Properties

Label 74.8.a.a.1.3
Level $74$
Weight $8$
Character 74.1
Self dual yes
Analytic conductor $23.116$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [74,8,Mod(1,74)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(74, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("74.1");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 74 = 2 \cdot 37 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 74.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(23.1164918858\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - 405x^{2} - 2998x - 4396 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-6.83090\) of defining polynomial
Character \(\chi\) \(=\) 74.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-8.00000 q^{2} +20.4940 q^{3} +64.0000 q^{4} +375.302 q^{5} -163.952 q^{6} -980.897 q^{7} -512.000 q^{8} -1766.99 q^{9} +O(q^{10})\) \(q-8.00000 q^{2} +20.4940 q^{3} +64.0000 q^{4} +375.302 q^{5} -163.952 q^{6} -980.897 q^{7} -512.000 q^{8} -1766.99 q^{9} -3002.41 q^{10} -3376.51 q^{11} +1311.62 q^{12} +3436.44 q^{13} +7847.18 q^{14} +7691.45 q^{15} +4096.00 q^{16} -4744.28 q^{17} +14136.0 q^{18} -11268.9 q^{19} +24019.3 q^{20} -20102.6 q^{21} +27012.1 q^{22} -17737.1 q^{23} -10492.9 q^{24} +62726.4 q^{25} -27491.5 q^{26} -81033.3 q^{27} -62777.4 q^{28} -106898. q^{29} -61531.6 q^{30} -31372.3 q^{31} -32768.0 q^{32} -69198.3 q^{33} +37954.2 q^{34} -368132. q^{35} -113088. q^{36} +50653.0 q^{37} +90151.3 q^{38} +70426.5 q^{39} -192154. q^{40} +278656. q^{41} +160820. q^{42} -606906. q^{43} -216097. q^{44} -663156. q^{45} +141897. q^{46} -1.13131e6 q^{47} +83943.6 q^{48} +138617. q^{49} -501811. q^{50} -97229.5 q^{51} +219932. q^{52} -894201. q^{53} +648267. q^{54} -1.26721e6 q^{55} +502219. q^{56} -230946. q^{57} +855188. q^{58} -897569. q^{59} +492253. q^{60} +1.69191e6 q^{61} +250979. q^{62} +1.73324e6 q^{63} +262144. q^{64} +1.28970e6 q^{65} +553587. q^{66} +2.02846e6 q^{67} -303634. q^{68} -363504. q^{69} +2.94506e6 q^{70} -585796. q^{71} +904701. q^{72} +428683. q^{73} -405224. q^{74} +1.28552e6 q^{75} -721211. q^{76} +3.31201e6 q^{77} -563412. q^{78} -1.57559e6 q^{79} +1.53724e6 q^{80} +2.20372e6 q^{81} -2.22925e6 q^{82} -537839. q^{83} -1.28656e6 q^{84} -1.78054e6 q^{85} +4.85525e6 q^{86} -2.19078e6 q^{87} +1.72877e6 q^{88} -1.84127e6 q^{89} +5.30525e6 q^{90} -3.37079e6 q^{91} -1.13517e6 q^{92} -642946. q^{93} +9.05050e6 q^{94} -4.22924e6 q^{95} -671549. q^{96} -6.63828e6 q^{97} -1.10893e6 q^{98} +5.96627e6 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 32 q^{2} - 53 q^{3} + 256 q^{4} + 111 q^{5} + 424 q^{6} - 1666 q^{7} - 2048 q^{8} + 4609 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 32 q^{2} - 53 q^{3} + 256 q^{4} + 111 q^{5} + 424 q^{6} - 1666 q^{7} - 2048 q^{8} + 4609 q^{9} - 888 q^{10} - 4593 q^{11} - 3392 q^{12} + 7847 q^{13} + 13328 q^{14} + 18900 q^{15} + 16384 q^{16} + 23172 q^{17} - 36872 q^{18} + 23696 q^{19} + 7104 q^{20} + 69416 q^{21} + 36744 q^{22} + 24105 q^{23} + 27136 q^{24} - 138149 q^{25} - 62776 q^{26} - 433646 q^{27} - 106624 q^{28} - 140949 q^{29} - 151200 q^{30} - 664609 q^{31} - 131072 q^{32} - 240450 q^{33} - 185376 q^{34} - 248544 q^{35} + 294976 q^{36} + 202612 q^{37} - 189568 q^{38} - 2288827 q^{39} - 56832 q^{40} - 709737 q^{41} - 555328 q^{42} - 128962 q^{43} - 293952 q^{44} - 1755342 q^{45} - 192840 q^{46} - 445842 q^{47} - 217088 q^{48} - 1602774 q^{49} + 1105192 q^{50} - 2883630 q^{51} + 502208 q^{52} - 975870 q^{53} + 3469168 q^{54} - 644145 q^{55} + 852992 q^{56} + 3494630 q^{57} + 1127592 q^{58} - 1812858 q^{59} + 1209600 q^{60} - 2955031 q^{61} + 5316872 q^{62} - 3362482 q^{63} + 1048576 q^{64} + 666 q^{65} + 1923600 q^{66} + 2737235 q^{67} + 1483008 q^{68} - 1781673 q^{69} + 1988352 q^{70} + 4958184 q^{71} - 2359808 q^{72} - 931591 q^{73} - 1620896 q^{74} + 4945810 q^{75} + 1516544 q^{76} + 4352514 q^{77} + 18310616 q^{78} + 5813561 q^{79} + 454656 q^{80} + 16394896 q^{81} + 5677896 q^{82} + 2120460 q^{83} + 4442624 q^{84} - 4845402 q^{85} + 1031696 q^{86} + 7965333 q^{87} + 2351616 q^{88} + 8833716 q^{89} + 14042736 q^{90} - 18886274 q^{91} + 1542720 q^{92} + 3024182 q^{93} + 3566736 q^{94} - 3151794 q^{95} + 1736704 q^{96} - 22666876 q^{97} + 12822192 q^{98} - 17931894 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −8.00000 −0.707107
\(3\) 20.4940 0.438231 0.219116 0.975699i \(-0.429683\pi\)
0.219116 + 0.975699i \(0.429683\pi\)
\(4\) 64.0000 0.500000
\(5\) 375.302 1.34272 0.671360 0.741131i \(-0.265710\pi\)
0.671360 + 0.741131i \(0.265710\pi\)
\(6\) −163.952 −0.309876
\(7\) −980.897 −1.08089 −0.540444 0.841380i \(-0.681744\pi\)
−0.540444 + 0.841380i \(0.681744\pi\)
\(8\) −512.000 −0.353553
\(9\) −1766.99 −0.807953
\(10\) −3002.41 −0.949447
\(11\) −3376.51 −0.764881 −0.382440 0.923980i \(-0.624916\pi\)
−0.382440 + 0.923980i \(0.624916\pi\)
\(12\) 1311.62 0.219116
\(13\) 3436.44 0.433817 0.216909 0.976192i \(-0.430403\pi\)
0.216909 + 0.976192i \(0.430403\pi\)
\(14\) 7847.18 0.764303
\(15\) 7691.45 0.588422
\(16\) 4096.00 0.250000
\(17\) −4744.28 −0.234207 −0.117103 0.993120i \(-0.537361\pi\)
−0.117103 + 0.993120i \(0.537361\pi\)
\(18\) 14136.0 0.571309
\(19\) −11268.9 −0.376916 −0.188458 0.982081i \(-0.560349\pi\)
−0.188458 + 0.982081i \(0.560349\pi\)
\(20\) 24019.3 0.671360
\(21\) −20102.6 −0.473678
\(22\) 27012.1 0.540852
\(23\) −17737.1 −0.303973 −0.151986 0.988383i \(-0.548567\pi\)
−0.151986 + 0.988383i \(0.548567\pi\)
\(24\) −10492.9 −0.154938
\(25\) 62726.4 0.802898
\(26\) −27491.5 −0.306755
\(27\) −81033.3 −0.792302
\(28\) −62777.4 −0.540444
\(29\) −106898. −0.813914 −0.406957 0.913447i \(-0.633410\pi\)
