Defining parameters
Level: | \( N \) | \(=\) | \( 74 = 2 \cdot 37 \) |
Weight: | \( k \) | \(=\) | \( 8 \) |
Character orbit: | \([\chi]\) | \(=\) | 74.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(76\) | ||
Trace bound: | \(2\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{8}(\Gamma_0(74))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 69 | 21 | 48 |
Cusp forms | 65 | 21 | 44 |
Eisenstein series | 4 | 0 | 4 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(37\) | Fricke | Dim |
---|---|---|---|
\(+\) | \(+\) | \(+\) | \(6\) |
\(+\) | \(-\) | \(-\) | \(4\) |
\(-\) | \(+\) | \(-\) | \(4\) |
\(-\) | \(-\) | \(+\) | \(7\) |
Plus space | \(+\) | \(13\) | |
Minus space | \(-\) | \(8\) |
Trace form
Decomposition of \(S_{8}^{\mathrm{new}}(\Gamma_0(74))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 2 | 37 | |||||||
74.8.a.a | $4$ | $23.116$ | \(\mathbb{Q}[x]/(x^{4} - \cdots)\) | None | \(-32\) | \(-53\) | \(111\) | \(-1666\) | $+$ | $-$ | \(q-8q^{2}+(-14+2\beta _{1}+\beta _{3})q^{3}+2^{6}q^{4}+\cdots\) | |
74.8.a.b | $4$ | $23.116$ | \(\mathbb{Q}[x]/(x^{4} - \cdots)\) | None | \(32\) | \(-41\) | \(-363\) | \(-774\) | $-$ | $+$ | \(q+8q^{2}+(-10+\beta _{2})q^{3}+2^{6}q^{4}+(-89+\cdots)q^{5}+\cdots\) | |
74.8.a.c | $6$ | $23.116$ | \(\mathbb{Q}[x]/(x^{6} - \cdots)\) | None | \(-48\) | \(28\) | \(-14\) | \(-980\) | $+$ | $+$ | \(q-8q^{2}+(5-\beta _{1})q^{3}+2^{6}q^{4}+(-4+\cdots)q^{5}+\cdots\) | |
74.8.a.d | $7$ | $23.116$ | \(\mathbb{Q}[x]/(x^{7} - \cdots)\) | None | \(56\) | \(40\) | \(512\) | \(1284\) | $-$ | $-$ | \(q+8q^{2}+(6-\beta _{1})q^{3}+2^{6}q^{4}+(74-2\beta _{1}+\cdots)q^{5}+\cdots\) |
Decomposition of \(S_{8}^{\mathrm{old}}(\Gamma_0(74))\) into lower level spaces
\( S_{8}^{\mathrm{old}}(\Gamma_0(74)) \simeq \) \(S_{8}^{\mathrm{new}}(\Gamma_0(2))\)\(^{\oplus 2}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(37))\)\(^{\oplus 2}\)