# Properties

 Label 74.2.f.a.9.1 Level $74$ Weight $2$ Character 74.9 Analytic conductor $0.591$ Analytic rank $0$ Dimension $6$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$74 = 2 \cdot 37$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 74.f (of order $$9$$, degree $$6$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$0.590892974957$$ Analytic rank: $$0$$ Dimension: $$6$$ Coefficient field: $$\Q(\zeta_{18})$$ Defining polynomial: $$x^{6} - x^{3} + 1$$ x^6 - x^3 + 1 Coefficient ring: $$\Z[a_1, a_2]$$ Coefficient ring index: $$1$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

## Embedding invariants

 Embedding label 9.1 Root $$-0.766044 + 0.642788i$$ of defining polynomial Character $$\chi$$ $$=$$ 74.9 Dual form 74.2.f.a.33.1

## $q$-expansion

 $$f(q)$$ $$=$$ $$q+(-0.173648 - 0.984808i) q^{2} +(0.266044 - 1.50881i) q^{3} +(-0.939693 + 0.342020i) q^{4} +(-1.79813 - 1.50881i) q^{5} -1.53209 q^{6} +(1.93969 + 1.62760i) q^{7} +(0.500000 + 0.866025i) q^{8} +(0.613341 + 0.223238i) q^{9} +O(q^{10})$$ $$q+(-0.173648 - 0.984808i) q^{2} +(0.266044 - 1.50881i) q^{3} +(-0.939693 + 0.342020i) q^{4} +(-1.79813 - 1.50881i) q^{5} -1.53209 q^{6} +(1.93969 + 1.62760i) q^{7} +(0.500000 + 0.866025i) q^{8} +(0.613341 + 0.223238i) q^{9} +(-1.17365 + 2.03282i) q^{10} +(-0.560307 - 0.970481i) q^{11} +(0.266044 + 1.50881i) q^{12} +(1.70574 - 0.620838i) q^{13} +(1.26604 - 2.19285i) q^{14} +(-2.75490 + 2.31164i) q^{15} +(0.766044 - 0.642788i) q^{16} +(2.81908 + 1.02606i) q^{17} +(0.113341 - 0.642788i) q^{18} +(-0.971782 + 5.51125i) q^{19} +(2.20574 + 0.802823i) q^{20} +(2.97178 - 2.49362i) q^{21} +(-0.858441 + 0.720317i) q^{22} +(-4.55303 + 7.88609i) q^{23} +(1.43969 - 0.524005i) q^{24} +(0.0885259 + 0.502055i) q^{25} +(-0.907604 - 1.57202i) q^{26} +(2.79813 - 4.84651i) q^{27} +(-2.37939 - 0.866025i) q^{28} +(-4.52481 - 7.83721i) q^{29} +(2.75490 + 2.31164i) q^{30} -4.53209 q^{31} +(-0.766044 - 0.642788i) q^{32} +(-1.61334 + 0.587208i) q^{33} +(0.520945 - 2.95442i) q^{34} +(-1.03209 - 5.85327i) q^{35} -0.652704 q^{36} +(2.33750 + 5.61570i) q^{37} +5.59627 q^{38} +(-0.482926 - 2.73881i) q^{39} +(0.407604 - 2.31164i) q^{40} +(6.98545 - 2.54250i) q^{41} +(-2.97178 - 2.49362i) q^{42} -8.92902 q^{43} +(0.858441 + 0.720317i) q^{44} +(-0.766044 - 1.32683i) q^{45} +(8.55690 + 3.11446i) q^{46} +(0.194593 - 0.337044i) q^{47} +(-0.766044 - 1.32683i) q^{48} +(-0.102196 - 0.579585i) q^{49} +(0.479055 - 0.174362i) q^{50} +(2.29813 - 3.98048i) q^{51} +(-1.39053 + 1.16679i) q^{52} +(-9.23055 + 