−0.406957 + 0.913447i \(0.633410\pi\)
\(30\) −61531.6 −0.416077
\(31\) −31372.3 −0.189139 −0.0945695 0.995518i \(-0.530147\pi\)
−0.0945695 + 0.995518i \(0.530147\pi\)
\(32\) −32768.0 −0.176777
\(33\) −69198.3 −0.335194
\(34\) 37954.2 0.165609
\(35\) −368132. −1.45133
\(36\) −113088. −0.403977
\(37\) 50653.0 0.164399
\(38\) 90151.3 0.266520
\(39\) 70426.5 0.190112
\(40\) −192154. −0.474723
\(41\) 278656. 0.631430 0.315715 0.948854i \(-0.397756\pi\)
0.315715 + 0.948854i \(0.397756\pi\)
\(42\) 160820. 0.334941
\(43\) −606906. −1.16408 −0.582039 0.813161i \(-0.697745\pi\)
−0.582039 + 0.813161i \(0.697745\pi\)
\(44\) −216097. −0.382440
\(45\) −663156. −1.08486
\(46\) 141897. 0.214941
\(47\) −1.13131e6 −1.58943 −0.794713 0.606986i \(-0.792379\pi\)
−0.794713 + 0.606986i \(0.792379\pi\)
\(48\) 83943.6 0.109558
\(49\) 138617. 0.168317
\(50\) −501811. −0.567735
\(51\) −97229.5 −0.102637
\(52\) 219932. 0.216909
\(53\) −894201. −0.825030 −0.412515 0.910951i \(-0.635350\pi\)
−0.412515 + 0.910951i \(0.635350\pi\)
\(54\) 648267. 0.560242
\(55\) −1.26721e6 −1.02702
\(56\) 502219. 0.382151
\(57\) −230946. −0.165176
\(58\) 855188. 0.575524
\(59\) −897569. −0.568966 −0.284483 0.958681i \(-0.591822\pi\)
−0.284483 + 0.958681i \(0.591822\pi\)
\(60\) 492253. 0.294211
\(61\) 1.69191e6 0.954381 0.477191 0.878800i \(-0.341655\pi\)
0.477191 + 0.878800i \(0.341655\pi\)
\(62\) 250979. 0.133741
\(63\) 1.73324e6 0.873307
\(64\) 262144. 0.125000
\(65\) 1.28970e6 0.582495
\(66\) 553587. 0.237018
\(67\) 2.02846e6 0.823957 0.411979 0.911194i \(-0.364838\pi\)
0.411979 + 0.911194i \(0.364838\pi\)
\(68\) −303634. −0.117103
\(69\) −363504. −0.133210
\(70\) 2.94506e6 1.02624
\(71\) −585796. −0.194242 −0.0971208 0.995273i \(-0.530963\pi\)
−0.0971208 + 0.995273i \(0.530963\pi\)
\(72\) 904701. 0.285655
\(73\) 428683. 0.128975 0.0644875 0.997919i \(-0.479459\pi\)
0.0644875 + 0.997919i \(0.479459\pi\)
\(74\) −405224. −0.116248
\(75\) 1.28552e6 0.351855
\(76\) −721211. −0.188458
\(77\) 3.31201e6 0.826750
\(78\) −563412. −0.134430
\(79\) −1.57559e6 −0.359540 −0.179770 0.983709i \(-0.557535\pi\)
−0.179770 + 0.983709i \(0.557535\pi\)
\(80\) 1.53724e6 0.335680
\(81\) 2.20372e6 0.460742
\(82\) −2.22925e6 −0.446488
\(83\) −537839. −0.103247 −0.0516236 0.998667i \(-0.516440\pi\)
−0.0516236 + 0.998667i \(0.516440\pi\)
\(84\) −1.28656e6 −0.236839
\(85\) −1.78054e6 −0.314474
\(86\) 4.85525e6 0.823127
\(87\) −2.19078e6 −0.356682
\(88\) 1.72877e6 0.270426
\(89\) −1.84127e6 −0.276856 −0.138428 0.990373i \(-0.544205\pi\)
−0.138428 + 0.990373i \(0.544205\pi\)
\(90\) 5.30525e6 0.767109
\(91\) −3.37079e6 −0.468907
\(92\) −1.13517e6 −0.151986
\(93\) −642946. −0.0828866
\(94\) 9.05050e6 1.12389
\(95\) −4.22924e6 −0.506093
\(96\) −671549. −0.0774691
\(97\) −6.63828e6 −0.738506 −0.369253 0.929329i \(-0.620387\pi\)
−0.369253 + 0.929329i \(0.620387\pi\)
\(98\) −1.10893e6 −0.119018
\(99\) 5.96627e6 0.617988
\(100\) 4.01449e6 0.401449
\(101\) 2.01181e6 0.194295 0.0971475 0.995270i \(-0.469028\pi\)
0.0971475 + 0.995270i \(0.469028\pi\)
\(102\) 777836. 0.0725750
\(103\) −8.44464e6 −0.761466 −0.380733 0.924685i \(-0.624328\pi\)
−0.380733 + 0.924685i \(0.624328\pi\)
\(104\) −1.75946e6 −0.153378
\(105\) −7.54452e6 −0.636018
\(106\) 7.15361e6 0.583384
\(107\) 2.02730e7 1.59984 0.799919 0.600108i \(-0.204876\pi\)
0.799919 + 0.600108i \(0.204876\pi\)
\(108\) −5.18613e6 −0.396151
\(109\) −2.49898e7 −1.84829 −0.924145 0.382042i \(-0.875221\pi\)
−0.924145 + 0.382042i \(0.875221\pi\)
\(110\) 1.01377e7 0.726213
\(111\) 1.03808e6 0.0720448
\(112\) −4.01776e6 −0.270222
\(113\) 1.39234e7 0.907760 0.453880 0.891063i \(-0.350039\pi\)
0.453880 + 0.891063i \(0.350039\pi\)
\(114\) 1.84756e6 0.116797
\(115\) −6.65675e6 −0.408150
\(116\) −6.84150e6 −0.406957
\(117\) −6.07217e6 −0.350504
\(118\) 7.18056e6 0.402319
\(119\) 4.65365e6 0.253151
\(120\) −3.93802e6 −0.208039
\(121\) −8.08635e6 −0.414958
\(122\) −1.35352e7 −0.674849
\(123\) 5.71079e6 0.276712
\(124\) −2.00783e6 −0.0945695
\(125\) −5.77912e6 −0.264653
\(126\) −1.38659e7 −0.617521
\(127\) 3.66831e6 0.158911 0.0794553 0.996838i \(-0.474682\pi\)
0.0794553 + 0.996838i \(0.474682\pi\)
\(128\) −2.09715e6 −0.0883883
\(129\) −1.24380e7 −0.510135
\(130\) −1.03176e7 −0.411886
\(131\) 4.68710e7 1.82161 0.910803 0.412842i \(-0.135464\pi\)
0.910803 + 0.412842i \(0.135464\pi\)
\(132\) −4.42869e6 −0.167597
\(133\) 1.10536e7 0.407404
\(134\) −1.62277e7 −0.582626
\(135\) −3.04119e7 −1.06384
\(136\) 2.42907e6 0.0828045
\(137\) 1.68178e7 0.558787 0.279393 0.960177i \(-0.409867\pi\)
0.279393 + 0.960177i \(0.409867\pi\)
\(138\) 2.90803e6 0.0941939
\(139\) 1.17238e7 0.370270 0.185135 0.982713i \(-0.440728\pi\)
0.185135 + 0.982713i \(0.440728\pi\)
\(140\) −2.35605e7 −0.725665
\(141\) −2.31852e7 −0.696536
\(142\) 4.68637e6 0.137350
\(143\) −1.16032e7 −0.331818
\(144\) −7.23761e6 −0.201988
\(145\) −4.01192e7 −1.09286
\(146\) −3.42946e6 −0.0911992
\(147\) 2.84081e6 0.0737619
\(148\) 3.24179e6 0.0821995
\(149\) 7.64948e7 1.89444 0.947219 0.320588i \(-0.103881\pi\)
0.947219 + 0.320588i \(0.103881\pi\)
\(150\) −1.02841e7 −0.248799
\(151\) −2.19120e7 −0.517921 −0.258960 0.965888i \(-0.583380\pi\)
−0.258960 + 0.965888i \(0.583380\pi\)
\(152\) 5.76968e6 0.133260
\(153\) 8.38311e6 0.189228
\(154\) −2.64961e7 −0.584600
\(155\) −1.17741e7 −0.253961
\(156\) 4.50730e6 0.0950561
\(157\) 1.91872e6 0.0395696 0.0197848 0.999804i \(-0.493702\pi\)
0.0197848 + 0.999804i \(0.493702\pi\)
\(158\) 1.26047e7 0.254233
\(159\) −1.83258e7 −0.361554
\(160\) −1.22979e7 −0.237362
\(161\) 1.73982e7 0.328560
\(162\) −1.76297e7 −0.325794
