.69698e8 0.0363451 0.0181725 0.999835i \(-0.494215\pi\)
0.0181725 + 0.999835i \(0.494215\pi\)
\(858\) −1.17635e10 −0.635817
\(859\) 2.27239e9 0.122323 0.0611613 0.998128i \(-0.480520\pi\)
0.0611613 + 0.998128i \(0.480520\pi\)
\(860\) 9.67003e9 0.518422
\(861\) 1.46432e10 0.781851
\(862\) −5.94866e9 −0.316332
\(863\) −3.40695e9 −0.180438 −0.0902191 0.995922i \(-0.528757\pi\)
−0.0902191 + 0.995922i \(0.528757\pi\)
\(864\) −2.15616e9 −0.113732
\(865\) −1.22287e10 −0.642425
\(866\) 1.33289e10 0.697400
\(867\) 2.22308e10 1.15848
\(868\) 2.05234e9 0.106520
\(869\) 1.29472e10 0.669276
\(870\) −3.09548e10 −1.59372
\(871\) 1.05391e10 0.540431
\(872\) −2.93117e9 −0.149704
\(873\) −4.31568e9 −0.219533
\(874\) −1.28041e10 −0.648721
\(875\) −1.51773e10 −0.765892
\(876\) 8.86500e9 0.445569
\(877\) 7.72835e9 0.386890 0.193445 0.981111i \(-0.438034\pi\)
0.193445 + 0.981111i \(0.438034\pi\)
\(878\) −2.12632e10 −1.06023
\(879\) −2.06508e10 −1.02560
\(880\) −1.00491e10 −0.497093
\(881\) 6.20300e9 0.305623 0.152812 0.988255i \(-0.451167\pi\)
0.152812 + 0.988255i \(0.451167\pi\)
\(882\) −1.43518e10 −0.704314
\(883\) 3.00361e9 0.146819 0.0734094 0.997302i \(-0.476612\pi\)
0.0734094 + 0.997302i \(0.476612\pi\)
\(884\) −1.03967e9 −0.0506189
\(885\) −4.79681e10 −2.32622
\(886\) −9.67799e9 −0.467485
\(887\) −1.29120e10 −0.621244 −0.310622 0.950533i \(-0.600537\pi\)
−0.310622 + 0.950533i \(0.600537\pi\)
\(888\) −1.47009e9 −0.0704527
\(889\) 2.83215e10 1.35195
\(890\) 8.38832e9 0.398850
\(891\) 4.06511e10 1.92531
\(892\) −1.81743e10 −0.857395
\(893\) −7.19047e9 −0.337892
\(894\) −1.41902e10 −0.664213
\(895\) 4.89700e9 0.228323
\(896\) −3.36313e9 −0.156194
\(897\) −9.41068e9 −0.435359
\(898\) −1.12787e10 −0.519746
\(899\) −3.78575e9 −0.173777
\(900\) 3.40702e9 0.155785
\(901\) −8.20749e9 −0.373829
\(902\) −8.76875e9 −0.397846
\(903\) −3.80939e10 −1.72166
\(904\) −1.41316e10 −0.636213
\(905\) 2.12089e10 0.951146
\(906\) 3.25626e10 1.45469
\(907\) 6.25212e9 0.278229 0.139114 0.990276i \(-0.455574\pi\)
0.139114 + 0.990276i \(0.455574\pi\)
\(908\) 7.19975e9 0.319166
\(909\) 1.42439e10 0.629006
\(910\) −1.76345e10 −0.775743
\(911\) −1.74902e10 −0.766444 −0.383222 0.923656i \(-0.625186\pi\)
−0.383222 + 0.923656i \(0.625186\pi\)
\(912\) −8.53333e9 −0.372509
\(913\) 3.56803e10 1.55161
\(914\) 1.34240e10 0.581529
\(915\) −2.18360e10 −0.942322
\(916\) −1.54875e10 −0.665805
\(917\) −1.27130e8 −0.00544446
\(918\) 2.24311e9 0.0956976
\(919\) −4.34787e10 −1.84787 −0.923937 0.382544i \(-0.875048\pi\)
−0.923937 + 0.382544i \(0.875048\pi\)
\(920\) −8.03917e9 −0.340372
\(921\) 3.62744e10 1.53000
\(922\) 4.07688e9 0.171305
\(923\) 2.04660e10 0.856698
\(924\) 3.95872e10 1.65083
\(925\) −2.62769e9 −0.109164
\(926\) 1.96724e10 0.814179
\(927\) −2.01606e9 −0.0831234
\(928\) 6.20364e9 0.254817
\(929\) 1.50106e10 0.614249 0.307125 0.951669i \(-0.400633\pi\)
0.307125 + 0.951669i \(0.400633\pi\)
\(930\) 3.26954e9 0.133290
