Properties

Label 74.8.a.c.1.1
Level $74$
Weight $8$
Character 74.1
Self dual yes
Analytic conductor $23.116$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [74,8,Mod(1,74)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(74, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("74.1");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 74 = 2 \cdot 37 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 74.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(23.1164918858\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 10621x^{4} + 102052x^{3} + 31004503x^{2} - 305547358x - 22608804936 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(64.4910\) of defining polynomial
Character \(\chi\) \(=\) 74.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-8.00000 q^{2} -59.4910 q^{3} +64.0000 q^{4} +326.669 q^{5} +475.928 q^{6} -633.531 q^{7} -512.000 q^{8} +1352.18 q^{9} +O(q^{10})\) \(q-8.00000 q^{2} -59.4910 q^{3} +64.0000 q^{4} +326.669 q^{5} +475.928 q^{6} -633.531 q^{7} -512.000 q^{8} +1352.18 q^{9} -2613.35 q^{10} +4928.94 q^{11} -3807.43 q^{12} -10502.1 q^{13} +5068.25 q^{14} -19433.9 q^{15} +4096.00 q^{16} -26949.9 q^{17} -10817.5 q^{18} -28886.5 q^{19} +20906.8 q^{20} +37689.4 q^{21} -39431.6 q^{22} +62884.4 q^{23} +30459.4 q^{24} +28587.8 q^{25} +84017.0 q^{26} +49664.1 q^{27} -40546.0 q^{28} +234300. q^{29} +155471. q^{30} +134578. q^{31} -32768.0 q^{32} -293228. q^{33} +215599. q^{34} -206955. q^{35} +86539.8 q^{36} -50653.0 q^{37} +231092. q^{38} +624782. q^{39} -167255. q^{40} +89548.2 q^{41} -301515. q^{42} -133891. q^{43} +315452. q^{44} +441717. q^{45} -503075. q^{46} +1.29838e6 q^{47} -243675. q^{48} -422182. q^{49} -228702. q^{50} +1.60328e6 q^{51} -672136. q^{52} -1.28869e6 q^{53} -397313. q^{54} +1.61013e6 q^{55} +324368. q^{56} +1.71849e6 q^{57} -1.87440e6 q^{58} +1.69934e6 q^{59} -1.24377e6 q^{60} +542247. q^{61} -1.07662e6 q^{62} -856650. q^{63} +262144. q^{64} -3.43072e6 q^{65} +2.34582e6 q^{66} +598542. q^{67} -1.72480e6 q^{68} -3.74106e6 q^{69} +1.65564e6 q^{70} +1.28667e6 q^{71} -692318. q^{72} +5.37565e6 q^{73} +405224. q^{74} -1.70072e6 q^{75} -1.84874e6 q^{76} -3.12264e6 q^{77} -4.99826e6 q^{78} +4.37280e6 q^{79} +1.33804e6 q^{80} -5.91179e6 q^{81} -716385. q^{82} -1.49657e6 q^{83} +2.41212e6 q^{84} -8.80371e6 q^{85} +1.07113e6 q^{86} -1.39387e7 q^{87} -2.52362e6 q^{88} +9.71768e6 q^{89} -3.53373e6 q^{90} +6.65342e6 q^{91} +4.02460e6 q^{92} -8.00617e6 q^{93} -1.03870e7 q^{94} -9.43633e6 q^{95} +1.94940e6 q^{96} +816910. q^{97} +3.37745e6 q^{98} +6.66484e6 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 48 q^{2} + 28 q^{3} + 384 q^{4} - 14 q^{5} - 224 q^{6} - 980 q^{7} - 3072 q^{8} + 8254 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 6 q - 48 q^{2} + 28 q^{3} + 384 q^{4} - 14 q^{5} - 224 q^{6} - 980 q^{7} - 3072 q^{8} + 8254 q^{9} + 112 q^{10} + 2956 q^{11} + 1792 q^{12} + 2394 q^{13} + 7840 q^{14} - 28820 q^{15} + 24576 q^{16} - 45108 q^{17} - 66032 q^{18} + 11764 q^{19} - 896 q^{20} - 135378 q^{21} - 23648 q^{22} + 21052 q^{23} - 14336 q^{24} + 194744 q^{25} - 19152 q^{26} + 439240 q^{27} - 62720 q^{28} + 288454 q^{29} + 230560 q^{30} + 578868 q^{31} - 196608 q^{32} + 980174 q^{33} + 360864 q^{34} + 1243052 q^{35} + 528256 q^{36} - 303918 q^{37} - 94112 q^{38} + 1735296 q^{39} + 7168 q^{40} + 1176840 q^{41} + 1083024 q^{42} + 2669236 q^{43} + 189184 q^{44} + 2560692 q^{45} - 168416 q^{46} - 131044 q^{47} + 114688 q^{48} + 2460856 q^{49} - 1557952 q^{50} + 2899732 q^{51} + 153216 q^{52} + 983190 q^{53} - 3513920 q^{54} - 1200168 q^{55} + 501760 q^{56} - 163216 q^{57} - 2307632 q^{58} - 1215568 q^{59} - 1844480 q^{60} + 3136358 q^{61} - 4630944 q^{62} - 1444880 q^{63} + 1572864 q^{64} - 1302836 q^{65} - 7841392 q^{66} + 2179276 q^{67} - 2886912 q^{68} - 929514 q^{69} - 9944416 q^{70} + 325164 q^{71} - 4226048 q^{72} + 5011444 q^{73} + 2431344 q^{74} - 9374520 q^{75} + 752896 q^{76} - 26500426 q^{77} - 13882368 q^{78} + 3173032 q^{79} - 57344 q^{80} - 2565226 q^{81} - 9414720 q^{82} - 22567048 q^{83} - 8664192 q^{84} + 1486476 q^{85} - 21353888 q^{86} - 157228 q^{87} - 1513472 q^{88} + 26836996 q^{89} - 20485536 q^{90} + 17942380 q^{91} + 1347328 q^{92} + 16734948 q^{93} + 1048352 q^{94} - 4252048 q^{95} - 917504 q^{96} + 295792 q^{97} - 19686848 q^{98} + 25990712 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −8.00000 −0.707107
\(3\) −59.4910 −1.27212 −0.636059 0.771641i \(-0.719436\pi\)
−0.636059 + 0.771641i \(0.719436\pi\)
\(4\) 64.0000 0.500000
\(5\) 326.669 1.16873 0.584364 0.811492i \(-0.301344\pi\)
0.584364 + 0.811492i \(0.301344\pi\)
\(6\) 475.928 0.899523
\(7\) −633.531 −0.698111 −0.349056 0.937102i \(-0.613498\pi\)
−0.349056 + 0.937102i \(0.613498\pi\)
\(8\) −512.000 −0.353553
\(9\) 1352.18 0.618282
\(10\) −2613.35 −0.826415
\(11\) 4928.94 1.11655 0.558277 0.829655i \(-0.311463\pi\)
0.558277 + 0.829655i \(0.311463\pi\)
\(12\) −3807.43 −0.636059
\(13\) −10502.1 −1.32579 −0.662896 0.748711i \(-0.730673\pi\)
−0.662896 + 0.748711i \(0.730673\pi\)
\(14\) 5068.25 0.493639
\(15\) −19433.9 −1.48676
\(16\) 4096.00 0.250000
\(17\) −26949.9 −1.33041 −0.665206 0.746660i \(-0.731656\pi\)
−0.665206 + 0.746660i \(0.731656\pi\)
\(18\) −10817.5 −0.437192
\(19\) −28886.5 −0.966178 −0.483089 0.875571i \(-0.660485\pi\)
−0.483089 + 0.875571i \(0.660485\pi\)
\(20\) 20906.8 0.584364
\(21\) 37689.4 0.888079
\(22\) −39431.6 −0.789522
\(23\) 62884.4 1.07769 0.538847 0.842404i \(-0.318860\pi\)
0.538847 + 0.842404i \(0.318860\pi\)
\(24\) 30459.4 0.449761
\(25\) 28587.8 0.365924
\(26\) 84017.0 0.937477