\(163\) −2.21304e7 −0.400251 −0.200126 0.979770i \(-0.564135\pi\)
−0.200126 + 0.979770i \(0.564135\pi\)
\(164\) 1.78340e7 0.315715
\(165\) −2.59703e7 −0.450072
\(166\) 4.30271e6 0.0730068
\(167\) 4.43183e7 0.736334 0.368167 0.929760i \(-0.379985\pi\)
0.368167 + 0.929760i \(0.379985\pi\)
\(168\) 1.02925e7 0.167471
\(169\) −5.09394e7 −0.811803
\(170\) 1.42443e7 0.222367
\(171\) 1.99121e7 0.304531
\(172\) −3.88420e7 −0.582039
\(173\) 7.47705e7 1.09792 0.548958 0.835850i \(-0.315025\pi\)
0.548958 + 0.835850i \(0.315025\pi\)
\(174\) 1.75262e7 0.252213
\(175\) −6.15282e7 −0.867842
\(176\) −1.38302e7 −0.191220
\(177\) −1.83948e7 −0.249338
\(178\) 1.47302e7 0.195767
\(179\) −1.20143e8 −1.56571 −0.782855 0.622204i \(-0.786237\pi\)
−0.782855 + 0.622204i \(0.786237\pi\)
\(180\) −4.24420e7 −0.542428
\(181\) 1.49404e8 1.87278 0.936390 0.350962i \(-0.114146\pi\)
0.936390 + 0.350962i \(0.114146\pi\)
\(182\) 2.69663e7 0.331568
\(183\) 3.46740e7 0.418240
\(184\) 9.08138e6 0.107471
\(185\) 1.90102e7 0.220742
\(186\) 5.14357e6 0.0586096
\(187\) 1.60191e7 0.179140
\(188\) −7.24040e7 −0.794713
\(189\) 7.94854e7 0.856389
\(190\) 3.38339e7 0.357862
\(191\) −2.34648e7 −0.243669 −0.121835 0.992550i \(-0.538878\pi\)
−0.121835 + 0.992550i \(0.538878\pi\)
\(192\) 5.37239e6 0.0547789
\(193\) 1.01584e8 1.01713 0.508565 0.861024i \(-0.330176\pi\)
0.508565 + 0.861024i \(0.330176\pi\)
\(194\) 5.31062e7 0.522203
\(195\) 2.64312e7 0.255268
\(196\) 8.87146e6 0.0841587
\(197\) 1.85514e8 1.72880 0.864402 0.502801i \(-0.167697\pi\)
0.864402 + 0.502801i \(0.167697\pi\)
\(198\) −4.77302e7 −0.436983
\(199\) −2.86267e7 −0.257505 −0.128752 0.991677i \(-0.541097\pi\)
−0.128752 + 0.991677i \(0.541097\pi\)
\(200\) −3.21159e7 −0.283867
\(201\) 4.15713e7 0.361084
\(202\) −1.60945e7 −0.137387
\(203\) 1.04856e8 0.879749
\(204\) −6.22269e6 −0.0513183
\(205\) 1.04580e8 0.847834
\(206\) 6.75571e7 0.538438
\(207\) 3.13413e7 0.245596
\(208\) 1.40756e7 0.108454
\(209\) 3.80496e7 0.288296
\(210\) 6.03562e7 0.449732
\(211\) 1.57443e7 0.115381 0.0576907 0.998335i \(-0.481626\pi\)
0.0576907 + 0.998335i \(0.481626\pi\)
\(212\) −5.72289e7 −0.412515
\(213\) −1.20053e7 −0.0851227
\(214\) −1.62184e8 −1.13126
\(215\) −2.27773e8 −1.56303
\(216\) 4.14891e7 0.280121
\(217\) 3.07730e7 0.204438
\(218\) 1.99918e8 1.30694
\(219\) 8.78544e6 0.0565209
\(220\) −8.11014e7 −0.513510
\(221\) −1.63034e7 −0.101603
\(222\) −8.30468e6 −0.0509433
\(223\) −3.23566e7 −0.195387 −0.0976937 0.995217i \(-0.531147\pi\)
−0.0976937 + 0.995217i \(0.531147\pi\)
\(224\) 3.21420e7 0.191076
\(225\) −1.10837e8 −0.648704
\(226\) −1.11387e8 −0.641883
\(227\) 2.94511e8 1.67113 0.835566 0.549390i \(-0.185140\pi\)
0.835566 + 0.549390i \(0.185140\pi\)
\(228\) −1.47805e7 −0.0825882
\(229\) −2.66064e8 −1.46407 −0.732034 0.681268i \(-0.761429\pi\)
−0.732034 + 0.681268i \(0.761429\pi\)
\(230\) 5.32540e7 0.288606
\(231\) 6.78765e7 0.362307
\(232\) 5.47320e7 0.287762
\(233\) −2.14468e8 −1.11075 −0.555377 0.831599i \(-0.687426\pi\)
−0.555377 + 0.831599i \(0.687426\pi\)
\(234\) 4.85773e7 0.247844
\(235\) −4.24584e8 −2.13415
\(236\) −5.74444e7 −0.284483
\(237\) −3.22901e7 −0.157562
\(238\) −3.72292e7 −0.179005
\(239\) −3.30136e8 −1.56423 −0.782115 0.623134i \(-0.785859\pi\)
−0.782115 + 0.623134i \(0.785859\pi\)
\(240\) 3.15042e7 0.147105
\(241\) 3.56063e8 1.63858 0.819290 0.573379i \(-0.194368\pi\)
0.819290 + 0.573379i \(0.194368\pi\)
\(242\) 6.46908e7 0.293419
\(243\) 2.22383e8 0.994213
\(244\) 1.08282e8 0.477191
\(245\) 5.20230e7 0.226003
\(246\) −4.56863e7 −0.195665
\(247\) −3.87249e7 −0.163513
\(248\) 1.60626e7 0.0668707
\(249\) −1.10225e7 −0.0452462
\(250\) 4.62330e7 0.187138
\(251\) −6.90749e7 −0.275716 −0.137858 0.990452i \(-0.544022\pi\)
−0.137858 + 0.990452i \(0.544022\pi\)
\(252\) 1.10927e8 0.436653
\(253\) 5.98894e7 0.232503
\(254\) −2.93465e7 −0.112367
\(255\) −3.64904e7 −0.137812
\(256\) 1.67772e7 0.0625000
\(257\) −1.82080e8 −0.669110 −0.334555 0.942376i \(-0.608586\pi\)
−0.334555 + 0.942376i \(0.608586\pi\)
\(258\) 9.95037e7 0.360720
\(259\) −4.96854e7 −0.177697
\(260\) 8.25409e7 0.291248
\(261\) 1.88889e8 0.657604
\(262\) −3.74968e8 −1.28807
\(263\) −3.32466e8 −1.12694 −0.563471 0.826136i \(-0.690534\pi\)
−0.563471 + 0.826136i \(0.690534\pi\)
\(264\) 3.54295e7 0.118509
\(265\) −3.35595e8 −1.10778
\(266\) −8.84292e7 −0.288078
\(267\) −3.77352e7 −0.121327
\(268\) 1.29821e8 0.411979
\(269\) 3.56196e8 1.11572 0.557862 0.829934i \(-0.311622\pi\)
0.557862 + 0.829934i \(0.311622\pi\)
\(270\) 2.43296e8 0.752248
\(271\) −6.50894e8 −1.98663 −0.993316 0.115423i \(-0.963178\pi\)
−0.993316 + 0.115423i \(0.963178\pi\)
\(272\) −1.94326e7 −0.0585516
\(273\) −6.90812e7 −0.205490
\(274\) −1.34542e8 −0.395122
\(275\) −2.11796e8 −0.614121
\(276\) −2.32643e7 −0.0666051
\(277\) 1.11215e8 0.314402 0.157201 0.987567i \(-0.449753\pi\)
0.157201 + 0.987567i \(0.449753\pi\)
\(278\) −9.37908e7 −0.261820
\(279\) 5.54347e7 0.152815
\(280\) 1.88484e8 0.513122
\(281\) −5.93017e7 −0.159439 −0.0797196 0.996817i \(-0.525403\pi\)
−0.0797196 + 0.996817i \(0.525403\pi\)
\(282\) 1.85481e8 0.492525
\(283\) −6.90811e8 −1.81179 −0.905893 0.423508i \(-0.860799\pi\)
−0.905893 + 0.423508i \(0.860799\pi\)
\(284\) −3.74909e7 −0.0971208
\(285\) −8.66743e7 −0.221786
\(286\) 9.28253e7 0.234631
\(287\) −2.73333e8 −0.682504
\(288\) 5.79009e7 0.142827
\(289\) −3.87830e8 −0.945147
\(290\) 3.20953e8 0.772768
\(291\) −1.36045e8 −0.323637
\(292\) 2.74357e7 0.0644875
\(293\) −6.33150e8 −1.47052 −0.735258 0.677787i \(-0.762939\pi\)
−0.735258 + 0.677787i \(0.762939\pi\)
\(294\) −2.27265e7 −0.0521575
\(295\) −3.36859e8 −0.763962
\(296\) −2.59343e7 −0.0581238
