Properties

Label 74.2.h.a
Level $74$
Weight $2$
Character orbit 74.h
Analytic conductor $0.591$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [74,2,Mod(3,74)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(74, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([13]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("74.3");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 74 = 2 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 74.h (of order \(18\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.590892974957\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(2\) over \(\Q(\zeta_{18})\)
Coefficient field: \(\Q(\zeta_{36})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - x^{6} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{36}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \zeta_{36} q^{2} + ( - \zeta_{36}^{6} - \zeta_{36}^{4} + 1) q^{3} + \zeta_{36}^{2} q^{4} + ( - \zeta_{36}^{9} - \zeta_{36}^{8} + \cdots - \zeta_{36}) q^{5} + ( - \zeta_{36}^{7} - \zeta_{36}^{5} + \zeta_{36}) q^{6}+ \cdots + (2 \zeta_{36}^{11} + 2 \zeta_{36}^{10} + \cdots + 3) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 6 q^{3} - 12 q^{7} - 6 q^{9} + 6 q^{10} - 6 q^{11} - 6 q^{12} + 6 q^{13} - 18 q^{14} - 18 q^{19} - 6 q^{21} - 18 q^{25} + 12 q^{26} - 6 q^{27} - 6 q^{28} + 18 q^{29} + 24 q^{30} - 6 q^{33} + 12 q^{34}+ \cdots + 30 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/74\mathbb{Z}\right)^\times\).

\(n\) \(39\)
\(\chi(n)\) \(\zeta_{36}^{2}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
3.1
−0.642788 + 0.766044i
0.642788 0.766044i
−0.342020 + 0.939693i
0.342020 0.939693i
−0.642788 0.766044i
0.642788 + 0.766044i
−0.984808 0.173648i
0.984808 + 0.173648i
−0.984808 + 0.173648i
0.984808 0.173648i
−0.342020 0.939693i
0.342020 + 0.939693i
−0.642788 + 0.766044i 1.43969 1.20805i −0.173648 0.984808i 0.273629 0.751790i 1.87939i −0.138449 0.0503913i 0.866025 + 0.500000i 0.0923963 0.524005i 0.400019 + 0.692853i
3.2 0.642788 0.766044i 1.43969 1.20805i −0.173648 0.984808i −1.45842 + 4.00698i 1.87939i −3.39364 1.23518i −0.866025 0.500000i 0.0923963 0.524005i 2.13207 + 3.69285i
21.1 −0.342020 + 0.939693i 0.326352 0.118782i −0.766044 0.642788i 2.57176 + 0.453471i 0.347296i −0.361075 + 2.04776i 0.866025 0.500000i −2.20574 + 1.85083i −1.30572 + 2.26157i
21.2 0.342020 0.939693i 0.326352 0.118782i −0.766044 0.642788i 0.839712 + 0.148064i 0.347296i 0.240460 1.36372i −0.866025 + 0.500000i −2.20574 + 1.85083i 0.426333 0.738430i
25.1 −0.642788 0.766044i 1.43969 + 1.20805i −0.173648 + 0.984808i 0.273629 + 0.751790i 1.87939i −0.138449 + 0.0503913i 0.866025 0.500000i 0.0923963 + 0.524005i 0.400019 0.692853i
25.2 0.642788 + 0.766044i 1.43969 + 1.20805i −0.173648 + 0.984808i −1.45842 4.00698i 1.87939i −3.39364 + 1.23518i −0.866025 + 0.500000i 0.0923963 + 0.524005i 2.13207 3.69285i
41.1 −0.984808 0.173648i −0.266044 1.50881i 0.939693 + 0.342020i −1.97937 2.35892i 1.53209i 0.153180 0.128533i −0.866025 0.500000i 0.613341 0.223238i 1.53967 + 2.66679i
41.2 0.984808 + 0.173648i −0.266044 1.50881i 0.939693 + 0.342020i −0.247315 0.294739i 1.53209i −2.50048 + 2.09815i 0.866025 + 0.500000i 0.613341 0.223238i −0.192377 0.333207i
65.1 −0.984808 + 0.173648i −0.266044 + 1.50881i 0.939693 0.342020i −1.97937 + 2.35892i 1.53209i 0.153180 + 0.128533i −0.866025 + 0.500000i 0.613341 + 0.223238i 1.53967 2.66679i
65.2 0.984808 0.173648i −0.266044 + 1.50881i 0.939693 0.342020i −0.247315 + 0.294739i 1.53209i −2.50048 2.09815i 0.866025 0.500000i 0.613341 + 0.223238i −0.192377 + 0.333207i
67.1 −0.342020 0.939693i 0.326352 + 0.118782i −0.766044 + 0.642788i 2.57176 0.453471i 0.347296i −0.361075 2.04776i 0.866025 + 0.500000i −2.20574 1.85083i −1.30572 2.26157i
67.2 0.342020 + 0.939693i 0.326352 + 0.118782i −0.766044 + 0.642788i 0.839712 0.148064i 0.347296i 0.240460 + 1.36372i −0.866025 0.500000i −2.20574 1.85083i 0.426333 + 0.738430i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 3.2
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
37.h even 18 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 74.2.h.a 12
3.b odd 2 1 666.2.bj.c 12
4.b odd 2 1 592.2.bq.b 12
37.h even 18 1 inner 74.2.h.a 12
37.i odd 36 1 2738.2.a.r 6
37.i odd 36 1 2738.2.a.s 6
111.n odd 18 1 666.2.bj.c 12
148.o odd 18 1 592.2.bq.b 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
74.2.h.a 12 1.a even 1 1 trivial
74.2.h.a 12 37.h even 18 1 inner
592.2.bq.b 12 4.b odd 2 1
592.2.bq.b 12 148.o odd 18 1
666.2.bj.c 12 3.b odd 2 1
666.2.bj.c 12 111.n odd 18 1
2738.2.a.r 6 37.i odd 36 1
2738.2.a.s 6 37.i odd 36 1