\(27\) 49664.1 0.485589
\(28\) −40546.0 −0.349056
\(29\) 234300. 1.78393 0.891967 0.452100i \(-0.149325\pi\)
0.891967 + 0.452100i \(0.149325\pi\)
\(30\) 155471. 1.05130
\(31\) 134578. 0.811348 0.405674 0.914018i \(-0.367037\pi\)
0.405674 + 0.914018i \(0.367037\pi\)
\(32\) −32768.0 −0.176777
\(33\) −293228. −1.42039
\(34\) 215599. 0.940744
\(35\) −206955. −0.815902
\(36\) 86539.8 0.309141
\(37\) −50653.0 −0.164399
\(38\) 231092. 0.683191
\(39\) 624782. 1.68656
\(40\) −167255. −0.413208
\(41\) 89548.2 0.202915 0.101457 0.994840i \(-0.467649\pi\)
0.101457 + 0.994840i \(0.467649\pi\)
\(42\) −301515. −0.627967
\(43\) −133891. −0.256811 −0.128405 0.991722i \(-0.540986\pi\)
−0.128405 + 0.991722i \(0.540986\pi\)
\(44\) 315452. 0.558277
\(45\) 441717. 0.722604
\(46\) −503075. −0.762045
\(47\) 1.29838e6 1.82414 0.912072 0.410031i \(-0.134482\pi\)
0.912072 + 0.410031i \(0.134482\pi\)
\(48\) −243675. −0.318029
\(49\) −422182. −0.512641
\(50\) −228702. −0.258747
\(51\) 1.60328e6 1.69244
\(52\) −672136. −0.662896
\(53\) −1.28869e6 −1.18901 −0.594503 0.804094i \(-0.702651\pi\)
−0.594503 + 0.804094i \(0.702651\pi\)
\(54\) −397313. −0.343364
\(55\) 1.61013e6 1.30495
\(56\) 324368. 0.246820
\(57\) 1.71849e6 1.22909
\(58\) −1.87440e6 −1.26143
\(59\) 1.69934e6 1.07721 0.538603 0.842560i \(-0.318952\pi\)
0.538603 + 0.842560i \(0.318952\pi\)
\(60\) −1.24377e6 −0.743379
\(61\) 542247. 0.305874 0.152937 0.988236i \(-0.451127\pi\)
0.152937 + 0.988236i \(0.451127\pi\)
\(62\) −1.07662e6 −0.573710
\(63\) −856650. −0.431630
\(64\) 262144. 0.125000
\(65\) −3.43072e6 −1.54949
\(66\) 2.34582e6 1.00437
\(67\) 598542. 0.243127 0.121563 0.992584i \(-0.461209\pi\)
0.121563 + 0.992584i \(0.461209\pi\)
\(68\) −1.72480e6 −0.665206
\(69\) −3.74106e6 −1.37095
\(70\) 1.65564e6 0.576930
\(71\) 1.28667e6 0.426640 0.213320 0.976982i \(-0.431572\pi\)
0.213320 + 0.976982i \(0.431572\pi\)
\(72\) −692318. −0.218596
\(73\) 5.37565e6 1.61734 0.808670 0.588263i \(-0.200188\pi\)
0.808670 + 0.588263i \(0.200188\pi\)
\(74\) 405224. 0.116248
\(75\) −1.70072e6 −0.465498
\(76\) −1.84874e6 −0.483089
\(77\) −3.12264e6 −0.779478
\(78\) −4.99826e6 −1.19258
\(79\) 4.37280e6 0.997848 0.498924 0.866646i \(-0.333729\pi\)
0.498924 + 0.866646i \(0.333729\pi\)
\(80\) 1.33804e6 0.292182
\(81\) −5.91179e6 −1.23601
\(82\) −716385. −0.143482
\(83\) −1.49657e6 −0.287293 −0.143646 0.989629i \(-0.545883\pi\)
−0.143646 + 0.989629i \(0.545883\pi\)
\(84\) 2.41212e6 0.444040
\(85\) −8.80371e6 −1.55489
\(86\) 1.07113e6 0.181593
\(87\) −1.39387e7 −2.26937
\(88\) −2.52362e6 −0.394761
\(89\) 9.71768e6 1.46116 0.730580 0.682827i \(-0.239250\pi\)
0.730580 + 0.682827i \(0.239250\pi\)
\(90\) −3.53373e6 −0.510958
\(91\) 6.65342e6 0.925550
\(92\) 4.02460e6 0.538847
\(93\) −8.00617e6 −1.03213
\(94\) −1.03870e7 −1.28986
\(95\) −9.43633e6 −1.12920
\(96\) 1.94940e6 0.224881
\(97\) 816910. 0.0908810 0.0454405 0.998967i \(-0.485531\pi\)
0.0454405 + 0.998967i \(0.485531\pi\)
\(98\) 3.37745e6 0.362492
\(99\) 6.66484e6 0.690345
\(100\) 1.82962e6 0.182962
\(101\) 1.46614e7 1.41596 0.707980 0.706233i \(-0.249607\pi\)
0.707980 + 0.706233i \(0.249607\pi\)
\(102\) −1.28262e7 −1.19674
\(103\) 1.22739e7 1.10676 0.553378 0.832930i \(-0.313339\pi\)
0.553378 + 0.832930i \(0.313339\pi\)
\(104\) 5.37709e6 0.468738
\(105\) 1.23120e7 1.03792
\(106\) 1.03095e7 0.840754
\(107\) 6.90406e6 0.544831 0.272415 0.962180i \(-0.412178\pi\)
0.272415 + 0.962180i \(0.412178\pi\)
\(108\) 3.17850e6 0.242795
\(109\) 4.00824e6 0.296456 0.148228 0.988953i \(-0.452643\pi\)
0.148228 + 0.988953i \(0.452643\pi\)
\(110\) −1.28811e7 −0.922736
\(111\) 3.01340e6 0.209135
\(112\) −2.59494e6 −0.174528
\(113\) −1.82237e7 −1.18812 −0.594062 0.804419i \(-0.702477\pi\)
−0.594062 + 0.804419i \(0.702477\pi\)
\(114\) −1.37479e7 −0.869099
\(115\) 2.05424e7 1.25953
\(116\) 1.49952e7 0.891967
\(117\) −1.42008e7 −0.819714
\(118\) −1.35947e7 −0.761700
\(119\) 1.70736e7 0.928776
\(120\) 9.95015e6 0.525648
\(121\) 4.80732e6 0.246691
\(122\) −4.33798e6 −0.216286
\(123\) −5.32731e6 −0.258131
\(124\) 8.61297e6 0.405674
\(125\) −1.61823e7 −0.741062
\(126\) 6.85320e6 0.305208
\(127\) 8.10569e6 0.351137 0.175569 0.984467i \(-0.443824\pi\)
0.175569 + 0.984467i \(0.443824\pi\)
\(128\) −2.09715e6 −0.0883883
\(129\) 7.96534e6 0.326693
\(130\) 2.74458e7 1.09565
\(131\) 1.51186e7 0.587573 0.293786 0.955871i \(-0.405085\pi\)
0.293786 + 0.955871i \(0.405085\pi\)
\(132\) −1.87666e7 −0.710193
\(133\) 1.83005e7 0.674500
\(134\) −4.78834e6 −0.171917
\(135\) 1.62237e7 0.567522
\(136\) 1.37984e7 0.470372
\(137\) 511213. 0.0169856 0.00849278 0.999964i \(-0.497297\pi\)
0.00849278 + 0.999964i \(0.497297\pi\)
\(138\) 2.99285e7 0.969411
\(139\) −3.70747e7 −1.17092 −0.585458 0.810703i \(-0.699085\pi\)
−0.585458 + 0.810703i \(0.699085\pi\)
\(140\) −1.32451e7 −0.407951
\(141\) −7.72419e7 −2.32052
\(142\) −1.02933e7 −0.301680
\(143\) −5.17644e7 −1.48032
\(144\) 5.53854e6 0.154571
\(145\) 7.65385e7 2.08493
\(146\) −4.30052e7 −1.14363
\(147\) 2.51160e7 0.652139
\(148\) −3.24179e6 −0.0821995
\(149\) −6.15801e7 −1.52506 −0.762532 0.646950i \(-0.776044\pi\)
−0.762532 + 0.646950i \(0.776044\pi\)
\(150\) 1.36057e7 0.329157
\(151\) −1.93912e7 −0.458338 −0.229169 0.973387i \(-0.573601\pi\)
−0.229169 + 0.973387i \(0.573601\pi\)
\(152\) 1.47899e7 0.341596
\(153\) −3.64413e7 −0.822571
\(154\) 2.49811e7 0.551174
\(155\) 4.39624e7 0.948244
\(156\) 3.99861e7 0.843282
\(157\) 9.55496e7 1.97052 0.985258 0.171076i \(-0.0547244\pi\)
0.985258 + 0.171076i \(0.0547244\pi\)
\(158\) −3.49824e7 −0.705585
\(159\) 7.66656e7 1.51255
\(160\) −1.07043e7 −0.206604
\(161\) −3.98392e7 −0.752350