\(297\) 2.73610e8 0.606016
\(298\) −6.11959e8 −1.33957
\(299\) −6.09523e7 −0.131869
\(300\) 8.22731e7 0.175927
\(301\) 5.95313e8 1.25824
\(302\) 1.75296e8 0.366225
\(303\) 4.12301e7 0.0851461
\(304\) −4.61575e7 −0.0942290
\(305\) 6.34975e8 1.28147
\(306\) −6.70649e7 −0.133804
\(307\) 3.19674e8 0.630554 0.315277 0.949000i \(-0.397903\pi\)
0.315277 + 0.949000i \(0.397903\pi\)
\(308\) 2.11969e8 0.413375
\(309\) −1.73065e8 −0.333698
\(310\) 9.41927e7 0.179577
\(311\) 9.05480e8 1.70694 0.853469 0.521144i \(-0.174495\pi\)
0.853469 + 0.521144i \(0.174495\pi\)
\(312\) −3.60584e7 −0.0672148
\(313\) 4.16880e8 0.768433 0.384216 0.923243i \(-0.374472\pi\)
0.384216 + 0.923243i \(0.374472\pi\)
\(314\) −1.53497e7 −0.0279800
\(315\) 6.50488e8 1.17261
\(316\) −1.00838e8 −0.179770
\(317\) 2.87485e8 0.506883 0.253442 0.967351i \(-0.418437\pi\)
0.253442 + 0.967351i \(0.418437\pi\)
\(318\) 1.46606e8 0.255657
\(319\) 3.60944e8 0.622547
\(320\) 9.83831e7 0.167840
\(321\) 4.15477e8 0.701099
\(322\) −1.39186e8 −0.232327
\(323\) 5.34629e7 0.0882762
\(324\) 1.41038e8 0.230371
\(325\) 2.15555e8 0.348311
\(326\) 1.77043e8 0.283021
\(327\) −5.12142e8 −0.809978
\(328\) −1.42672e8 −0.223244
\(329\) 1.10970e9 1.71799
\(330\) 2.07762e8 0.318249
\(331\) −1.43202e7 −0.0217046 −0.0108523 0.999941i \(-0.503454\pi\)
−0.0108523 + 0.999941i \(0.503454\pi\)
\(332\) −3.44217e7 −0.0516236
\(333\) −8.95036e7 −0.132827
\(334\) −3.54546e8 −0.520667
\(335\) 7.61285e8 1.10634
\(336\) −8.23400e7 −0.118420
\(337\) −7.28640e8 −1.03707 −0.518535 0.855056i \(-0.673522\pi\)
−0.518535 + 0.855056i \(0.673522\pi\)
\(338\) 4.07515e8 0.574031
\(339\) 2.85347e8 0.397809
\(340\) −1.13954e8 −0.157237
\(341\) 1.05929e8 0.144669
\(342\) −1.59297e8 −0.215336
\(343\) 6.71843e8 0.898955
\(344\) 3.10736e8 0.411564
\(345\) −1.36424e8 −0.178864
\(346\) −5.98164e8 −0.776343
\(347\) −5.87298e8 −0.754581 −0.377290 0.926095i \(-0.623144\pi\)
−0.377290 + 0.926095i \(0.623144\pi\)
\(348\) −1.40210e8 −0.178341
\(349\) −1.89025e8 −0.238029 −0.119015 0.992892i \(-0.537974\pi\)
−0.119015 + 0.992892i \(0.537974\pi\)
\(350\) 4.92225e8 0.613657
\(351\) −2.78466e8 −0.343714
\(352\) 1.10641e8 0.135213
\(353\) 1.09082e9 1.31990 0.659951 0.751309i \(-0.270577\pi\)
0.659951 + 0.751309i \(0.270577\pi\)
\(354\) 1.47159e8 0.176309
\(355\) −2.19850e8 −0.260812
\(356\) −1.17842e8 −0.138428
\(357\) 9.53721e7 0.110939
\(358\) 9.61140e8 1.10712
\(359\) −1.29066e9 −1.47225 −0.736123 0.676848i \(-0.763345\pi\)
−0.736123 + 0.676848i \(0.763345\pi\)
\(360\) 3.39536e8 0.383554
\(361\) −7.66883e8 −0.857934
\(362\) −1.19523e9 −1.32425
\(363\) −1.65722e8 −0.181847
\(364\) −2.15731e8 −0.234454
\(365\) 1.60885e8 0.173177
\(366\) −2.77392e8 −0.295740
\(367\) −6.31310e8 −0.666671 −0.333335 0.942808i \(-0.608174\pi\)
−0.333335 + 0.942808i \(0.608174\pi\)
\(368\) −7.26510e7 −0.0759931
\(369\) −4.92384e8 −0.510166
\(370\) −1.52081e8 −0.156088
\(371\) 8.77120e8 0.891765
\(372\) −4.11485e7 −0.0414433
\(373\) −1.48854e8 −0.148518 −0.0742589 0.997239i \(-0.523659\pi\)
−0.0742589 + 0.997239i \(0.523659\pi\)
\(374\) −1.28153e8 −0.126671
\(375\) −1.18438e8 −0.115979
\(376\) 5.79232e8 0.561947
\(377\) −3.67350e8 −0.353090
\(378\) −6.35883e8 −0.605558
\(379\) 1.20416e8 0.113618 0.0568092 0.998385i \(-0.481907\pi\)
0.0568092 + 0.998385i \(0.481907\pi\)
\(380\) −2.70672e8 −0.253046
\(381\) 7.51785e7 0.0696396
\(382\) 1.87719e8 0.172300
\(383\) 7.76564e8 0.706287 0.353144 0.935569i \(-0.385113\pi\)
0.353144 + 0.935569i \(0.385113\pi\)
\(384\) −4.29791e7 −0.0387345
\(385\) 1.24300e9 1.11009
\(386\) −8.12675e8 −0.719219
\(387\) 1.07240e9 0.940521
\(388\) −4.24850e8 −0.369253
\(389\) −3.59623e8 −0.309759 −0.154880 0.987933i \(-0.549499\pi\)
−0.154880 + 0.987933i \(0.549499\pi\)
\(390\) −2.11450e8 −0.180501
\(391\) 8.41496e7 0.0711924
\(392\) −7.09717e7 −0.0595092
\(393\) 9.60575e8 0.798284
\(394\) −1.48412e9 −1.22245
\(395\) −5.91320e8 −0.482762
\(396\) 3.81842e8 0.308994
\(397\) −6.04729e8 −0.485058 −0.242529 0.970144i \(-0.577977\pi\)
−0.242529 + 0.970144i \(0.577977\pi\)
\(398\) 2.29013e8 0.182083
\(399\) 2.26534e8 0.178537
\(400\) 2.56927e8 0.200724
\(401\) −1.22031e9 −0.945068 −0.472534 0.881312i \(-0.656661\pi\)
−0.472534 + 0.881312i \(0.656661\pi\)
\(402\) −3.32571e8 −0.255325
\(403\) −1.07809e8 −0.0820517
\(404\) 1.28756e8 0.0971475
\(405\) 8.27058e8 0.618648
\(406\) −8.38851e8 −0.622077
\(407\) −1.71030e8 −0.125746
\(408\) 4.97815e7 0.0362875
\(409\) 1.32264e9 0.955895 0.477948 0.878388i \(-0.341381\pi\)
0.477948 + 0.878388i \(0.341381\pi\)
\(410\) −8.36641e8 −0.599509
\(411\) 3.44664e8 0.244878
\(412\) −5.40457e8 −0.380733
\(413\) 8.80423e8 0.614988
\(414\) −2.50730e8 −0.173662
\(415\) −2.01852e8 −0.138632
\(416\) −1.12605e8 −0.0766888
\(417\) 2.40269e8 0.162264
\(418\) −3.04397e8 −0.203856
\(419\) −2.21575e9 −1.47154 −0.735769 0.677232i \(-0.763179\pi\)
−0.735769 + 0.677232i \(0.763179\pi\)
\(420\) −4.82849e8 −0.318009
\(421\) 1.14567e9 0.748291 0.374146 0.927370i \(-0.377936\pi\)
0.374146 + 0.927370i \(0.377936\pi\)
\(422\) −1.25955e8 −0.0815869
\(423\) 1.99902e9 1.28418
\(424\) 4.57831e8 0.291692
\(425\) −2.97592e8 −0.188044
\(426\) 9.60426e7 0.0601908
\(427\) −1.65959e9 −1.03158
\(428\) 1.29748e9 0.799919
\(429\) −2.37796e8 −0.145413
\(430\) 1.82218e9 1.10523
\(431\) −9.03397e8 −0.543511 −0.271755 0.962366i \(-0.587604\pi\)
−0.271755 + 0.962366i \(0.587604\pi\)
\(432\) −3.31912e8 −0.198075
\(433\) 2.69931e8 0.159788 0.0798940 0.996803i \(-0.474542\pi\)
0.0798940 + 0.996803i \(0.474542\pi\)
\(434\) −2.46184e8 −0.144559
\(435\) −8.22204e8 −0.478925
\(436\) −1.59935e9 −0.924145