7.74535i) q^{53} +(-5.25877 - 1.91404i) q^{54} +(-0.456767 + 2.59045i) q^{55} +(-0.439693 + 2.49362i) q^{56} +(8.05690 + 2.93247i) q^{57} +(-6.93242 + 5.81699i) q^{58} +(6.41534 - 5.38311i) q^{59} +(1.79813 - 3.11446i) q^{60} +(2.45336 - 0.892951i) q^{61} +(0.786989 + 4.46324i) q^{62} +(0.826352 + 1.43128i) q^{63} +(-0.500000 + 0.866025i) q^{64} +(-4.00387 - 1.45729i) q^{65} +(0.858441 + 1.48686i) q^{66} +(5.62836 + 4.72275i) q^{67} -3.00000 q^{68} +(10.6873 + 8.96773i) q^{69} +(-5.58512 + 2.03282i) q^{70} +(-0.448311 + 2.54250i) q^{71} +(0.113341 + 0.642788i) q^{72} -0.709141 q^{73} +(5.12449 - 3.27714i) q^{74} +0.781059 q^{75} +(-0.971782 - 5.51125i) q^{76} +(0.492726 - 2.79439i) q^{77} +(-2.61334 + 0.951178i) q^{78} +(3.39646 + 2.84997i) q^{79} -2.34730 q^{80} +(-5.06805 - 4.25260i) q^{81} +(-3.71688 - 6.43783i) q^{82} +(6.81180 + 2.47929i) q^{83} +(-1.93969 + 3.35965i) q^{84} +(-3.52094 - 6.09845i) q^{85} +(1.55051 + 8.79336i) q^{86} +(-13.0287 + 4.74205i) q^{87} +(0.560307 - 0.970481i) q^{88} +(-9.95336 + 8.35186i) q^{89} +(-1.17365 + 0.984808i) q^{90} +(4.31908 + 1.57202i) q^{91} +(1.58125 - 8.96773i) q^{92} +(-1.20574 + 6.83807i) q^{93} +(-0.365715 - 0.133109i) q^{94} +(10.0628 - 8.44372i) q^{95} +(-1.17365 + 0.984808i) q^{96} +(7.34730 - 12.7259i) q^{97} +(-0.553033 + 0.201288i) q^{98} +(-0.127011 - 0.720317i) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$6 q - 3 q^{3} + 3 q^{5} + 6 q^{7} + 3 q^{8} - 3 q^{9}+O(q^{10})$$ 6 * q - 3 * q^3 + 3 * q^5 + 6 * q^7 + 3 * q^8 - 3 * q^9 $$6 q - 3 q^{3} + 3 q^{5} + 6 q^{7} + 3 q^{8} - 3 q^{9} - 6 q^{10} - 9 q^{11} - 3 q^{12} + 3 q^{14} - 18 q^{15} - 6 q^{18} + 9 q^{19} + 3 q^{20} + 3 q^{21} + 3 q^{22} - 15 q^{23} + 3 q^{24} + 21 q^{25} - 9 q^{26} + 3 q^{27} - 3 q^{28} + 18 q^{30} - 18 q^{31} - 3 q^{33} + 3 q^{35} - 6 q^{36} + 9 q^{37} + 6 q^{38} + 18 q^{39} + 6 q^{40} + 6 q^{41} - 3 q^{42} + 12 q^{43} - 3 q^{44} + 15 q^{46} - 3 q^{47} + 6 q^{50} + 9 q^{52} - 18 q^{53} - 9 q^{54} - 18 q^{55} + 3 q^{56} + 12 q^{57} - 18 q^{58} - 6 q^{59} - 3 q^{60} - 12 q^{61} - 3 q^{62} + 6 q^{63} - 3 q^{64} - 3 q^{66} - 3 q^{67} - 18 q^{68} + 42 q^{69} - 12 q^{70} - 6 q^{71} - 6 q^{72} - 36 q^{73} + 18 q^{74} - 30 q^{75} + 9 q^{76} - 15 q^{77} - 9 q^{78} + 30 q^{79} - 12 q^{80} + 12 q^{81} - 6 q^{82} + 6 q^{83} - 6 q^{84} - 18 q^{85} + 12 q^{86} - 27 q^{87} + 9 q^{88} - 33 q^{89} - 6 q^{90} + 9 q^{91} + 12 q^{92} + 3 q^{93} - 12 q^{94} + 51 q^{95} - 6 q^{96} + 42 q^{97} + 9 q^{98} + 27 q^{99}+O(q^{100})$$ 6 * q - 3 * q^3 + 3 * q^5 + 6 * q^7 + 3 * q^8 - 3 * q^9 - 6 * q^10 - 9 * q^11 - 3 * q^12 + 3 * q^14 - 18 * q^15 - 6 * q^18 + 9 * q^19 + 3 * q^20 + 3 * q^21 + 3 * q^22 - 15 * q^23 + 3 * q^24 + 21 * q^25 - 9 * q^26 + 3 * q^27 - 3 * q^28 + 18 * q^30 - 18 * q^31 - 3 * q^33 + 3 * q^35 - 6 * q^36 + 9 * q^37 + 6 * q^38 + 18 * q^39 + 6 * q^40 + 6 * q^41 - 3 * q^42 + 12 * q^43 - 3 * q^44 + 15 * q^46 - 3 * q^47 + 6 * q^50 + 9 * q^52 - 18 * q^53 - 9 * q^54 - 18 * q^55 + 3 * q^56 + 12 * q^57 - 18 * q^58 - 6 * q^59 - 3 * q^60 - 12 * q^61 - 3 * q^62 + 6 * q^63 - 3 * q^64 - 3 * q^66 - 3 * q^67 - 18 * q^68 + 42 * q^69 - 12 * q^70 - 6 * q^71 - 6 * q^72 - 36 * q^73 + 18 * q^74 - 30 * q^75 + 9 * q^76 - 15 * q^77 - 9 * q^78 + 30 * q^79 - 12 * q^80 + 12 * q^81 - 6 * q^82 + 6 * q^83 - 6 * q^84 - 18 * q^85 + 12 * q^86 - 27 * q^87 + 9 * q^88 - 33 * q^89 - 6 * q^90 + 9 * q^91 + 12 * q^92 + 3 * q^93 - 12 * q^94 + 51 * q^95 - 6 * q^96 + 42 * q^97 + 9 * q^98 + 27 * q^99

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/74\mathbb{Z}\right)^\times$$.

 $$n$$ $$39$$ $$\chi(n)$$ $$e\left(\frac{4}{9}\right)$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ −0.173648 0.984808i −0.122788 0.696364i
$$3$$ 0.266044 1.50881i 0.153601 0.871114i −0.806453 0.591298i $$-0.798616\pi$$
0.960054 0.279815i $$-0.0902733\pi$$
$$4$$ −0.939693 + 0.342020i −0.469846 + 0.171010i
$$5$$ −1.79813 1.50881i −0.804150 0.674762i 0.145054 0.989424i $$-0.453664\pi$$
−0.949204 + 0.314662i $$0.898109\pi$$
$$6$$ −1.53209 −0.625473
$$7$$ 1.93969 + 1.62760i 0.733135 + 0.615173i 0.930984 0.365059i $$-0.118951\pi$$
−0.197849 + 0.980232i $$0.563396\pi$$
$$8$$ 0.500000 + 0.866025i 0.176777 + 0.306186i
$$9$$ 0.613341 + 0.223238i 0.204447 + 0.0744126i
$$10$$ −1.17365 + 2.03282i −0.371140 + 0.642834i
$$11$$ −0.560307 0.970481i −0.168939 0.292611i 0.769108 0.639119i $$-0.220701\pi$$
−0.938047 + 0.346508i $$0.887367\pi$$
$$12$$ 0.266044 + 1.50881i 0.0768004 + 0.435557i
$$13$$ 1.70574 0.620838i 0.473086 0.172189i −0.0944636 0.995528i $$-0.530114\pi$$
0.567550 + 0.823339i $$0.307891\pi$$
$$14$$ 1.26604 2.19285i 0.338365 0.586065i
$$15$$ −2.75490 + 2.31164i −0.711312 + 0.596862i
$$16$$ 0.766044 0.642788i 0.191511 0.160697i
$$17$$ 2.81908 + 1.02606i 0.683727 + 0.248856i 0.660447 0.750873i $$-0.270367\pi$$
0.0232799 + 0.999729i $$0.492589\pi$$
$$18$$ 0.113341 0.642788i 0.0267147 0.151506i
$$19$$ −0.971782 + 5.51125i −0.222942 + 1.26437i 0.643639 + 0.765330i $$0.277424\pi$$
−0.866581 + 0.499037i $$0.833687\pi$$
$$20$$ 2.20574 + 0.802823i 0.493218 + 0.179517i
$$21$$ 2.97178 2.49362i 0.648496 0.544153i