\(162\) 4.72944e7 0.873991
\(163\) 1.46581e7 0.265106 0.132553 0.991176i \(-0.457682\pi\)
0.132553 + 0.991176i \(0.457682\pi\)
\(164\) 5.73108e6 0.101457
\(165\) −9.57886e7 −1.66005
\(166\) 1.19726e7 0.203147
\(167\) −7.81996e6 −0.129926 −0.0649632 0.997888i \(-0.520693\pi\)
−0.0649632 + 0.997888i \(0.520693\pi\)
\(168\) −1.92970e7 −0.313983
\(169\) 4.75462e7 0.757726
\(170\) 7.04297e7 1.09947
\(171\) −3.90598e7 −0.597371
\(172\) −8.56905e6 −0.128405
\(173\) 7.42856e7 1.09079 0.545397 0.838178i \(-0.316379\pi\)
0.545397 + 0.838178i \(0.316379\pi\)
\(174\) 1.11510e8 1.60469
\(175\) −1.81112e7 −0.255455
\(176\) 2.01890e7 0.279138
\(177\) −1.01096e8 −1.37033
\(178\) −7.77415e7 −1.03320
\(179\) −9.99677e7 −1.30279 −0.651394 0.758739i \(-0.725816\pi\)
−0.651394 + 0.758739i \(0.725816\pi\)
\(180\) 2.82699e7 0.361302
\(181\) 1.00847e8 1.26411 0.632056 0.774922i \(-0.282211\pi\)
0.632056 + 0.774922i \(0.282211\pi\)
\(182\) −5.32274e7 −0.654463
\(183\) −3.22588e7 −0.389108
\(184\) −3.21968e7 −0.381022
\(185\) −1.65468e7 −0.192138
\(186\) 6.40493e7 0.729826
\(187\) −1.32835e8 −1.48548
\(188\) 8.30962e7 0.912072
\(189\) −3.14637e7 −0.338995
\(190\) 7.54906e7 0.798464
\(191\) 6.07867e6 0.0631236 0.0315618 0.999502i \(-0.489952\pi\)
0.0315618 + 0.999502i \(0.489952\pi\)
\(192\) −1.55952e7 −0.159015
\(193\) −1.30742e8 −1.30907 −0.654537 0.756030i \(-0.727136\pi\)
−0.654537 + 0.756030i \(0.727136\pi\)
\(194\) −6.53528e6 −0.0642625
\(195\) 2.04097e8 1.97113
\(196\) −2.70196e7 −0.256320
\(197\) −5.54311e7 −0.516561 −0.258280 0.966070i \(-0.583156\pi\)
−0.258280 + 0.966070i \(0.583156\pi\)
\(198\) −5.33187e7 −0.488148
\(199\) −6.82874e7 −0.614264 −0.307132 0.951667i \(-0.599369\pi\)
−0.307132 + 0.951667i \(0.599369\pi\)
\(200\) −1.46369e7 −0.129374
\(201\) −3.56079e7 −0.309286
\(202\) −1.17291e8 −1.00123
\(203\) −1.48436e8 −1.24538
\(204\) 1.02610e8 0.846221
\(205\) 2.92526e7 0.237152
\(206\) −9.81911e7 −0.782595
\(207\) 8.50313e7 0.666319
\(208\) −4.30167e7 −0.331448
\(209\) −1.42380e8 −1.07879
\(210\) −9.84957e7 −0.733922
\(211\) −2.03378e8 −1.49045 −0.745223 0.666815i \(-0.767657\pi\)
−0.745223 + 0.666815i \(0.767657\pi\)
\(212\) −8.24763e7 −0.594503
\(213\) −7.65452e7 −0.542737
\(214\) −5.52325e7 −0.385254
\(215\) −4.37382e7 −0.300142
\(216\) −2.54280e7 −0.171682
\(217\) −8.52591e7 −0.566411
\(218\) −3.20659e7 −0.209626
\(219\) −3.19803e8 −2.05745
\(220\) 1.03049e8 0.652473
\(221\) 2.83032e8 1.76385
\(222\) −2.41072e7 −0.147881
\(223\) 2.51602e8 1.51931 0.759655 0.650326i \(-0.225368\pi\)
0.759655 + 0.650326i \(0.225368\pi\)
\(224\) 2.07595e7 0.123410
\(225\) 3.86559e7 0.226244
\(226\) 1.45789e8 0.840130
\(227\) 1.39422e8 0.791119 0.395559 0.918440i \(-0.370551\pi\)
0.395559 + 0.918440i \(0.370551\pi\)
\(228\) 1.09983e8 0.614546
\(229\) 6.53710e7 0.359717 0.179859 0.983692i \(-0.442436\pi\)
0.179859 + 0.983692i \(0.442436\pi\)
\(230\) −1.64339e8 −0.890623
\(231\) 1.85769e8 0.991588
\(232\) −1.19961e8 −0.630716
\(233\) −1.58572e8 −0.821259 −0.410630 0.911802i \(-0.634691\pi\)
−0.410630 + 0.911802i \(0.634691\pi\)
\(234\) 1.13606e8 0.579626
\(235\) 4.24140e8 2.13193
\(236\) 1.08758e8 0.538603
\(237\) −2.60142e8 −1.26938
\(238\) −1.36589e8 −0.656744
\(239\) 1.38083e8 0.654257 0.327129 0.944980i \(-0.393919\pi\)
0.327129 + 0.944980i \(0.393919\pi\)
\(240\) −7.96012e7 −0.371690
\(241\) 2.72955e8 1.25612 0.628060 0.778165i \(-0.283849\pi\)
0.628060 + 0.778165i \(0.283849\pi\)
\(242\) −3.84585e7 −0.174437
\(243\) 2.43083e8 1.08676
\(244\) 3.47038e7 0.152937
\(245\) −1.37914e8 −0.599137
\(246\) 4.26185e7 0.182526
\(247\) 3.03370e8 1.28095
\(248\) −6.89038e7 −0.286855
\(249\) 8.90328e7 0.365470
\(250\) 1.29458e8 0.524010
\(251\) −1.04504e8 −0.417133 −0.208566 0.978008i \(-0.566880\pi\)
−0.208566 + 0.978008i \(0.566880\pi\)
\(252\) −5.48256e7 −0.215815
\(253\) 3.09954e8 1.20330
\(254\) −6.48455e7 −0.248292
\(255\) 5.23742e8 1.97800
\(256\) 1.67772e7 0.0625000
\(257\) −8.92962e7 −0.328146 −0.164073 0.986448i \(-0.552463\pi\)
−0.164073 + 0.986448i \(0.552463\pi\)
\(258\) −6.37227e7 −0.231007
\(259\) 3.20902e7 0.114769
\(260\) −2.19566e8 −0.774745
\(261\) 3.16816e8 1.10298
\(262\) −1.20949e8 −0.415477
\(263\) 4.30716e8 1.45998 0.729989 0.683459i \(-0.239525\pi\)
0.729989 + 0.683459i \(0.239525\pi\)
\(264\) 1.50133e8 0.502183
\(265\) −4.20976e8 −1.38962
\(266\) −1.46404e8 −0.476943
\(267\) −5.78115e8 −1.85877
\(268\) 3.83067e7 0.121563
\(269\) 3.96858e8 1.24309 0.621545 0.783379i \(-0.286505\pi\)
0.621545 + 0.783379i \(0.286505\pi\)
\(270\) −1.29790e8 −0.401298
\(271\) −4.25336e8 −1.29819 −0.649097 0.760706i \(-0.724853\pi\)
−0.649097 + 0.760706i \(0.724853\pi\)
\(272\) −1.10387e8 −0.332603
\(273\) −3.95819e8 −1.17741
\(274\) −4.08971e6 −0.0120106
\(275\) 1.40908e8 0.408573
\(276\) −2.39428e8 −0.685477
\(277\) −3.85529e8 −1.08988 −0.544939 0.838475i \(-0.683447\pi\)
−0.544939 + 0.838475i \(0.683447\pi\)
\(278\) 2.96597e8 0.827962
\(279\) 1.81974e8 0.501642
\(280\) 1.05961e8 0.288465
\(281\) 6.68139e8 1.79637 0.898183 0.439622i \(-0.144888\pi\)
0.898183 + 0.439622i \(0.144888\pi\)
\(282\) 6.17935e8 1.64086
\(283\) −6.06642e6 −0.0159104 −0.00795518 0.999968i \(-0.502532\pi\)
−0.00795518 + 0.999968i \(0.502532\pi\)
\(284\) 8.23467e7 0.213320
\(285\) 5.61377e8 1.43647
\(286\) 4.14115e8 1.04674
\(287\) −5.67315e7 −0.141657
\(288\) −4.43084e7 −0.109298
\(289\) 3.15960e8 0.769998
\(290\) −6.12308e8 −1.47427
\(291\) −4.85988e7 −0.115611
\(292\) 3.44042e8 0.808670
\(293\) −5.52559e8 −1.28334 −0.641670 0.766981i \(-0.721758\pi\)
−0.641670 + 0.766981i \(0.721758\pi\)
\(294\) −2.00928e8 −0.461132