\(437\) 1.99878e8 0.114572
\(438\) −7.02835e7 −0.0399663
\(439\) −1.79656e9 −1.01348 −0.506741 0.862098i \(-0.669150\pi\)
−0.506741 + 0.862098i \(0.669150\pi\)
\(440\) 6.48812e8 0.363107
\(441\) −2.44935e8 −0.135993
\(442\) 1.30427e8 0.0718440
\(443\) −1.78755e7 −0.00976891 −0.00488445 0.999988i \(-0.501555\pi\)
−0.00488445 + 0.999988i \(0.501555\pi\)
\(444\) 6.64374e7 0.0360224
\(445\) −6.91034e8 −0.371740
\(446\) 2.58853e8 0.138160
\(447\) 1.56769e9 0.830201
\(448\) −2.57136e8 −0.135111
\(449\) −2.18310e9 −1.13818 −0.569090 0.822275i \(-0.692704\pi\)
−0.569090 + 0.822275i \(0.692704\pi\)
\(450\) 8.86697e8 0.458703
\(451\) −9.40885e8 −0.482968
\(452\) 8.91098e8 0.453880
\(453\) −4.49066e8 −0.226969
\(454\) −2.35609e9 −1.18167
\(455\) −1.26506e9 −0.629612
\(456\) 1.18244e8 0.0583986
\(457\) 1.51733e9 0.743658 0.371829 0.928301i \(-0.378731\pi\)
0.371829 + 0.928301i \(0.378731\pi\)
\(458\) 2.12851e9 1.03525
\(459\) 3.84445e8 0.185562
\(460\) −4.26032e8 −0.204075
\(461\) 2.03360e9 0.966748 0.483374 0.875414i \(-0.339411\pi\)
0.483374 + 0.875414i \(0.339411\pi\)
\(462\) −5.43012e8 −0.256190
\(463\) −2.70950e9 −1.26869 −0.634345 0.773050i \(-0.718730\pi\)
−0.634345 + 0.773050i \(0.718730\pi\)
\(464\) −4.37856e8 −0.203478
\(465\) −2.41299e8 −0.111293
\(466\) 1.71575e9 0.785421
\(467\) −8.79465e8 −0.399585 −0.199793 0.979838i \(-0.564027\pi\)
−0.199793 + 0.979838i \(0.564027\pi\)
\(468\) −3.88619e8 −0.175252
\(469\) −1.98971e9 −0.890605
\(470\) 3.39667e9 1.50907
\(471\) 3.93223e7 0.0173406
\(472\) 4.59556e8 0.201160
\(473\) 2.04922e9 0.890380
\(474\) 2.58321e8 0.111413
\(475\) −7.06858e8 −0.302625
\(476\) 2.97834e8 0.126575
\(477\) 1.58005e9 0.666586
\(478\) 2.64109e9 1.10608
\(479\) −6.53811e8 −0.271818 −0.135909 0.990721i \(-0.543395\pi\)
−0.135909 + 0.990721i \(0.543395\pi\)
\(480\) −2.52033e8 −0.104019
\(481\) 1.74066e8 0.0713191
\(482\) −2.84851e9 −1.15865
\(483\) 3.56560e8 0.143985
\(484\) −5.17527e8 −0.207479
\(485\) −2.49136e9 −0.991608
\(486\) −1.77906e9 −0.703015
\(487\) −1.56097e9 −0.612413 −0.306207 0.951965i \(-0.599060\pi\)
−0.306207 + 0.951965i \(0.599060\pi\)
\(488\) −8.66256e8 −0.337425
\(489\) −4.53542e8 −0.175403
\(490\) −4.16184e8 −0.159808
\(491\) −1.64069e9 −0.625520 −0.312760 0.949832i \(-0.601254\pi\)
−0.312760 + 0.949832i \(0.601254\pi\)
\(492\) 3.65491e8 0.138356
\(493\) 5.07156e8 0.190624
\(494\) 3.09799e8 0.115621
\(495\) 2.23915e9 0.829785
\(496\) −1.28501e8 −0.0472847
\(497\) 5.74606e8 0.209953
\(498\) 8.81799e7 0.0319939
\(499\) 2.04350e9 0.736245 0.368123 0.929777i \(-0.380001\pi\)
0.368123 + 0.929777i \(0.380001\pi\)
\(500\) −3.69864e8 −0.132326
\(501\) 9.08260e8 0.322685
\(502\) 5.52599e8 0.194961
\(503\) 5.03945e9 1.76561 0.882805 0.469739i \(-0.155652\pi\)
0.882805 + 0.469739i \(0.155652\pi\)
\(504\) −8.87419e8 −0.308761
\(505\) 7.55035e8 0.260884
\(506\) −4.79115e8 −0.164404
\(507\) −1.04395e9 −0.355757
\(508\) 2.34772e8 0.0794553
\(509\) 1.43927e9 0.483761 0.241881 0.970306i \(-0.422236\pi\)
0.241881 + 0.970306i \(0.422236\pi\)
\(510\) 2.91923e8 0.0974480
\(511\) −4.20494e8 −0.139408
\(512\) −1.34218e8 −0.0441942
\(513\) 9.13158e8 0.298631
\(514\) 1.45664e9 0.473132
\(515\) −3.16929e9 −1.02244
\(516\) −7.96030e8 −0.255068
\(517\) 3.81989e9 1.21572
\(518\) 3.97483e8 0.125651
\(519\) 1.53235e9 0.481141
\(520\) −6.60327e8 −0.205943
\(521\) 3.31327e8 0.102642 0.0513210 0.998682i \(-0.483657\pi\)
0.0513210 + 0.998682i \(0.483657\pi\)
\(522\) −1.51111e9 −0.464997
\(523\) −3.41666e9 −1.04435 −0.522175 0.852838i \(-0.674879\pi\)
−0.522175 + 0.852838i \(0.674879\pi\)
\(524\) 2.99974e9 0.910803
\(525\) −1.26096e9 −0.380315
\(526\) 2.65972e9 0.796868
\(527\) 1.48839e8 0.0442976
\(528\) −2.83436e8 −0.0837986
\(529\) −3.09022e9 −0.907601
\(530\) 2.68476e9 0.783322
\(531\) 1.58600e9 0.459698
\(532\) 7.07434e8 0.203702
\(533\) 9.57584e8 0.273925
\(534\) 3.01881e8 0.0857910
\(535\) 7.60851e9 2.14813
\(536\) −1.03857e9 −0.291313
\(537\) −2.46221e9 −0.686143
\(538\) −2.84957e9 −0.788935
\(539\) −4.68040e8 −0.128743
\(540\) −1.94636e9 −0.531920
\(541\) −3.31862e9 −0.901087 −0.450544 0.892754i \(-0.648770\pi\)
−0.450544 + 0.892754i \(0.648770\pi\)
\(542\) 5.20715e9 1.40476
\(543\) 3.06189e9 0.820710
\(544\) 1.55461e8 0.0414023
\(545\) −9.37872e9 −2.48174
\(546\) 5.52649e8 0.145303
\(547\) 3.77978e9 0.987440 0.493720 0.869621i \(-0.335637\pi\)
0.493720 + 0.869621i \(0.335637\pi\)
\(548\) 1.07634e9 0.279393
\(549\) −2.98959e9 −0.771096
\(550\) 1.69437e9 0.434249
\(551\) 1.20463e9 0.306777
\(552\) 1.86114e8 0.0470969
\(553\) 1.54549e9 0.388622
\(554\) −8.89722e8 −0.222316
\(555\) 3.89595e8 0.0967360
\(556\) 7.50326e8 0.185135
\(557\) −2.29803e9 −0.563460 −0.281730 0.959494i \(-0.590908\pi\)
−0.281730 + 0.959494i \(0.590908\pi\)
\(558\) −4.43478e8 −0.108057
\(559\) −2.08560e9 −0.504997
\(560\) −1.50787e9 −0.362832
\(561\) 3.28296e8 0.0785047
\(562\) 4.74414e8 0.112741
\(563\) 4.61923e9 1.09091 0.545456 0.838139i \(-0.316356\pi\)
0.545456 + 0.838139i \(0.316356\pi\)
\(564\) −1.48385e9 −0.348268
\(565\) 5.22548e9 1.21887
\(566\) 5.52649e9 1.28113
\(567\) −2.16162e9 −0.498010
\(568\) 2.99928e8 0.0686748
\(569\) −1.50413e8 −0.0342289 −0.0171145 0.999854i \(-0.505448\pi\)
−0.0171145 + 0.999854i \(0.505448\pi\)
\(570\) 6.93394e8 0.156826
\(571\) −1.41430e9 −0.317918 −0.158959 0.987285i \(-0.550814\pi\)
−0.158959 + 0.987285i \(0.550814\pi\)
\(572\) −7.42603e8 −0.165909
\(573\) −4.80890e8 −0.106784
\(574\) 2.18666e9 0.482603
\(575\) −1.11258e9 −0.244059
\(576\) −4.63207e8 −0.100994
\(577\) −5.23894e9 −1.13535 −0.567673 0.823254i \(-0.692156\pi\)
−0.567673 + 0.823254i \(0.692156\pi\)