$$22$$ −0.858441 + 0.720317i −0.183020 + 0.153572i
$$23$$ −4.55303 + 7.88609i −0.949373 + 1.64436i −0.202624 + 0.979257i $$0.564947\pi$$
−0.746749 + 0.665106i $$0.768386\pi$$
$$24$$ 1.43969 0.524005i 0.293876 0.106962i
$$25$$ 0.0885259 + 0.502055i 0.0177052 + 0.100411i
$$26$$ −0.907604 1.57202i −0.177996 0.308298i
$$27$$ 2.79813 4.84651i 0.538501 0.932711i
$$28$$ −2.37939 0.866025i −0.449662 0.163663i
$$29$$ −4.52481 7.83721i −0.840237 1.45533i −0.889694 0.456557i $$-0.849082\pi$$
0.0494571 0.998776i $$-0.484251\pi$$
$$30$$ 2.75490 + 2.31164i 0.502974 + 0.422045i
$$31$$ −4.53209 −0.813987 −0.406994 0.913431i $$-0.633423\pi$$
−0.406994 + 0.913431i $$0.633423\pi$$
$$32$$ −0.766044 0.642788i −0.135419 0.113630i
$$33$$ −1.61334 + 0.587208i −0.280847 + 0.102220i
$$34$$ 0.520945 2.95442i 0.0893413 0.506679i
$$35$$ −1.03209 5.85327i −0.174455 0.989383i
$$36$$ −0.652704 −0.108784
$$37$$ 2.33750 + 5.61570i 0.384282 + 0.923216i
$$38$$ 5.59627 0.907834
$$39$$ −0.482926 2.73881i −0.0773300 0.438560i
$$40$$ 0.407604 2.31164i 0.0644478 0.365502i
$$41$$ 6.98545 2.54250i 1.09094 0.397071i 0.266974 0.963704i $$-0.413976\pi$$
0.823971 + 0.566633i $$0.191754\pi$$
$$42$$ −2.97178 2.49362i −0.458556 0.384774i
$$43$$ −8.92902 −1.36166 −0.680831 0.732441i $$-0.738381\pi$$
−0.680831 + 0.732441i $$0.738381\pi$$
$$44$$ 0.858441 + 0.720317i 0.129415 + 0.108592i
$$45$$ −0.766044 1.32683i −0.114195 0.197792i
$$46$$ 8.55690 + 3.11446i 1.26165 + 0.459202i
$$47$$ 0.194593 0.337044i 0.0283843 0.0491630i −0.851484 0.524380i $$-0.824297\pi$$
0.879869 + 0.475217i $$0.157630\pi$$
$$48$$ −0.766044 1.32683i −0.110569 0.191511i
$$49$$ −0.102196 0.579585i −0.0145995 0.0827978i
$$50$$ 0.479055 0.174362i 0.0677487 0.0246585i
$$51$$ 2.29813 3.98048i 0.321803 0.557379i
$$52$$ −1.39053 + 1.16679i −0.192832 + 0.161805i
$$53$$ −9.23055 + 7.74535i −1.26791 + 1.06391i −0.273122 + 0.961979i $$0.588056\pi$$
−0.994792 + 0.101927i $$0.967499\pi$$
$$54$$ −5.25877 1.91404i −0.715628 0.260467i
$$55$$ −0.456767 + 2.59045i −0.0615904 + 0.349297i
$$56$$ −0.439693 + 2.49362i −0.0587564 + 0.333224i
$$57$$ 8.05690 + 2.93247i 1.06716 + 0.388416i
$$58$$ −6.93242 + 5.81699i −0.910271 + 0.763808i
$$59$$ 6.41534 5.38311i 0.835207 0.700822i −0.121273 0.992619i $$-0.538698\pi$$
0.956480 + 0.291797i $$0.0942533\pi$$
$$60$$ 1.79813 3.11446i 0.232138 0.402075i
$$61$$ 2.45336 0.892951i 0.314121 0.114331i −0.180149 0.983639i $$-0.557658\pi$$
0.494269 + 0.869309i $$0.335436\pi$$
$$62$$ 0.786989 + 4.46324i 0.0999477 + 0.566832i
$$63$$ 0.826352 + 1.43128i 0.104111 + 0.180325i