\(931\) 6.42511e10 2.60950
\(932\) 2.11421e10 0.855447
\(933\) 5.79688e10 2.33673
\(934\) 9.50297e9 0.381632
\(935\) 1.04544e10 0.418270
\(936\) −2.00300e9 −0.0798392
\(937\) −3.32777e10 −1.32149 −0.660747 0.750609i \(-0.729760\pi\)
−0.660747 + 0.750609i \(0.729760\pi\)
\(938\) −3.54668e10 −1.40317
\(939\) −4.52076e9 −0.178189
\(940\) −4.51461e9 −0.177285
\(941\) −4.53503e9 −0.177426 −0.0887129 0.996057i \(-0.528275\pi\)
−0.0887129 + 0.996057i \(0.528275\pi\)
\(942\) 3.13831e10 1.22326
\(943\) −7.01490e9 −0.272415
\(944\) 9.61327e9 0.371937
\(945\) 3.80468e10 1.46658
\(946\) 2.28117e10 0.876070
\(947\) −2.12973e10 −0.814890 −0.407445 0.913230i \(-0.633580\pi\)
−0.407445 + 0.913230i \(0.633580\pi\)
\(948\) 6.90285e9 0.263148
\(949\) −9.31573e9 −0.353822
\(950\) −1.52528e10 −0.577187
\(951\) 4.47214e10 1.68610
\(952\) 3.49875e9 0.131427
\(953\) −3.81067e10 −1.42618 −0.713092 0.701070i \(-0.752706\pi\)
−0.713092 + 0.701070i \(0.752706\pi\)
\(954\) −1.58124e10 −0.589627
\(955\) −4.16263e10 −1.54652
\(956\) −1.85147e9 −0.0685352
\(957\) −7.30227e10 −2.69319
\(958\) 3.62227e10 1.33107
\(959\) −8.88994e10 −3.25487
\(960\) −5.35774e9 −0.195448
\(961\) −2.71128e10 −0.985466
\(962\) 1.54483e9 0.0559459
\(963\) 7.56800e9 0.273080
\(964\) 7.03553e9 0.252946
\(965\) −7.07179e10 −2.53328
\(966\) 3.16693e10 1.13037
\(967\) 3.86009e10 1.37279 0.686397 0.727227i \(-0.259191\pi\)
0.686397 + 0.727227i \(0.259191\pi\)
\(968\) −1.37285e10 −0.486474
\(969\) 8.87745e9 0.313440
\(970\) 1.21307e10 0.426762
\(971\) −4.11369e10 −1.44200 −0.720998 0.692938i \(-0.756316\pi\)
−0.720998 + 0.692938i \(0.756316\pi\)
\(972\) 1.24634e10 0.435315
\(973\) −2.54073e10 −0.884228
\(974\) −1.47023e10 −0.509834
\(975\) −1.12104e10 −0.387352
\(976\) 4.37614e9 0.150667
\(977\) 9.69080e9 0.332452 0.166226 0.986088i \(-0.446842\pi\)
0.166226 + 0.986088i \(0.446842\pi\)
\(978\) 2.35412e10 0.804717
\(979\) 1.97881e10 0.674009
\(980\) 4.03407e10 1.36915
\(981\) 5.87485e9 0.198681
\(982\) 4.09577e10 1.38021
\(983\) −3.21349e10 −1.07905 −0.539523 0.841971i \(-0.681395\pi\)
−0.539523 + 0.841971i \(0.681395\pi\)
\(984\) −4.67511e9 −0.156426
\(985\) −2.70663e10 −0.902405
\(986\) −6.45381e9 −0.214411
\(987\) 1.77848e10 0.588760
\(988\) 8.96719e9 0.295806
\(989\) 1.82491e10 0.599866
\(990\) 2.01411e10 0.659721
\(991\) −6.24879e9 −0.203957 −0.101978 0.994787i \(-0.532517\pi\)
−0.101978 + 0.994787i \(0.532517\pi\)
\(992\) −6.55247e8 −0.0213115
\(993\) 2.74115e10 0.888405
\(994\) −6.88734e10 −2.22433
\(995\) 7.91538e10 2.54736
\(996\) 1.90232e10 0.610064
\(997\) −2.81770e10 −0.900454 −0.450227 0.892914i \(-0.648657\pi\)
−0.450227 + 0.892914i \(0.648657\pi\)
\(998\) 1.21585e10 0.387190
\(999\) −3.33300e9 −0.105769
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 74.8.a.c.1.2 6
4.3 odd 2 592.8.a.c.1.5 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
74.8.a.c.1.2 6 1.1 even 1 trivial
592.8.a.c.1.5 6 4.3 odd 2