\(295\) 5.55123e8 1.25896
\(296\) 2.59343e7 0.0581238
\(297\) 2.44791e8 0.542187
\(298\) 4.92641e8 1.07838
\(299\) −6.60420e8 −1.42880
\(300\) −1.08846e8 −0.232749
\(301\) 8.48243e7 0.179282
\(302\) 1.55130e8 0.324094
\(303\) −8.72222e8 −1.80127
\(304\) −1.18319e8 −0.241544
\(305\) 1.77135e8 0.357484
\(306\) 2.91530e8 0.581645
\(307\) −1.60387e8 −0.316363 −0.158181 0.987410i \(-0.550563\pi\)
−0.158181 + 0.987410i \(0.550563\pi\)
\(308\) −1.99849e8 −0.389739
\(309\) −7.30186e8 −1.40792
\(310\) −3.51699e8 −0.670510
\(311\) −3.88779e8 −0.732895 −0.366447 0.930439i \(-0.619426\pi\)
−0.366447 + 0.930439i \(0.619426\pi\)
\(312\) −3.19889e8 −0.596290
\(313\) −5.66353e8 −1.04396 −0.521978 0.852959i \(-0.674806\pi\)
−0.521978 + 0.852959i \(0.674806\pi\)
\(314\) −7.64396e8 −1.39336
\(315\) −2.79841e8 −0.504458
\(316\) 2.79859e8 0.498924
\(317\) −5.85559e8 −1.03244 −0.516218 0.856457i \(-0.672661\pi\)
−0.516218 + 0.856457i \(0.672661\pi\)
\(318\) −6.13325e8 −1.06954
\(319\) 1.15485e9 1.99186
\(320\) 8.56344e7 0.146091
\(321\) −4.10730e8 −0.693089
\(322\) 3.18714e8 0.531992
\(323\) 7.78489e8 1.28542
\(324\) −3.78355e8 −0.618005
\(325\) −3.00233e8 −0.485139
\(326\) −1.17265e8 −0.187459
\(327\) −2.38454e8 −0.377127
\(328\) −4.58487e7 −0.0717411
\(329\) −8.22563e8 −1.27345
\(330\) 7.66309e8 1.17383
\(331\) 9.09836e8 1.37900 0.689501 0.724284i \(-0.257830\pi\)
0.689501 + 0.724284i \(0.257830\pi\)
\(332\) −9.57807e7 −0.143646
\(333\) −6.84922e7 −0.101645
\(334\) 6.25597e7 0.0918718
\(335\) 1.95525e8 0.284149
\(336\) 1.54376e8 0.222020
\(337\) −7.44856e8 −1.06015 −0.530076 0.847950i \(-0.677836\pi\)
−0.530076 + 0.847950i \(0.677836\pi\)
\(338\) −3.80369e8 −0.535793
\(339\) 1.08415e9 1.51143
\(340\) −5.63438e8 −0.777445
\(341\) 6.63326e8 0.905913
\(342\) 3.12479e8 0.422405
\(343\) 7.89205e8 1.05599
\(344\) 6.85524e7 0.0907963
\(345\) −1.22209e9 −1.60227
\(346\) −5.94285e8 −0.771309
\(347\) 4.50778e8 0.579175 0.289588 0.957152i \(-0.406482\pi\)
0.289588 + 0.957152i \(0.406482\pi\)
\(348\) −8.92079e8 −1.13469
\(349\) −3.02416e8 −0.380817 −0.190408 0.981705i \(-0.560981\pi\)
−0.190408 + 0.981705i \(0.560981\pi\)
\(350\) 1.44890e8 0.180634
\(351\) −5.21579e8 −0.643791
\(352\) −1.61512e8 −0.197381
\(353\) 1.84058e8 0.222712 0.111356 0.993781i \(-0.464481\pi\)
0.111356 + 0.993781i \(0.464481\pi\)
\(354\) 8.08765e8 0.968972
\(355\) 4.20315e8 0.498626
\(356\) 6.21932e8 0.730580
\(357\) −1.01573e9 −1.18151
\(358\) 7.99741e8 0.921211
\(359\) −1.70072e9 −1.94000 −0.969999 0.243111i \(-0.921832\pi\)
−0.969999 + 0.243111i \(0.921832\pi\)
\(360\) −2.26159e8 −0.255479
\(361\) −5.94426e7 −0.0665001
\(362\) −8.06772e8 −0.893863
\(363\) −2.85992e8 −0.313820
\(364\) 4.25819e8 0.462775
\(365\) 1.75606e9 1.89023
\(366\) 2.58071e8 0.275141
\(367\) 8.05279e8 0.850384 0.425192 0.905103i \(-0.360207\pi\)
0.425192 + 0.905103i \(0.360207\pi\)
\(368\) 2.57575e8 0.269424
\(369\) 1.21086e8 0.125459
\(370\) 1.32374e8 0.135862
\(371\) 8.16426e8 0.830058
\(372\) −5.12395e8 −0.516065
\(373\) 1.35518e9 1.35212 0.676061 0.736846i \(-0.263686\pi\)
0.676061 + 0.736846i \(0.263686\pi\)
\(374\) 1.06268e9 1.05039
\(375\) 9.62701e8 0.942718
\(376\) −6.64770e8 −0.644932
\(377\) −2.46065e9 −2.36513
\(378\) 2.51710e8 0.239706
\(379\) 8.17165e8 0.771033 0.385516 0.922701i \(-0.374023\pi\)
0.385516 + 0.922701i \(0.374023\pi\)
\(380\) −6.03925e8 −0.564599
\(381\) −4.82216e8 −0.446688
\(382\) −4.86294e7 −0.0446352
\(383\) −4.22610e8 −0.384365 −0.192183 0.981359i \(-0.561557\pi\)
−0.192183 + 0.981359i \(0.561557\pi\)
\(384\) 1.24762e8 0.112440
\(385\) −1.02007e9 −0.910998
\(386\) 1.04593e9 0.925655
\(387\) −1.81046e8 −0.158782
\(388\) 5.22822e7 0.0454405
\(389\) −5.23938e8 −0.451291 −0.225645 0.974210i \(-0.572449\pi\)
−0.225645 + 0.974210i \(0.572449\pi\)
\(390\) −1.63278e9 −1.39380
\(391\) −1.69473e9 −1.43378
\(392\) 2.16157e8 0.181246
\(393\) −8.99420e8 −0.747462
\(394\) 4.43449e8 0.365264
\(395\) 1.42846e9 1.16621
\(396\) 4.26550e8 0.345173
\(397\) 9.30354e8 0.746245 0.373123 0.927782i \(-0.378287\pi\)
0.373123 + 0.927782i \(0.378287\pi\)
\(398\) 5.46299e8 0.434350
\(399\) −1.08871e9 −0.858043
\(400\) 1.17096e8 0.0914809
\(401\) −8.18251e8 −0.633697 −0.316848 0.948476i \(-0.602625\pi\)
−0.316848 + 0.948476i \(0.602625\pi\)
\(402\) 2.84863e8 0.218698
\(403\) −1.41335e9 −1.07568
\(404\) 9.38330e8 0.707980
\(405\) −1.93120e9 −1.44456
\(406\) 1.18749e9 0.880620
\(407\) −2.49666e8 −0.183560
\(408\) −8.20879e8 −0.598368
\(409\) −4.85949e8 −0.351204 −0.175602 0.984461i \(-0.556187\pi\)
−0.175602 + 0.984461i \(0.556187\pi\)
\(410\) −2.34021e8 −0.167692
\(411\) −3.04126e7 −0.0216076
\(412\) 7.85529e8 0.553378
\(413\) −1.07659e9 −0.752010
\(414\) −6.80250e8 −0.471159
\(415\) −4.88885e8 −0.335767
\(416\) 3.44134e8 0.234369
\(417\) 2.20561e9 1.48954
\(418\) 1.13904e9 0.762819
\(419\) 2.41129e9 1.60140 0.800700 0.599065i \(-0.204461\pi\)
0.800700 + 0.599065i \(0.204461\pi\)
\(420\) 7.87966e8 0.518961
\(421\) 1.26593e9 0.826841 0.413421 0.910540i \(-0.364334\pi\)
0.413421 + 0.910540i \(0.364334\pi\)
\(422\) 1.62703e9 1.05390
\(423\) 1.75565e9 1.12784
\(424\) 6.59810e8 0.420377
\(425\) −7.70439e8 −0.486830
\(426\) 6.12361e8 0.383773
\(427\) −3.43530e8 −0.213534
\(428\) 4.41860e8 0.272415
\(429\) 3.07952e9 1.88314
\(430\) 3.49906e8 0.212232
\(431\) 2.31185e9 1.39088 0.695440 0.718584i \(-0.255209\pi\)
0.695440 + 0.718584i \(0.255209\pi\)
\(432\) 2.03424e8 0.121397
\(433\) −1.90291e9 −1.12644 −0.563222 0.826306i \(-0.690438\pi\)
−0.563222 + 0.826306i \(0.690438\pi\)
\(434\) 6.82073e8 0.400513
\(435\) −4.55336e9 −2.65228