$$64$$ −0.500000 + 0.866025i −0.0625000 + 0.108253i
$$65$$ −4.00387 1.45729i −0.496619 0.180755i
$$66$$ 0.858441 + 1.48686i 0.105667 + 0.183020i
$$67$$ 5.62836 + 4.72275i 0.687613 + 0.576976i 0.918220 0.396071i $$-0.129627\pi$$
−0.230607 + 0.973047i $$0.574071\pi$$
$$68$$ −3.00000 −0.363803
$$69$$ 10.6873 + 8.96773i 1.28660 + 1.07959i
$$70$$ −5.58512 + 2.03282i −0.667550 + 0.242968i
$$71$$ −0.448311 + 2.54250i −0.0532047 + 0.301739i −0.999785 0.0207290i $$-0.993401\pi$$
0.946580 + 0.322468i $$0.104512\pi$$
$$72$$ 0.113341 + 0.642788i 0.0133573 + 0.0757532i
$$73$$ −0.709141 −0.0829986 −0.0414993 0.999139i $$-0.513213\pi$$
−0.0414993 + 0.999139i $$0.513213\pi$$
$$74$$ 5.12449 3.27714i 0.595709 0.380960i
$$75$$ 0.781059 0.0901889
$$76$$ −0.971782 5.51125i −0.111471 0.632183i
$$77$$ 0.492726 2.79439i 0.0561513 0.318450i
$$78$$ −2.61334 + 0.951178i −0.295903 + 0.107700i
$$79$$ 3.39646 + 2.84997i 0.382132 + 0.320646i 0.813539 0.581511i $$-0.197538\pi$$
−0.431407 + 0.902157i $$0.641983\pi$$
$$80$$ −2.34730 −0.262436
$$81$$ −5.06805 4.25260i −0.563116 0.472511i
$$82$$ −3.71688 6.43783i −0.410461 0.710939i
$$83$$ 6.81180 + 2.47929i 0.747693 + 0.272138i 0.687634 0.726057i $$-0.258649\pi$$
0.0600581 + 0.998195i $$0.480871\pi$$
$$84$$ −1.93969 + 3.35965i −0.211638 + 0.366567i
$$85$$ −3.52094 6.09845i −0.381900 0.661470i
$$86$$ 1.55051 + 8.79336i 0.167195 + 0.948213i
$$87$$ −13.0287 + 4.74205i −1.39682 + 0.508402i
$$88$$ 0.560307 0.970481i 0.0597290 0.103454i
$$89$$ −9.95336 + 8.35186i −1.05505 + 0.885296i −0.993616 0.112815i $$-0.964013\pi$$
−0.0614384 + 0.998111i $$0.519569\pi$$
$$90$$ −1.17365 + 0.984808i −0.123713 + 0.103808i
$$91$$ 4.31908 + 1.57202i 0.452762 + 0.164792i
$$92$$ 1.58125 8.96773i 0.164857 0.934950i
$$93$$ −1.20574 + 6.83807i −0.125029 + 0.709075i
$$94$$ −0.365715 0.133109i −0.0377206 0.0137292i
$$95$$ 10.0628 8.44372i 1.03242 0.866307i
$$96$$ −1.17365 + 0.984808i −0.119785 + 0.100512i
$$97$$ 7.34730 12.7259i 0.746005 1.29212i −0.203719 0.979029i $$-0.565303\pi$$
0.949724 0.313089i $$-0.101364\pi$$
$$98$$ −0.553033 + 0.201288i −0.0558648 + 0.0203331i
$$99$$ −0.127011 0.720317i −0.0127651 0.0723946i
$$100$$ −0.254900 0.441500i −0.0254900 0.0441500i
$$101$$ −1.51367 + 2.62175i −0.150616 + 0.260874i −0.931454 0.363859i $$-0.881459\pi$$
0.780838 + 0.624733i $$0.214792\pi$$
$$102$$ −4.31908 1.57202i −0.427652 0.155653i
$$103$$ −4.20826 7.28893i −0.414653 0.718199i 0.580739 0.814090i $$-0.302764\pi$$
−0.995392 + 0.0958903i $$0.969430\pi$$