\(578\) 3.10264e9 0.668320
\(579\) 2.08187e9 0.445738
\(580\) −2.56763e9 −0.546429
\(581\) 5.27564e8 0.111599
\(582\) 1.08836e9 0.228846
\(583\) 3.01928e9 0.631049
\(584\) −2.19485e8 −0.0455996
\(585\) −2.27889e9 −0.470629
\(586\) 5.06520e9 1.03981
\(587\) 9.01754e8 0.184016 0.0920078 0.995758i \(-0.470672\pi\)
0.0920078 + 0.995758i \(0.470672\pi\)
\(588\) 1.81812e8 0.0368809
\(589\) 3.53532e8 0.0712895
\(590\) 2.69487e9 0.540202
\(591\) 3.80194e9 0.757616
\(592\) 2.07475e8 0.0410997
\(593\) 1.90592e9 0.375329 0.187665 0.982233i \(-0.439908\pi\)
0.187665 + 0.982233i \(0.439908\pi\)
\(594\) −2.18888e9 −0.428518
\(595\) 1.74652e9 0.339911
\(596\) 4.89567e9 0.947219
\(597\) −5.86676e8 −0.112847
\(598\) 4.87619e8 0.0932451
\(599\) 1.30391e9 0.247887 0.123944 0.992289i \(-0.460446\pi\)
0.123944 + 0.992289i \(0.460446\pi\)
\(600\) −6.58185e8 −0.124399
\(601\) −2.06025e9 −0.387131 −0.193566 0.981087i \(-0.562005\pi\)
−0.193566 + 0.981087i \(0.562005\pi\)
\(602\) −4.76250e9 −0.889708
\(603\) −3.58428e9 −0.665719
\(604\) −1.40237e9 −0.258960
\(605\) −3.03482e9 −0.557172
\(606\) −3.29841e8 −0.0602074
\(607\) 3.47284e9 0.630267 0.315134 0.949047i \(-0.397951\pi\)
0.315134 + 0.949047i \(0.397951\pi\)
\(608\) 3.69260e8 0.0666300
\(609\) 2.14893e9 0.385533
\(610\) −5.07980e9 −0.906134
\(611\) −3.88769e9 −0.689520
\(612\) 5.36519e8 0.0946140
\(613\) −6.62090e9 −1.16093 −0.580464 0.814286i \(-0.697129\pi\)
−0.580464 + 0.814286i \(0.697129\pi\)
\(614\) −2.55739e9 −0.445869
\(615\) 2.14327e9 0.371547
\(616\) −1.69575e9 −0.292300
\(617\) −7.31262e9 −1.25336 −0.626679 0.779278i \(-0.715586\pi\)
−0.626679 + 0.779278i \(0.715586\pi\)
\(618\) 1.38452e9 0.235960
\(619\) −1.16269e10 −1.97037 −0.985185 0.171494i \(-0.945140\pi\)
−0.985185 + 0.171494i \(0.945140\pi\)
\(620\) −7.53542e8 −0.126980
\(621\) 1.43729e9 0.240838
\(622\) −7.24384e9 −1.20699
\(623\) 1.80610e9 0.299250
\(624\) 2.88467e8 0.0475280
\(625\) −7.06941e9 −1.15825
\(626\) −3.33504e9 −0.543364
\(627\) 7.79790e8 0.126340
\(628\) 1.22798e8 0.0197848
\(629\) −2.40312e8 −0.0385033
\(630\) −5.20390e9 −0.829158
\(631\) −1.21058e10 −1.91818 −0.959091 0.283097i \(-0.908638\pi\)
−0.959091 + 0.283097i \(0.908638\pi\)
\(632\) 8.06700e8 0.127117
\(633\) 3.22665e8 0.0505637
\(634\) −2.29988e9 −0.358421
\(635\) 1.37672e9 0.213373
\(636\) −1.17285e9 −0.180777
\(637\) 4.76347e8 0.0730189
\(638\) −2.88755e9 −0.440207
\(639\) 1.03510e9 0.156938
\(640\) −7.87065e8 −0.118681
\(641\) −1.02354e10 −1.53498 −0.767489 0.641062i \(-0.778494\pi\)
−0.767489 + 0.641062i \(0.778494\pi\)
\(642\) −3.32381e9 −0.495752
\(643\) 5.79264e9 0.859287 0.429643 0.902999i \(-0.358639\pi\)
0.429643 + 0.902999i \(0.358639\pi\)
\(644\) 1.11349e9 0.164280
\(645\) −4.66799e9 −0.684969
\(646\) −4.27703e8 −0.0624207
\(647\) 5.49161e9 0.797140 0.398570 0.917138i \(-0.369507\pi\)
0.398570 + 0.917138i \(0.369507\pi\)
\(648\) −1.12830e9 −0.162897
\(649\) 3.03065e9 0.435191
\(650\) −1.72444e9 −0.246293
\(651\) 6.30664e8 0.0895910
\(652\) −1.41635e9 −0.200126
\(653\) 1.23545e10 1.73632 0.868159 0.496286i \(-0.165303\pi\)
0.868159 + 0.496286i \(0.165303\pi\)
\(654\) 4.09714e9 0.572741
\(655\) 1.75908e10 2.44591
\(656\) 1.14138e9 0.157857
\(657\) −7.57480e8 −0.104206
\(658\) −8.87761e9 −1.21480
\(659\) −1.28561e9 −0.174989 −0.0874943 0.996165i \(-0.527886\pi\)
−0.0874943 + 0.996165i \(0.527886\pi\)
\(660\) −1.66210e9 −0.225036
\(661\) 3.05232e9 0.411078 0.205539 0.978649i \(-0.434105\pi\)
0.205539 + 0.978649i \(0.434105\pi\)
\(662\) 1.14562e8 0.0153475
\(663\) −3.34123e8 −0.0445255
\(664\) 2.75373e8 0.0365034
\(665\) 4.14845e9 0.547029
\(666\) 7.16028e8 0.0939227
\(667\) 1.89607e9 0.247407
\(668\) 2.83637e9 0.368167
\(669\) −6.63118e8 −0.0856248
\(670\) −6.09028e9 −0.782303
\(671\) −5.71274e9 −0.729988
\(672\) 6.58720e8 0.0837353
\(673\) 1.07819e10 1.36346 0.681730 0.731604i \(-0.261228\pi\)
0.681730 + 0.731604i \(0.261228\pi\)
\(674\) 5.82912e9 0.733319
\(675\) −5.08293e9 −0.636137
\(676\) −3.26012e9 −0.405901
\(677\) 1.22831e10 1.52142 0.760709 0.649093i \(-0.224851\pi\)
0.760709 + 0.649093i \(0.224851\pi\)
\(678\) −2.28278e9 −0.281293
\(679\) 6.51147e9 0.798242
\(680\) 9.11635e8 0.111183
\(681\) 6.03572e9 0.732342
\(682\) −8.47432e8 −0.102296
\(683\) 7.76468e8 0.0932505 0.0466252 0.998912i \(-0.485153\pi\)
0.0466252 + 0.998912i \(0.485153\pi\)
\(684\) 1.27437e9 0.152265
\(685\) 6.31173e9 0.750294
\(686\) −5.37474e9 −0.635657
\(687\) −5.45272e9 −0.641601
\(688\) −2.48589e9 −0.291019
\(689\) −3.07287e9 −0.357912
\(690\) 1.09139e9 0.126476
\(691\) −1.01602e10 −1.17147 −0.585733 0.810504i \(-0.699193\pi\)
−0.585733 + 0.810504i \(0.699193\pi\)
\(692\) 4.78531e9 0.548958
\(693\) −5.85230e9 −0.667975
\(694\) 4.69839e9 0.533569
\(695\) 4.39998e9 0.497169
\(696\) 1.12168e9 0.126106
\(697\) −1.32202e9 −0.147885
\(698\) 1.51220e9 0.168312
\(699\) −4.39532e9 −0.486767
\(700\) −3.93780e9 −0.433921
\(701\) −1.47467e10 −1.61689 −0.808446 0.588571i \(-0.799691\pi\)
−0.808446 + 0.588571i \(0.799691\pi\)
\(702\) 2.22773e9 0.243043
\(703\) −5.70804e8 −0.0619646
\(704\) −8.85132e8 −0.0956101
\(705\) −8.70144e9 −0.935253
\(706\) −8.72656e9 −0.933311
\(707\) −1.97338e9 −0.210011
\(708\) −1.17727e9 −0.124669
\(709\) 1.12511e10 1.18559 0.592795 0.805353i \(-0.298024\pi\)
0.592795 + 0.805353i \(0.298024\pi\)
\(710\) 1.75880e9 0.184422
\(711\) 2.78405e9 0.290492
\(712\) 9.42733e8 0.0978833
\(713\) 5.56453e8 0.0574930
\(714\) −7.62977e8 −0.0784454
\(715\) −4.35469e9 −0.445539
\(716\) −7.68912e9 −0.782855
\(717\) −6.76583e9 −0.685495
\(718\) 1.03253e10 1.04103
\(719\) 1.05695e10 1.06048 0.530242 0.847846i \(-0.322101\pi\)