\(436\) 2.56527e8 0.148228
\(437\) −1.81651e9 −1.04124
\(438\) 2.55843e9 1.45483
\(439\) 1.78517e9 1.00705 0.503527 0.863979i \(-0.332035\pi\)
0.503527 + 0.863979i \(0.332035\pi\)
\(440\) −8.24389e8 −0.461368
\(441\) −5.70867e8 −0.316957
\(442\) −2.26425e9 −1.24723
\(443\) −1.26054e9 −0.688882 −0.344441 0.938808i \(-0.611932\pi\)
−0.344441 + 0.938808i \(0.611932\pi\)
\(444\) 1.92858e8 0.104567
\(445\) 3.17447e9 1.70770
\(446\) −2.01281e9 −1.07432
\(447\) 3.66346e9 1.94006
\(448\) −1.66076e8 −0.0872639
\(449\) −1.14767e8 −0.0598352 −0.0299176 0.999552i \(-0.509524\pi\)
−0.0299176 + 0.999552i \(0.509524\pi\)
\(450\) −3.09248e8 −0.159979
\(451\) 4.41378e8 0.226565
\(452\) −1.16632e9 −0.594062
\(453\) 1.15360e9 0.583059
\(454\) −1.11538e9 −0.559405
\(455\) 2.17347e9 1.08172
\(456\) −8.79865e8 −0.434550
\(457\) 2.25206e8 0.110376 0.0551879 0.998476i \(-0.482424\pi\)
0.0551879 + 0.998476i \(0.482424\pi\)
\(458\) −5.22968e8 −0.254358
\(459\) −1.33844e9 −0.646034
\(460\) 1.31471e9 0.629765
\(461\) 3.42695e9 1.62913 0.814564 0.580074i \(-0.196976\pi\)
0.814564 + 0.580074i \(0.196976\pi\)
\(462\) −1.48615e9 −0.701158
\(463\) 2.03034e9 0.950683 0.475342 0.879801i \(-0.342324\pi\)
0.475342 + 0.879801i \(0.342324\pi\)
\(464\) 9.59692e8 0.445984
\(465\) −2.61537e9 −1.20628
\(466\) 1.26857e9 0.580718
\(467\) 2.63938e9 1.19920 0.599601 0.800299i \(-0.295326\pi\)
0.599601 + 0.800299i \(0.295326\pi\)
\(468\) −9.08852e8 −0.409857
\(469\) −3.79195e8 −0.169730
\(470\) −3.39312e9 −1.50750
\(471\) −5.68434e9 −2.50673
\(472\) −8.70064e8 −0.380850
\(473\) −6.59943e8 −0.286743
\(474\) 2.08114e9 0.897587
\(475\) −8.25801e8 −0.353547
\(476\) 1.09271e9 0.464388
\(477\) −1.74255e9 −0.735141
\(478\) −1.10467e9 −0.462630
\(479\) −3.66156e9 −1.52227 −0.761135 0.648594i \(-0.775357\pi\)
−0.761135 + 0.648594i \(0.775357\pi\)
\(480\) 6.36810e8 0.262824
\(481\) 5.31964e8 0.217959
\(482\) −2.18364e9 −0.888211
\(483\) 2.37008e9 0.957078
\(484\) 3.07668e8 0.123346
\(485\) 2.66859e8 0.106215
\(486\) −1.94467e9 −0.768455
\(487\) 9.76007e8 0.382914 0.191457 0.981501i \(-0.438679\pi\)
0.191457 + 0.981501i \(0.438679\pi\)
\(488\) −2.77631e8 −0.108143
\(489\) −8.72024e8 −0.337247
\(490\) 1.10331e9 0.423654
\(491\) 5.15264e9 1.96447 0.982234 0.187662i \(-0.0600909\pi\)
0.982234 + 0.187662i \(0.0600909\pi\)
\(492\) −3.40948e8 −0.129066
\(493\) −6.31436e9 −2.37337
\(494\) −2.42696e9 −0.905769
\(495\) 2.17720e9 0.806826
\(496\) 5.51230e8 0.202837
\(497\) −8.15143e8 −0.297842
\(498\) −7.12262e8 −0.258427
\(499\) −6.78034e7 −0.0244286 −0.0122143 0.999925i \(-0.503888\pi\)
−0.0122143 + 0.999925i \(0.503888\pi\)
\(500\) −1.03567e9 −0.370531
\(501\) 4.65218e8 0.165282
\(502\) 8.36031e8 0.294958
\(503\) −5.29745e9 −1.85600 −0.928002 0.372576i \(-0.878475\pi\)
−0.928002 + 0.372576i \(0.878475\pi\)
\(504\) 4.38605e8 0.152604
\(505\) 4.78943e9 1.65487
\(506\) −2.47963e9 −0.850864
\(507\) −2.82857e9 −0.963916
\(508\) 5.18764e8 0.175569
\(509\) 5.08156e9 1.70799 0.853994 0.520282i \(-0.174173\pi\)
0.853994 + 0.520282i \(0.174173\pi\)
\(510\) −4.18994e9 −1.39866
\(511\) −3.40564e9 −1.12908
\(512\) −1.34218e8 −0.0441942
\(513\) −1.43462e9 −0.469166
\(514\) 7.14369e8 0.232034
\(515\) 4.00950e9 1.29350
\(516\) 5.09782e8 0.163347
\(517\) 6.39964e9 2.03675
\(518\) −2.56722e8 −0.0811538
\(519\) −4.41933e9 −1.38762
\(520\) 1.75653e9 0.547827
\(521\) 4.55184e9 1.41012 0.705058 0.709150i \(-0.250921\pi\)
0.705058 + 0.709150i \(0.250921\pi\)
\(522\) −2.53453e9 −0.779921
\(523\) −2.31320e9 −0.707060 −0.353530 0.935423i \(-0.615019\pi\)
−0.353530 + 0.935423i \(0.615019\pi\)
\(524\) 9.67590e8 0.293786
\(525\) 1.07746e9 0.324969
\(526\) −3.44573e9 −1.03236
\(527\) −3.62686e9 −1.07943
\(528\) −1.20106e9 −0.355097
\(529\) 5.49624e8 0.161425
\(530\) 3.36781e9 0.982612
\(531\) 2.29782e9 0.666018
\(532\) 1.17123e9 0.337250
\(533\) −9.40446e8 −0.269023
\(534\) 4.62492e9 1.31435
\(535\) 2.25535e9 0.636759
\(536\) −3.06454e8 −0.0859583
\(537\) 5.94718e9 1.65730
\(538\) −3.17486e9 −0.878997
\(539\) −2.08091e9 −0.572391
\(540\) 1.03832e9 0.283761
\(541\) 5.24683e8 0.142464 0.0712322 0.997460i \(-0.477307\pi\)
0.0712322 + 0.997460i \(0.477307\pi\)
\(542\) 3.40269e9 0.917962
\(543\) −5.99946e9 −1.60810
\(544\) 8.83095e8 0.235186
\(545\) 1.30937e9 0.346477
\(546\) 3.16655e9 0.832554
\(547\) −4.86419e9 −1.27073 −0.635367 0.772211i \(-0.719151\pi\)
−0.635367 + 0.772211i \(0.719151\pi\)
\(548\) 3.27176e7 0.00849278
\(549\) 7.33218e8 0.189117
\(550\) −1.12726e9 −0.288905
\(551\) −6.76810e9 −1.72360
\(552\) 1.91542e9 0.484705
\(553\) −2.77030e9 −0.696609
\(554\) 3.08423e9 0.770661
\(555\) 9.84385e8 0.244422
\(556\) −2.37278e9 −0.585458
\(557\) 5.18805e9 1.27207 0.636035 0.771660i \(-0.280573\pi\)
0.636035 + 0.771660i \(0.280573\pi\)
\(558\) −1.45579e9 −0.354715
\(559\) 1.40614e9 0.340478
\(560\) −8.47688e8 −0.203975
\(561\) 7.90247e9 1.88970
\(562\) −5.34511e9 −1.27022
\(563\) −5.86237e9 −1.38450 −0.692252 0.721656i \(-0.743381\pi\)
−0.692252 + 0.721656i \(0.743381\pi\)
\(564\) −4.94348e9 −1.16026
\(565\) −5.95312e9 −1.38859
\(566\) 4.85314e7 0.0112503
\(567\) 3.74530e9 0.862872
\(568\) −6.58774e8 −0.150840
\(569\) −6.72919e9 −1.53133 −0.765667 0.643238i \(-0.777591\pi\)
−0.765667 + 0.643238i \(0.777591\pi\)
\(570\) −4.49102e9 −1.01574
\(571\) −2.19206e9 −0.492748 −0.246374 0.969175i \(-0.579239\pi\)
−0.246374 + 0.969175i \(0.579239\pi\)
\(572\) −3.31292e9 −0.740159
\(573\) −3.61627e8 −0.0803007
\(574\) 4.53852e8 0.100167
\(575\) 1.79773e9 0.394354
\(576\) 3.54467e8 0.0772853
\(577\) 2.73158e9 0.591968 0.295984 0.955193i \(-0.404353\pi\)
0.295984 + 0.955193i \(0.404353\pi\)
