Properties

Label 74.8.a
Level $74$
Weight $8$
Character orbit 74.a
Rep. character $\chi_{74}(1,\cdot)$
Character field $\Q$
Dimension $21$
Newform subspaces $4$
Sturm bound $76$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 74 = 2 \cdot 37 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 74.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 4 \)
Sturm bound: \(76\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{8}(\Gamma_0(74))\).

Total New Old
Modular forms 69 21 48
Cusp forms 65 21 44
Eisenstein series 4 0 4

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(37\)FrickeDim
\(+\)\(+\)\(+\)\(6\)
\(+\)\(-\)\(-\)\(4\)
\(-\)\(+\)\(-\)\(4\)
\(-\)\(-\)\(+\)\(7\)
Plus space\(+\)\(13\)
Minus space\(-\)\(8\)

Trace form

\( 21 q + 8 q^{2} - 26 q^{3} + 1344 q^{4} + 246 q^{5} + 192 q^{6} - 2136 q^{7} + 512 q^{8} + 17995 q^{9} + 416 q^{10} - 1818 q^{11} - 1664 q^{12} + 4798 q^{13} + 25248 q^{14} + 18920 q^{15} + 86016 q^{16}+ \cdots + 8248312 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{8}^{\mathrm{new}}(\Gamma_0(74))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 37
74.8.a.a 74.a 1.a $4$ $23.116$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None 74.8.a.a \(-32\) \(-53\) \(111\) \(-1666\) $+$ $-$ $\mathrm{SU}(2)$ \(q-8q^{2}+(-14+2\beta _{1}+\beta _{3})q^{3}+2^{6}q^{4}+\cdots\)
74.8.a.b 74.a 1.a $4$ $23.116$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None 74.8.a.b \(32\) \(-41\) \(-363\) \(-774\) $-$ $+$ $\mathrm{SU}(2)$ \(q+8q^{2}+(-10+\beta _{2})q^{3}+2^{6}q^{4}+(-89+\cdots)q^{5}+\cdots\)
74.8.a.c 74.a 1.a $6$ $23.116$ \(\mathbb{Q}[x]/(x^{6} - \cdots)\) None 74.8.a.c \(-48\) \(28\) \(-14\) \(-980\) $+$ $+$ $\mathrm{SU}(2)$ \(q-8q^{2}+(5-\beta _{1})q^{3}+2^{6}q^{4}+(-4+\cdots)q^{5}+\cdots\)
74.8.a.d 74.a 1.a $7$ $23.116$ \(\mathbb{Q}[x]/(x^{7} - \cdots)\) None 74.8.a.d \(56\) \(40\) \(512\) \(1284\) $-$ $-$ $\mathrm{SU}(2)$ \(q+8q^{2}+(6-\beta _{1})q^{3}+2^{6}q^{4}+(74-2\beta _{1}+\cdots)q^{5}+\cdots\)

Decomposition of \(S_{8}^{\mathrm{old}}(\Gamma_0(74))\) into lower level spaces

\( S_{8}^{\mathrm{old}}(\Gamma_0(74)) \simeq \) \(S_{8}^{\mathrm{new}}(\Gamma_0(2))\)\(^{\oplus 2}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(37))\)\(^{\oplus 2}\)