0.530242 + 0.847846i \(0.322101\pi\)
\(720\) −2.71629e9 −0.271214
\(721\) 8.28332e9 0.823059
\(722\) 6.13507e9 0.606651
\(723\) 7.29718e9 0.718077
\(724\) 9.56184e9 0.936390
\(725\) −6.70535e9 −0.653490
\(726\) 1.32578e9 0.128586
\(727\) 1.28794e10 1.24316 0.621578 0.783352i \(-0.286492\pi\)
0.621578 + 0.783352i \(0.286492\pi\)
\(728\) 1.72585e9 0.165784
\(729\) −2.62002e8 −0.0250471
\(730\) −1.28708e9 −0.122455
\(731\) 2.87933e9 0.272635
\(732\) 2.21914e9 0.209120
\(733\) 4.04814e9 0.379657 0.189828 0.981817i \(-0.439207\pi\)
0.189828 + 0.981817i \(0.439207\pi\)
\(734\) 5.05048e9 0.471407
\(735\) 1.06616e9 0.0990416
\(736\) 5.81208e8 0.0537353
\(737\) −6.84912e9 −0.630229
\(738\) 3.93907e9 0.360742
\(739\) 2.07897e10 1.89493 0.947465 0.319860i \(-0.103636\pi\)
0.947465 + 0.319860i \(0.103636\pi\)
\(740\) 1.21665e9 0.110371
\(741\) −7.93630e8 −0.0716563
\(742\) −7.01696e9 −0.630573
\(743\) −1.77336e9 −0.158612 −0.0793059 0.996850i \(-0.525270\pi\)
−0.0793059 + 0.996850i \(0.525270\pi\)
\(744\) 3.29188e8 0.0293048
\(745\) 2.87086e10 2.54370
\(746\) 1.19083e9 0.105018
\(747\) 9.50358e8 0.0834190
\(748\) 1.02522e9 0.0895700
\(749\) −1.98858e10 −1.72924
\(750\) 9.47500e8 0.0820097
\(751\) 1.57353e9 0.135561 0.0677805 0.997700i \(-0.478408\pi\)
0.0677805 + 0.997700i \(0.478408\pi\)
\(752\) −4.63386e9 −0.397356
\(753\) −1.41562e9 −0.120827
\(754\) 2.93880e9 0.249672
\(755\) −8.22363e9 −0.695423
\(756\) 5.08706e9 0.428194
\(757\) 3.09511e9 0.259322 0.129661 0.991558i \(-0.458611\pi\)
0.129661 + 0.991558i \(0.458611\pi\)
\(758\) −9.63331e8 −0.0803403
\(759\) 1.22738e9 0.101890
\(760\) 2.16537e9 0.178931
\(761\) 8.84425e9 0.727470 0.363735 0.931503i \(-0.381501\pi\)
0.363735 + 0.931503i \(0.381501\pi\)
\(762\) −6.01428e8 −0.0492426
\(763\) 2.45124e10 1.99779
\(764\) −1.50175e9 −0.121835
\(765\) 3.14620e9 0.254080
\(766\) −6.21251e9 −0.499420
\(767\) −3.08444e9 −0.246827
\(768\) 3.43833e8 0.0273894
\(769\) −1.74163e10 −1.38106 −0.690532 0.723302i \(-0.742624\pi\)
−0.690532 + 0.723302i \(0.742624\pi\)
\(770\) −9.94402e9 −0.784955
\(771\) −3.73156e9 −0.293225
\(772\) 6.50140e9 0.508565
\(773\) 9.23354e9 0.719018 0.359509 0.933142i \(-0.382944\pi\)
0.359509 + 0.933142i \(0.382944\pi\)
\(774\) −8.57920e9 −0.665049
\(775\) −1.96787e9 −0.151859
\(776\) 3.39880e9 0.261101
\(777\) −1.01825e9 −0.0778723
\(778\) 2.87699e9 0.219033
\(779\) −3.14015e9 −0.237996
\(780\) 1.69160e9 0.127634
\(781\) 1.97795e9 0.148572
\(782\) −6.73197e8 −0.0503406
\(783\) 8.66234e9 0.644865
\(784\) 5.67773e8 0.0420793
\(785\) 7.20098e8 0.0531309
\(786\) −7.68460e9 −0.564472
\(787\) 1.14265e10 0.835609 0.417805 0.908537i \(-0.362800\pi\)
0.417805 + 0.908537i \(0.362800\pi\)
\(788\) 1.18729e10 0.864402
\(789\) −6.81356e9 −0.493861
\(790\) 4.73056e9 0.341364
\(791\) −1.36574e10 −0.981186
\(792\) −3.05473e9 −0.218492
\(793\) 5.81413e9 0.414027
\(794\) 4.83783e9 0.342988
\(795\) −6.87770e9 −0.485466
\(796\) −1.83211e9 −0.128752
\(797\) −2.63234e10 −1.84178 −0.920891 0.389820i \(-0.872537\pi\)
−0.920891 + 0.389820i \(0.872537\pi\)
\(798\) −1.81227e9 −0.126245
\(799\) 5.36726e9 0.372254
\(800\) −2.05542e9 −0.141934
\(801\) 3.25352e9 0.223687
\(802\) 9.76244e9 0.668264
\(803\) −1.44745e9 −0.0986505
\(804\) 2.66057e9 0.180542
\(805\) 6.52959e9 0.441164
\(806\) 8.62473e8 0.0580193
\(807\) 7.29990e9 0.488945
\(808\) −1.03005e9 −0.0686937
\(809\) −7.47328e9 −0.496240 −0.248120 0.968729i \(-0.579813\pi\)
−0.248120 + 0.968729i \(0.579813\pi\)
\(810\) −6.61647e9 −0.437450
\(811\) −1.32084e10 −0.869513 −0.434756 0.900548i \(-0.643166\pi\)
−0.434756 + 0.900548i \(0.643166\pi\)
\(812\) 6.71081e9 0.439875
\(813\) −1.33394e10 −0.870604
\(814\) 1.36824e9 0.0889156
\(815\) −8.30558e9 −0.537426
\(816\) −3.98252e8 −0.0256591
\(817\) 6.83917e9 0.438759
\(818\) −1.05811e10 −0.675920
\(819\) 5.95617e9 0.378855
\(820\) 6.69313e9 0.423917
\(821\) −2.22151e10 −1.40103 −0.700516 0.713637i \(-0.747047\pi\)
−0.700516 + 0.713637i \(0.747047\pi\)
\(822\) −2.75731e9 −0.173155
\(823\) −5.39596e9 −0.337419 −0.168710 0.985666i \(-0.553960\pi\)
−0.168710 + 0.985666i \(0.553960\pi\)
\(824\) 4.32365e9 0.269219
\(825\) −4.34056e9 −0.269127
\(826\) −7.04339e9 −0.434862
\(827\) −1.31682e10 −0.809575 −0.404787 0.914411i \(-0.632654\pi\)
−0.404787 + 0.914411i \(0.632654\pi\)
\(828\) 2.00584e9 0.122798
\(829\) −1.33819e10 −0.815790 −0.407895 0.913029i \(-0.633737\pi\)
−0.407895 + 0.913029i \(0.633737\pi\)
\(830\) 1.61481e9 0.0980278
\(831\) 2.27925e9 0.137781
\(832\) 9.00842e8 0.0542271
\(833\) −6.57636e8 −0.0394210
\(834\) −1.92215e9 −0.114738
\(835\) 1.66327e10 0.988691
\(836\) 2.43517e9 0.144148
\(837\) 2.54220e9 0.149855
\(838\) 1.77260e10 1.04053
\(839\) −2.87088e9 −0.167822 −0.0839108 0.996473i \(-0.526741\pi\)
−0.0839108 + 0.996473i \(0.526741\pi\)
\(840\) 3.86280e9 0.224866
\(841\) −5.82260e9 −0.337544
\(842\) −9.16533e9 −0.529122
\(843\) −1.21533e9 −0.0698713
\(844\) 1.00764e9 0.0576907
\(845\) −1.91177e10 −1.09002
\(846\) −1.59922e10 −0.908054
\(847\) 7.93188e9 0.448523
\(848\) −3.66265e9 −0.206258
\(849\) −1.41575e10 −0.793981
\(850\) 2.38073e9 0.132967
\(851\) −8.98436e8 −0.0499728
\(852\) −7.68341e8 −0.0425613
\(853\) 2.37600e9 0.131077 0.0655383 0.997850i \(-0.479124\pi\)
0.0655383 + 0.997850i \(0.479124\pi\)
\(854\) 1.32767e10 0.729436
\(855\) 7.47305e9 0.408899
\(856\) −1.03798e10 −0.565628
\(857\) −3.42331e10 −1.85786 −0.928931 0.370253i \(-0.879271\pi\)
−0.928931 + 0.370253i \(0.879271\pi\)
\(858\) 1.90237e9 0.102823
\(859\) −3.38131e9 −0.182016 −0.0910078 0.995850i \(-0.529009\pi\)
−0.0910078 + 0.995850i \(0.529009\pi\)
\(860\) −1.45775e10 −0.781515