\(578\) −2.52768e9 −0.544471
\(579\) 7.77797e9 1.66529
\(580\) 4.89847e9 1.04247
\(581\) 9.48126e8 0.200562
\(582\) 3.88790e8 0.0817495
\(583\) −6.35189e9 −1.32759
\(584\) −2.75233e9 −0.571816
\(585\) −4.63897e9 −0.958023
\(586\) 4.42047e9 0.907458
\(587\) 6.90154e9 1.40836 0.704178 0.710023i \(-0.251316\pi\)
0.704178 + 0.710023i \(0.251316\pi\)
\(588\) 1.60743e9 0.326070
\(589\) −3.88748e9 −0.783906
\(590\) −4.44098e9 −0.890220
\(591\) 3.29765e9 0.657126
\(592\) −2.07475e8 −0.0410997
\(593\) −2.98377e9 −0.587590 −0.293795 0.955869i \(-0.594918\pi\)
−0.293795 + 0.955869i \(0.594918\pi\)
\(594\) −1.95833e9 −0.383384
\(595\) 5.57742e9 1.08549
\(596\) −3.94112e9 −0.762532
\(597\) 4.06249e9 0.781416
\(598\) 5.28336e9 1.01031
\(599\) −3.07774e9 −0.585110 −0.292555 0.956249i \(-0.594505\pi\)
−0.292555 + 0.956249i \(0.594505\pi\)
\(600\) 8.70767e8 0.164578
\(601\) −7.73999e9 −1.45439 −0.727193 0.686433i \(-0.759176\pi\)
−0.727193 + 0.686433i \(0.759176\pi\)
\(602\) −6.78595e8 −0.126772
\(603\) 8.09339e8 0.150321
\(604\) −1.24104e9 −0.229169
\(605\) 1.57040e9 0.288315
\(606\) 6.97778e9 1.27369
\(607\) 4.77214e9 0.866070 0.433035 0.901377i \(-0.357443\pi\)
0.433035 + 0.901377i \(0.357443\pi\)
\(608\) 9.46552e8 0.170798
\(609\) 8.83062e9 1.58427
\(610\) −1.41708e9 −0.252779
\(611\) −1.36357e10 −2.41844
\(612\) −2.33224e9 −0.411285
\(613\) −3.63468e9 −0.637316 −0.318658 0.947870i \(-0.603232\pi\)
−0.318658 + 0.947870i \(0.603232\pi\)
\(614\) 1.28310e9 0.223702
\(615\) −1.74027e9 −0.301685
\(616\) 1.59879e9 0.275587
\(617\) 3.37834e9 0.579035 0.289518 0.957173i \(-0.406505\pi\)
0.289518 + 0.957173i \(0.406505\pi\)
\(618\) 5.84149e9 0.995552
\(619\) 1.53489e8 0.0260111 0.0130056 0.999915i \(-0.495860\pi\)
0.0130056 + 0.999915i \(0.495860\pi\)
\(620\) 2.81359e9 0.474122
\(621\) 3.12310e9 0.523317
\(622\) 3.11023e9 0.518235
\(623\) −6.15645e9 −1.02005
\(624\) 2.55911e9 0.421641
\(625\) −7.51968e9 −1.23202
\(626\) 4.53083e9 0.738188
\(627\) 8.47033e9 1.37235
\(628\) 6.11517e9 0.985258
\(629\) 1.36509e9 0.218719
\(630\) 2.23873e9 0.356705
\(631\) −1.63395e9 −0.258902 −0.129451 0.991586i \(-0.541321\pi\)
−0.129451 + 0.991586i \(0.541321\pi\)
\(632\) −2.23887e9 −0.352793
\(633\) 1.20992e10 1.89602
\(634\) 4.68447e9 0.730043
\(635\) 2.64788e9 0.410384
\(636\) 4.90660e9 0.756277
\(637\) 4.43381e9 0.679655
\(638\) −9.23880e9 −1.40846
\(639\) 1.73981e9 0.263784
\(640\) −6.85075e8 −0.103302
\(641\) −9.11499e9 −1.36695 −0.683476 0.729973i \(-0.739532\pi\)
−0.683476 + 0.729973i \(0.739532\pi\)
\(642\) 3.28584e9 0.490088
\(643\) −8.53904e9 −1.26669 −0.633346 0.773869i \(-0.718319\pi\)
−0.633346 + 0.773869i \(0.718319\pi\)
\(644\) −2.54971e9 −0.376175
\(645\) 2.60203e9 0.381815
\(646\) −6.22791e9 −0.908926
\(647\) −2.95371e9 −0.428749 −0.214375 0.976752i \(-0.568771\pi\)
−0.214375 + 0.976752i \(0.568771\pi\)
\(648\) 3.02684e9 0.436995
\(649\) 8.37597e9 1.20276
\(650\) 2.40186e9 0.343045
\(651\) 5.07215e9 0.720541
\(652\) 9.38117e8 0.132553
\(653\) 1.57940e9 0.221970 0.110985 0.993822i \(-0.464599\pi\)
0.110985 + 0.993822i \(0.464599\pi\)
\(654\) 1.90763e9 0.266669
\(655\) 4.93878e9 0.686712
\(656\) 3.66789e8 0.0507286
\(657\) 7.26887e9 0.999973
\(658\) 6.58050e9 0.900468
\(659\) 5.08465e9 0.692089 0.346044 0.938218i \(-0.387525\pi\)
0.346044 + 0.938218i \(0.387525\pi\)
\(660\) −6.13047e9 −0.830023
\(661\) 6.89277e9 0.928301 0.464150 0.885756i \(-0.346360\pi\)
0.464150 + 0.885756i \(0.346360\pi\)
\(662\) −7.27869e9 −0.975102
\(663\) −1.68378e10 −2.24383
\(664\) 7.66246e8 0.101573
\(665\) 5.97820e9 0.788306
\(666\) 5.47937e8 0.0718739
\(667\) 1.47338e10 1.92254
\(668\) −5.00478e8 −0.0649632
\(669\) −1.49681e10 −1.93274
\(670\) −1.56420e9 −0.200924
\(671\) 2.67271e9 0.341525
\(672\) −1.23501e9 −0.156992
\(673\) −1.45890e9 −0.184490 −0.0922449 0.995736i \(-0.529404\pi\)
−0.0922449 + 0.995736i \(0.529404\pi\)
\(674\) 5.95885e9 0.749640
\(675\) 1.41979e9 0.177689
\(676\) 3.04295e9 0.378863
\(677\) 9.42301e9 1.16716 0.583579 0.812057i \(-0.301652\pi\)
0.583579 + 0.812057i \(0.301652\pi\)
\(678\) −8.67317e9 −1.06874
\(679\) −5.17537e8 −0.0634450
\(680\) 4.50750e9 0.549737
\(681\) −8.29438e9 −1.00640
\(682\) −5.30661e9 −0.640577
\(683\) 8.94405e9 1.07414 0.537071 0.843537i \(-0.319531\pi\)
0.537071 + 0.843537i \(0.319531\pi\)
\(684\) −2.49983e9 −0.298685
\(685\) 1.66998e8 0.0198515
\(686\) −6.31364e9 −0.746699
\(687\) −3.88899e9 −0.457602
\(688\) −5.48419e8 −0.0642027
\(689\) 1.35340e10 1.57637
\(690\) 9.77671e9 1.13298
\(691\) −8.43588e9 −0.972652 −0.486326 0.873778i \(-0.661663\pi\)
−0.486326 + 0.873778i \(0.661663\pi\)
\(692\) 4.75428e9 0.545397
\(693\) −4.22238e9 −0.481938
\(694\) −3.60623e9 −0.409539
\(695\) −1.21112e10 −1.36848
\(696\) 7.13663e9 0.802345
\(697\) −2.41332e9 −0.269960
\(698\) 2.41933e9 0.269278
\(699\) 9.43360e9 1.04474
\(700\) −1.15912e9 −0.127728
\(701\) 2.81188e9 0.308308 0.154154 0.988047i \(-0.450735\pi\)
0.154154 + 0.988047i \(0.450735\pi\)
\(702\) 4.17263e9 0.455229
\(703\) 1.46319e9 0.158839
\(704\) 1.29209e9 0.139569
\(705\) −2.52326e10 −2.71206
\(706\) −1.47247e9 −0.157481
\(707\) −9.28845e9 −0.988497
\(708\) −6.47012e9 −0.685167
\(709\) −1.12427e10 −1.18470 −0.592352 0.805679i \(-0.701800\pi\)
−0.592352 + 0.805679i \(0.701800\pi\)
\(710\) −3.36252e9 −0.352582
\(711\) 5.91282e9 0.616952
\(712\) −4.97545e9 −0.516598
\(713\) 8.46284e9 0.874385
\(714\) 8.12581e9 0.835455
\(715\) −1.69098e10 −1.73009
\(716\) −6.39793e9 −0.651394
\(717\) −8.21472e9 −0.832292
\(718\) 1.36057e10 1.37179
\(719\) 1.28416e10 1.28845 0.644225 0.764836i \(-0.277180\pi\)
