Properties

Label 74.2.h
Level $74$
Weight $2$
Character orbit 74.h
Rep. character $\chi_{74}(3,\cdot)$
Character field $\Q(\zeta_{18})$
Dimension $12$
Newform subspaces $1$
Sturm bound $19$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 74 = 2 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 74.h (of order \(18\) and degree \(6\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 37 \)
Character field: \(\Q(\zeta_{18})\)
Newform subspaces: \( 1 \)
Sturm bound: \(19\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(74, [\chi])\).

Total New Old
Modular forms 72 12 60
Cusp forms 48 12 36
Eisenstein series 24 0 24

Trace form

\( 12 q + 6 q^{3} - 12 q^{7} - 6 q^{9} + 6 q^{10} - 6 q^{11} - 6 q^{12} + 6 q^{13} - 18 q^{14} - 18 q^{19} - 6 q^{21} - 18 q^{25} + 12 q^{26} - 6 q^{27} - 6 q^{28} + 18 q^{29} + 24 q^{30} - 6 q^{33} + 12 q^{34}+ \cdots + 30 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(74, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
74.2.h.a 74.h 37.h $12$ $0.591$ \(\Q(\zeta_{36})\) None 74.2.h.a \(0\) \(6\) \(0\) \(-12\) $\mathrm{SU}(2)[C_{18}]$ \(q+\zeta_{36}q^{2}+(1-\zeta_{36}^{4}-\zeta_{36}^{6})q^{3}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(74, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(74, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(37, [\chi])\)\(^{\oplus 2}\)