\(861\) −5.60170e9 −0.299095
\(862\) 7.22717e9 0.384320
\(863\) −1.21792e10 −0.645030 −0.322515 0.946564i \(-0.604528\pi\)
−0.322515 + 0.946564i \(0.604528\pi\)
\(864\) 2.65530e9 0.140060
\(865\) 2.80615e10 1.47419
\(866\) −2.15944e9 −0.112987
\(867\) −7.94821e9 −0.414193
\(868\) 1.96947e9 0.102219
\(869\) 5.31998e9 0.275005
\(870\) 6.57763e9 0.338651
\(871\) 6.97068e9 0.357447
\(872\) 1.27948e10 0.653469
\(873\) 1.17298e10 0.596679
\(874\) −1.59902e9 −0.0810147
\(875\) 5.66872e9 0.286060
\(876\) 5.62268e8 0.0282605
\(877\) 1.71298e10 0.857539 0.428770 0.903414i \(-0.358947\pi\)
0.428770 + 0.903414i \(0.358947\pi\)
\(878\) 1.43725e10 0.716641
\(879\) −1.29758e10 −0.644426
\(880\) −5.19049e9 −0.256755
\(881\) −1.99520e10 −0.983039 −0.491520 0.870867i \(-0.663558\pi\)
−0.491520 + 0.870867i \(0.663558\pi\)
\(882\) 1.95948e9 0.0961613
\(883\) −3.12819e10 −1.52908 −0.764542 0.644574i \(-0.777035\pi\)
−0.764542 + 0.644574i \(0.777035\pi\)
\(884\) −1.04342e9 −0.0508014
\(885\) −6.90361e9 −0.334792
\(886\) 1.43004e8 0.00690766
\(887\) 1.92928e10 0.928244 0.464122 0.885771i \(-0.346370\pi\)
0.464122 + 0.885771i \(0.346370\pi\)
\(888\) −5.31499e8 −0.0254717
\(889\) −3.59824e9 −0.171765
\(890\) 5.52827e9 0.262860
\(891\) −7.44087e9 −0.352413
\(892\) −2.07082e9 −0.0976937
\(893\) 1.27487e10 0.599080
\(894\) −1.25415e10 −0.587041
\(895\) −4.50897e10 −2.10231
\(896\) 2.05709e9 0.0955378
\(897\) −1.24916e9 −0.0577889
\(898\) 1.74648e10 0.804815
\(899\) 3.35365e9 0.153943
\(900\) −7.09358e9 −0.324352
\(901\) 4.24234e9 0.193227
\(902\) 7.52708e9 0.341510
\(903\) 1.22004e10 0.551399
\(904\) −7.12878e9 −0.320942
\(905\) 5.60715e10 2.51462
\(906\) 3.59253e9 0.160491
\(907\) −2.33637e10 −1.03972 −0.519860 0.854251i \(-0.674016\pi\)
−0.519860 + 0.854251i \(0.674016\pi\)
\(908\) 1.88487e10 0.835566
\(909\) −3.55485e9 −0.156981
\(910\) 1.01205e10 0.445203
\(911\) −1.56760e10 −0.686943 −0.343471 0.939163i \(-0.611603\pi\)
−0.343471 + 0.939163i \(0.611603\pi\)
\(912\) −9.45953e8 −0.0412941
\(913\) 1.81602e9 0.0789718
\(914\) −1.21386e10 −0.525846
\(915\) 1.30132e10 0.561579
\(916\) −1.70281e10 −0.732034
\(917\) −4.59756e10 −1.96895
\(918\) −3.07556e9 −0.131212
\(919\) −2.15624e10 −0.916418 −0.458209 0.888845i \(-0.651509\pi\)
−0.458209 + 0.888845i \(0.651509\pi\)
\(920\) 3.40826e9 0.144303
\(921\) 6.55141e9 0.276329
\(922\) −1.62688e10 −0.683594
\(923\) −2.01305e9 −0.0842653
\(924\) 4.34409e9 0.181154
\(925\) 3.17728e9 0.131996
\(926\) 2.16760e10 0.897099
\(927\) 1.49216e10 0.615229
\(928\) 3.50285e9 0.143881
\(929\) 8.87728e9 0.363266 0.181633 0.983366i \(-0.441862\pi\)
0.181633 + 0.983366i \(0.441862\pi\)
\(930\) 1.93039e9 0.0786964
\(931\) −1.56206e9 −0.0634415
\(932\) −1.37260e10 −0.555377
\(933\) 1.85570e10 0.748033
\(934\) 7.03572e9 0.282550
\(935\) 6.01200e9 0.240535
\(936\) 3.10895e9 0.123922
\(937\) −5.24977e9 −0.208474 −0.104237 0.994552i \(-0.533240\pi\)
−0.104237 + 0.994552i \(0.533240\pi\)
\(938\) 1.59177e10 0.629753
\(939\) 8.54356e9 0.336751
\(940\) −2.71734e10 −1.06708
\(941\) 1.88471e10 0.737363 0.368682 0.929556i \(-0.379809\pi\)
0.368682 + 0.929556i \(0.379809\pi\)
\(942\) −3.14578e8 −0.0122617
\(943\) −4.94254e9 −0.191937
\(944\) −3.67644e9 −0.142241
\(945\) 2.98310e10 1.14989
\(946\) −1.63938e10 −0.629594
\(947\) 3.54978e9 0.135824 0.0679119 0.997691i \(-0.478366\pi\)
0.0679119 + 0.997691i \(0.478366\pi\)
\(948\) −2.06657e9 −0.0787808
\(949\) 1.47314e9 0.0559516
\(950\) 5.65487e9 0.213988
\(951\) 5.89173e9 0.222132
\(952\) −2.38267e9 −0.0895023
\(953\) −5.00673e9 −0.187383 −0.0936913 0.995601i \(-0.529867\pi\)
−0.0936913 + 0.995601i \(0.529867\pi\)
\(954\) −1.26404e10 −0.471347
\(955\) −8.80640e9 −0.327180
\(956\) −2.11287e10 −0.782115
\(957\) 7.39719e9 0.272819
\(958\) 5.23049e9 0.192204
\(959\) −1.64965e10 −0.603985
\(960\) 2.01627e9 0.0735527
\(961\) −2.65284e10 −0.964226
\(962\) −1.39253e9 −0.0504302
\(963\) −3.58224e10 −1.29259
\(964\) 2.27881e10 0.819290
\(965\) 3.81248e10 1.36572
\(966\) −2.85248e9 −0.101813
\(967\) 1.13815e10 0.404770 0.202385 0.979306i \(-0.435131\pi\)
0.202385 + 0.979306i \(0.435131\pi\)
\(968\) 4.14021e9 0.146710
\(969\) 1.09567e9 0.0386854
\(970\) 1.99309e10 0.701173
\(971\) 2.87865e10 1.00907 0.504536 0.863391i \(-0.331664\pi\)
0.504536 + 0.863391i \(0.331664\pi\)
\(972\) 1.42325e10 0.497107
\(973\) −1.14999e10 −0.400220
\(974\) 1.24878e10 0.433042
\(975\) 4.41760e9 0.152641
\(976\) 6.93005e9 0.238595
\(977\) −7.39126e9 −0.253564 −0.126782 0.991931i \(-0.540465\pi\)
−0.126782 + 0.991931i \(0.540465\pi\)
\(978\) 3.62833e9 0.124028
\(979\) 6.21708e9 0.211762
\(980\) 3.32947e9 0.113002
\(981\) 4.41568e10 1.49333
\(982\) 1.31255e10 0.442310
\(983\) 2.07272e10 0.695991 0.347995 0.937496i \(-0.386862\pi\)
0.347995 + 0.937496i \(0.386862\pi\)
\(984\) −2.92392e9 −0.0978325
\(985\) 6.96239e10 2.32130
\(986\) −4.05725e9 −0.134791
\(987\) 2.27423e10 0.752877
\(988\) −2.47840e9 −0.0817563
\(989\) 1.07647e10 0.353848
\(990\) −1.79132e10 −0.586747
\(991\) −3.71476e10 −1.21248 −0.606238 0.795283i \(-0.707322\pi\)
−0.606238 + 0.795283i \(0.707322\pi\)
\(992\) 1.02801e9 0.0334354
\(993\) −2.93479e8 −0.00951162
\(994\) −4.59685e9 −0.148459
\(995\) −1.07436e10 −0.345757
\(996\) −7.05439e8 −0.0226231
\(997\) −3.68049e10 −1.17618 −0.588088 0.808797i \(-0.700119\pi\)
−0.588088 + 0.808797i \(0.700119\pi\)
\(998\) −1.63480e10 −0.520604
\(999\) −4.10458e9 −0.130254
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 74.8.a.a.1.3 4
4.3 odd 2 592.8.a.b.1.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
74.8.a.a.1.3 4 1.1 even 1 trivial
592.8.a.b.1.2 4 4.3 odd 2