0.644225 + 0.764836i \(0.277180\pi\)
\(720\) 1.80927e9 0.180651
\(721\) −7.77588e9 −0.772639
\(722\) 4.75541e8 0.0470227
\(723\) −1.62384e10 −1.59793
\(724\) 6.45418e9 0.632056
\(725\) 6.69811e9 0.652784
\(726\) 2.28794e9 0.221904
\(727\) 5.23755e9 0.505542 0.252771 0.967526i \(-0.418658\pi\)
0.252771 + 0.967526i \(0.418658\pi\)
\(728\) −3.40655e9 −0.327231
\(729\) −1.53219e9 −0.146476
\(730\) −1.40485e10 −1.33659
\(731\) 3.60836e9 0.341664
\(732\) −2.06457e9 −0.194554
\(733\) −1.34926e10 −1.26541 −0.632706 0.774392i \(-0.718056\pi\)
−0.632706 + 0.774392i \(0.718056\pi\)
\(734\) −6.44223e9 −0.601312
\(735\) 8.20464e9 0.762173
\(736\) −2.06060e9 −0.190511
\(737\) 2.95018e9 0.271464
\(738\) −9.68685e8 −0.0887126
\(739\) −1.18887e10 −1.08362 −0.541810 0.840501i \(-0.682261\pi\)
−0.541810 + 0.840501i \(0.682261\pi\)
\(740\) −1.05899e9 −0.0960688
\(741\) −1.80478e10 −1.62952
\(742\) −6.53141e9 −0.586939
\(743\) 1.78272e10 1.59449 0.797247 0.603653i \(-0.206289\pi\)
0.797247 + 0.603653i \(0.206289\pi\)
\(744\) 4.09916e9 0.364913
\(745\) −2.01163e10 −1.78238
\(746\) −1.08414e10 −0.956095
\(747\) −2.02364e9 −0.177628
\(748\) −8.50142e9 −0.742738
\(749\) −4.37394e9 −0.380352
\(750\) −7.70161e9 −0.666602
\(751\) −9.32098e9 −0.803012 −0.401506 0.915856i \(-0.631513\pi\)
−0.401506 + 0.915856i \(0.631513\pi\)
\(752\) 5.31816e9 0.456036
\(753\) 6.21705e9 0.530642
\(754\) 1.96852e10 1.67240
\(755\) −6.33451e9 −0.535672
\(756\) −2.01368e9 −0.169498
\(757\) −1.15006e10 −0.963572 −0.481786 0.876289i \(-0.660012\pi\)
−0.481786 + 0.876289i \(0.660012\pi\)
\(758\) −6.53732e9 −0.545202
\(759\) −1.84395e10 −1.53074
\(760\) 4.83140e9 0.399232
\(761\) −4.33764e9 −0.356785 −0.178393 0.983959i \(-0.557090\pi\)
−0.178393 + 0.983959i \(0.557090\pi\)
\(762\) 3.85773e9 0.315856
\(763\) −2.53934e9 −0.206959
\(764\) 3.89035e8 0.0315618
\(765\) −1.19042e10 −0.961361
\(766\) 3.38088e9 0.271787
\(767\) −1.78467e10 −1.42815
\(768\) −9.98094e8 −0.0795073
\(769\) 1.87582e10 1.48747 0.743737 0.668472i \(-0.233051\pi\)
0.743737 + 0.668472i \(0.233051\pi\)
\(770\) 8.16056e9 0.644173
\(771\) 5.31232e9 0.417440
\(772\) −8.36748e9 −0.654537
\(773\) 1.53052e10 1.19182 0.595909 0.803052i \(-0.296792\pi\)
0.595909 + 0.803052i \(0.296792\pi\)
\(774\) 1.44837e9 0.112276
\(775\) 3.84728e9 0.296891
\(776\) −4.18258e8 −0.0321313
\(777\) −1.90908e9 −0.145999
\(778\) 4.19151e9 0.319111
\(779\) −2.58673e9 −0.196052
\(780\) 1.30622e10 0.985566
\(781\) 6.34191e9 0.476367
\(782\) 1.35578e10 1.01383
\(783\) 1.16363e10 0.866260
\(784\) −1.72926e9 −0.128160
\(785\) 3.12131e10 2.30300
\(786\) 7.19536e9 0.528535
\(787\) 2.16684e10 1.58458 0.792291 0.610144i \(-0.208888\pi\)
0.792291 + 0.610144i \(0.208888\pi\)
\(788\) −3.54759e9 −0.258280
\(789\) −2.56238e10 −1.85726
\(790\) −1.14277e10 −0.824637
\(791\) 1.15453e10 0.829442
\(792\) −3.41240e9 −0.244074
\(793\) −5.69475e9 −0.405526
\(794\) −7.44283e9 −0.527675
\(795\) 2.50443e10 1.76776
\(796\) −4.37040e9 −0.307132
\(797\) 1.78039e10 1.24570 0.622848 0.782343i \(-0.285976\pi\)
0.622848 + 0.782343i \(0.285976\pi\)
\(798\) 8.70972e9 0.606728
\(799\) −3.49912e10 −2.42686
\(800\) −9.36765e8 −0.0646868
\(801\) 1.31401e10 0.903409
\(802\) 6.54601e9 0.448091
\(803\) 2.64963e10 1.80585
\(804\) −2.27891e9 −0.154643
\(805\) −1.30142e10 −0.879292
\(806\) 1.13068e10 0.760620
\(807\) −2.36095e10 −1.58136
\(808\) −7.50664e9 −0.500617
\(809\) −1.86192e10 −1.23635 −0.618174 0.786041i \(-0.712127\pi\)
−0.618174 + 0.786041i \(0.712127\pi\)
\(810\) 1.54496e10 1.02146
\(811\) −2.08368e10 −1.37170 −0.685849 0.727743i \(-0.740569\pi\)
−0.685849 + 0.727743i \(0.740569\pi\)
\(812\) −9.49991e9 −0.622692
\(813\) 2.53037e10 1.65146
\(814\) 1.99733e9 0.129797
\(815\) 4.78834e9 0.309837
\(816\) 6.56703e9 0.423110
\(817\) 3.86765e9 0.248125
\(818\) 3.88759e9 0.248338
\(819\) 8.99665e9 0.572252
\(820\) 1.87217e9 0.118576
\(821\) 2.50241e10 1.57818 0.789091 0.614277i \(-0.210552\pi\)
0.789091 + 0.614277i \(0.210552\pi\)
\(822\) 2.43301e8 0.0152789
\(823\) 1.73792e10 1.08675 0.543375 0.839490i \(-0.317146\pi\)
0.543375 + 0.839490i \(0.317146\pi\)
\(824\) −6.28423e9 −0.391297
\(825\) −8.38274e9 −0.519753
\(826\) 8.61269e9 0.531751
\(827\) −1.05928e10 −0.651241 −0.325620 0.945501i \(-0.605573\pi\)
−0.325620 + 0.945501i \(0.605573\pi\)
\(828\) 5.44200e9 0.333160
\(829\) 6.89516e9 0.420343 0.210171 0.977665i \(-0.432598\pi\)
0.210171 + 0.977665i \(0.432598\pi\)
\(830\) 3.91108e9 0.237423
\(831\) 2.29355e10 1.38645
\(832\) −2.75307e9 −0.165724
\(833\) 1.13778e10 0.682024
\(834\) −1.76449e10 −1.05327
\(835\) −2.55454e9 −0.151848
\(836\) −9.11231e9 −0.539395
\(837\) 6.68368e9 0.393982
\(838\) −1.92903e10 −1.13236
\(839\) 2.84284e10 1.66182 0.830912 0.556404i \(-0.187819\pi\)
0.830912 + 0.556404i \(0.187819\pi\)
\(840\) −6.30373e9 −0.366961
\(841\) 3.76465e10 2.18242
\(842\) −1.01274e10 −0.584665
\(843\) −3.97483e10 −2.28519
\(844\) −1.30162e10 −0.745223
\(845\) 1.55319e10 0.885575
\(846\) −1.40452e10 −0.797500
\(847\) −3.04558e9 −0.172218
\(848\) −5.27848e9 −0.297251
\(849\) 3.60898e8 0.0202399
\(850\) 6.16351e9 0.344241
\(851\) −3.18528e9 −0.177172
\(852\) −4.89889e9 −0.271368
\(853\) −2.95280e10 −1.62897 −0.814484 0.580186i \(-0.802980\pi\)
−0.814484 + 0.580186i \(0.802980\pi\)
\(854\) 2.74824e9 0.150991
\(855\) −1.27596e10 −0.698164
\(856\) −3.53488e9 −0.192627
\(857\) 2.71240e10 1.47204 0.736021 0.676959i \(-0.236702\pi\)
0.736021 + 0.676959i \(0.236702\pi\)
\(858\) −2.46361e10 −1.33158
\(859\) −2.96758e8 −0.0159745 −0.00798723 0.999968i \(-0.502542\pi\)
−0.00798723 + 0.999968i \(0.502542\pi\)
\(860\) −2.79924e9 −0.150071