Hecke kernels

This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(74, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{12} - T^{6} + 1 \) Copy content Toggle raw display
$3$ \( (T^{6} - 3 T^{5} + 6 T^{4} + \cdots + 1)^{2} \) Copy content Toggle raw display
$5$ \( T^{12} + 9 T^{10} + \cdots + 81 \) Copy content Toggle raw display
$7$ \( T^{12} + 12 T^{11} + \cdots + 1 \) Copy content Toggle raw display
$11$ \( T^{12} + 6 T^{11} + \cdots + 408321 \) Copy content Toggle raw display
$13$ \( T^{12} - 6 T^{11} + \cdots + 288369 \) Copy content Toggle raw display
$17$ \( T^{12} + 36 T^{10} + \cdots + 81 \) Copy content Toggle raw display
$19$ \( T^{12} + 18 T^{11} + \cdots + 10439361 \) Copy content Toggle raw display
$23$ \( T^{12} - 63 T^{10} + \cdots + 431649 \) Copy content Toggle raw display
$29$ \( T^{12} - 18 T^{11} + \cdots + 110889 \) Copy content Toggle raw display
$31$ \( T^{12} + \cdots + 317445489 \) Copy content Toggle raw display
$37$ \( T^{12} + \cdots + 2565726409 \) Copy content Toggle raw display
$41$ \( T^{12} - 24 T^{11} + \cdots + 331776 \) Copy content Toggle raw display
$43$ \( T^{12} + 156 T^{10} + \cdots + 2277081 \) Copy content Toggle raw display
$47$ \( T^{12} + \cdots + 2027430729 \) Copy content Toggle raw display
$53$ \( T^{12} + \cdots + 45041148441 \) Copy content Toggle raw display
$59$ \( T^{12} + \cdots + 17477104401 \) Copy content Toggle raw display
$61$ \( T^{12} + 36 T^{11} + \cdots + 331776 \) Copy content Toggle raw display
$67$ \( T^{12} + \cdots + 59697637561 \) Copy content Toggle raw display
$71$ \( T^{12} + \cdots + 4131885551616 \) Copy content Toggle raw display
$73$ \( (T^{6} - 366 T^{4} + \cdots + 94609)^{2} \) Copy content Toggle raw display
$79$ \( T^{12} - 6 T^{11} + \cdots + 47961 \) Copy content Toggle raw display
$83$ \( T^{12} + 48 T^{11} + \cdots + 110889 \) Copy content Toggle raw display
$89$ \( T^{12} + \cdots + 687331089 \) Copy content Toggle raw display
$97$ \( T^{12} + \cdots + 27455164416 \) Copy content Toggle raw display
show more
show less