\(861\) 3.37502e9 0.180204
\(862\) −1.84948e10 −0.983501
\(863\) −3.21034e9 −0.170025 −0.0850126 0.996380i \(-0.527093\pi\)
−0.0850126 + 0.996380i \(0.527093\pi\)
\(864\) −1.62739e9 −0.0858409
\(865\) 2.42668e10 1.27484
\(866\) 1.52232e10 0.796516
\(867\) −1.87968e10 −0.979528
\(868\) −5.45658e9 −0.283205
\(869\) 2.15533e10 1.11415
\(870\) 3.64269e10 1.87544
\(871\) −6.28597e9 −0.322336
\(872\) −2.05222e9 −0.104813
\(873\) 1.10461e9 0.0561901
\(874\) 1.45321e10 0.736271
\(875\) 1.02520e10 0.517344
\(876\) −2.04674e10 −1.02872
\(877\) 3.21311e10 1.60852 0.804261 0.594277i \(-0.202562\pi\)
0.804261 + 0.594277i \(0.202562\pi\)
\(878\) −1.42813e10 −0.712095
\(879\) 3.28723e10 1.63256
\(880\) 6.59511e9 0.326237
\(881\) 2.94649e9 0.145174 0.0725871 0.997362i \(-0.476874\pi\)
0.0725871 + 0.997362i \(0.476874\pi\)
\(882\) 4.56694e9 0.224122
\(883\) −1.54320e10 −0.754328 −0.377164 0.926146i \(-0.623101\pi\)
−0.377164 + 0.926146i \(0.623101\pi\)
\(884\) 1.81140e10 0.881926
\(885\) −3.30248e10 −1.60155
\(886\) 1.00844e10 0.487113
\(887\) −3.90897e10 −1.88074 −0.940372 0.340147i \(-0.889523\pi\)
−0.940372 + 0.340147i \(0.889523\pi\)
\(888\) −1.54286e9 −0.0739403
\(889\) −5.13520e9 −0.245133
\(890\) −2.53957e10 −1.20752
\(891\) −2.91389e10 −1.38007
\(892\) 1.61025e10 0.759655
\(893\) −3.75056e10 −1.76245
\(894\) −2.93077e10 −1.37183
\(895\) −3.26564e10 −1.52260
\(896\) 1.32861e9 0.0617049
\(897\) 3.92891e10 1.81760
\(898\) 9.18140e8 0.0423099
\(899\) 3.15315e10 1.44739
\(900\) 2.47398e9 0.113122
\(901\) 3.47302e10 1.58187
\(902\) −3.53102e9 −0.160206
\(903\) −5.04629e9 −0.228068
\(904\) 9.33053e9 0.420065
\(905\) 3.29435e10 1.47740
\(906\) −9.22882e9 −0.412285
\(907\) 2.70491e10 1.20373 0.601863 0.798599i \(-0.294425\pi\)
0.601863 + 0.798599i \(0.294425\pi\)
\(908\) 8.92303e9 0.395559
\(909\) 1.98249e10 0.875463
\(910\) −1.73877e10 −0.764889
\(911\) 1.42537e10 0.624616 0.312308 0.949981i \(-0.398898\pi\)
0.312308 + 0.949981i \(0.398898\pi\)
\(912\) 7.03892e9 0.307273
\(913\) −7.37653e9 −0.320778
\(914\) −1.80165e9 −0.0780475
\(915\) −1.05380e10 −0.454761
\(916\) 4.18375e9 0.179859
\(917\) −9.57809e9 −0.410191
\(918\) 1.07075e10 0.456815
\(919\) 1.68941e9 0.0718012 0.0359006 0.999355i \(-0.488570\pi\)
0.0359006 + 0.999355i \(0.488570\pi\)
\(920\) −1.05177e10 −0.445311
\(921\) 9.54160e9 0.402451
\(922\) −2.74156e10 −1.15197
\(923\) −1.35127e10 −0.565637
\(924\) 1.18892e10 0.495794
\(925\) −1.44806e9 −0.0601575
\(926\) −1.62427e10 −0.672235
\(927\) 1.65966e10 0.684288
\(928\) −7.67753e9 −0.315358
\(929\) −4.53109e10 −1.85416 −0.927080 0.374863i \(-0.877690\pi\)
−0.927080 + 0.374863i \(0.877690\pi\)
\(930\) 2.09229e10 0.852967
\(931\) 1.21953e10 0.495302
\(932\) −1.01486e10 −0.410630
\(933\) 2.31289e10 0.932328
\(934\) −2.11150e10 −0.847964
\(935\) −4.33930e10 −1.73612
\(936\) 7.27081e9 0.289813
\(937\) 5.33576e9 0.211889 0.105944 0.994372i \(-0.466213\pi\)
0.105944 + 0.994372i \(0.466213\pi\)
\(938\) 3.03356e9 0.120017
\(939\) 3.36929e10 1.32803
\(940\) 2.71450e10 1.06596
\(941\) −7.02739e9 −0.274935 −0.137468 0.990506i \(-0.543896\pi\)
−0.137468 + 0.990506i \(0.543896\pi\)
\(942\) 4.54747e10 1.77252
\(943\) 5.63118e9 0.218680
\(944\) 6.96051e9 0.269302
\(945\) −1.02782e10 −0.396193
\(946\) 5.27955e9 0.202758
\(947\) 3.18352e10 1.21810 0.609049 0.793133i \(-0.291551\pi\)
0.609049 + 0.793133i \(0.291551\pi\)
\(948\) −1.66491e10 −0.634690
\(949\) −5.64558e10 −2.14426
\(950\) 6.60641e9 0.249996
\(951\) 3.48355e10 1.31338
\(952\) −8.74169e9 −0.328372
\(953\) −1.79825e10 −0.673015 −0.336508 0.941681i \(-0.609246\pi\)
−0.336508 + 0.941681i \(0.609246\pi\)
\(954\) 1.39404e10 0.519823
\(955\) 1.98572e9 0.0737743
\(956\) 8.83733e9 0.327129
\(957\) −6.87032e10 −2.53388
\(958\) 2.92925e10 1.07641
\(959\) −3.23869e8 −0.0118578
\(960\) −5.09448e9 −0.185845
\(961\) −9.40146e9 −0.341715
\(962\) −4.25571e9 −0.154120
\(963\) 9.33556e9 0.336859
\(964\) 1.74691e10 0.628060
\(965\) −4.27093e10 −1.52995
\(966\) −1.89606e10 −0.676756
\(967\) 1.60417e10 0.570503 0.285251 0.958453i \(-0.407923\pi\)
0.285251 + 0.958453i \(0.407923\pi\)
\(968\) −2.46135e9 −0.0872186
\(969\) −4.63131e10 −1.63520
\(970\) −2.13487e9 −0.0751054
\(971\) −2.80778e10 −0.984228 −0.492114 0.870531i \(-0.663776\pi\)
−0.492114 + 0.870531i \(0.663776\pi\)
\(972\) 1.55573e10 0.543380
\(973\) 2.34879e10 0.817429
\(974\) −7.80805e9 −0.270761
\(975\) 1.78612e10 0.617154
\(976\) 2.22104e9 0.0764685
\(977\) −3.10512e9 −0.106524 −0.0532621 0.998581i \(-0.516962\pi\)
−0.0532621 + 0.998581i \(0.516962\pi\)
\(978\) 6.97619e9 0.238469
\(979\) 4.78979e10 1.63146
\(980\) −8.82648e9 −0.299569
\(981\) 5.41987e9 0.183294
\(982\) −4.12211e10 −1.38909
\(983\) −2.95037e9 −0.0990692 −0.0495346 0.998772i \(-0.515774\pi\)
−0.0495346 + 0.998772i \(0.515774\pi\)
\(984\) 2.72758e9 0.0912631
\(985\) −1.81076e10 −0.603719
\(986\) 5.05149e10 1.67823
\(987\) 4.89351e10 1.61998
\(988\) 1.94157e10 0.640476
\(989\) −8.41968e9 −0.276763
\(990\) −1.74176e10 −0.570512
\(991\) −5.38667e10 −1.75818 −0.879089 0.476658i \(-0.841848\pi\)
−0.879089 + 0.476658i \(0.841848\pi\)
\(992\) −4.40984e9 −0.143427
\(993\) −5.41271e10 −1.75425
\(994\) 6.52115e9 0.210606
\(995\) −2.23074e10 −0.717907
\(996\) 5.69810e9 0.182735
\(997\) 1.66452e10 0.531931 0.265965 0.963983i \(-0.414309\pi\)
0.265965 + 0.963983i \(0.414309\pi\)
\(998\) 5.42427e8 0.0172737
\(999\) −2.51563e9 −0.0798304
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 74.8.a.c.1.1 6
4.3 odd 2 592.8.a.c.1.6 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
74.8.a.c.1.1 6 1.1 even 1 trivial
592.8.a.c.1.6 6 4.3 odd 2