$$104$$ 1.39053 + 1.16679i 0.136353 + 0.114413i
$$105$$ −9.10607 −0.888661
$$106$$ 9.23055 + 7.74535i 0.896550 + 0.752295i
$$107$$ −5.67752 + 2.06645i −0.548866 + 0.199771i −0.601543 0.798841i $$-0.705447\pi$$
0.0526763 + 0.998612i $$0.483225\pi$$
$$108$$ −0.971782 + 5.51125i −0.0935097 + 0.530320i
$$109$$ −3.47906 19.7307i −0.333233 1.88986i −0.444024 0.896015i $$-0.646449\pi$$
0.110791 0.993844i $$-0.464662\pi$$
$$110$$ 2.63041 0.250800
$$111$$ 9.09492 2.03282i 0.863252 0.192947i
$$112$$ 2.53209 0.239260
$$113$$ −0.442219 2.50795i −0.0416004 0.235928i 0.956917 0.290362i $$-0.0937757\pi$$
−0.998517 + 0.0544340i $$0.982665\pi$$
$$114$$ 1.48886 8.44372i 0.139444 0.790827i
$$115$$ 20.0856 7.31056i 1.87299 0.681713i
$$116$$ 6.93242 + 5.81699i 0.643659 + 0.540094i
$$117$$ 1.18479 0.109534
$$118$$ −6.41534 5.38311i −0.590580 0.495556i
$$119$$ 3.79813 + 6.57856i 0.348174 + 0.603056i
$$120$$ −3.37939 1.23000i −0.308494 0.112283i
$$121$$ 4.87211 8.43874i 0.442919 0.767159i
$$122$$ −1.30541 2.26103i −0.118186 0.204704i
$$123$$ −1.97771 11.2162i −0.178324 1.01133i
$$124$$ 4.25877 1.55007i 0.382449 0.139200i
$$125$$ −5.26991 + 9.12776i −0.471356 + 0.816412i
$$126$$ 1.26604 1.06234i 0.112788 0.0946405i
$$127$$ −5.38326 + 4.51709i −0.477687 + 0.400827i −0.849589 0.527445i $$-0.823150\pi$$
0.371902 + 0.928272i $$0.378706\pi$$
$$128$$ 0.939693 + 0.342020i 0.0830579 + 0.0302306i
$$129$$ −2.37551 + 13.4722i −0.209152 + 1.18616i
$$130$$ −0.739885 + 4.19610i −0.0648922 + 0.368022i
$$131$$ 0.852044 + 0.310119i 0.0744434 + 0.0270952i 0.378973 0.925408i $$-0.376277\pi$$
−0.304530 + 0.952503i $$0.598499\pi$$
$$132$$ 1.31521 1.10359i 0.114474 0.0960552i
$$133$$ −10.8550 + 9.10846i −0.941251 + 0.789803i
$$134$$ 3.67365 6.36295i 0.317355 0.549675i
$$135$$ −12.3439 + 4.49281i −1.06239 + 0.386679i
$$136$$ 0.520945 + 2.95442i 0.0446706 + 0.253340i
$$137$$ −0.979055 1.69577i −0.0836464 0.144880i 0.821167 0.570688i $$-0.193323\pi$$
−0.904814 + 0.425808i $$0.859990\pi$$
$$138$$ 6.97565 12.0822i 0.593807 1.02850i
$$139$$ −12.7811 4.65193i −1.08408 0.394571i −0.262652 0.964891i $$-0.584597\pi$$
−0.821423 + 0.570319i $$0.806819\pi$$
$$140$$ 2.97178 + 5.14728i 0.251161 + 0.435024i
$$141$$ −0.456767 0.383273i −0.0384667 0.0322774i
$$142$$ 2.58172 0.216653
$$143$$ −1.55825 1.30753i −0.130307 0.109341i
$$144$$ 0.613341 0.223238i 0.0511117 0.0186031i
$$145$$ −3.68866 + 20.9194i −0.306327 + 1.73727i
$$146$$ 0.123141 + 0.698367i 0.0101912 + 0.0577973i
$$147$$ −0.901674 −0.0743688
$$148$$ −4.11721 4.47756i −0.338433 0.368053i
$$149$$ −6.73648 −0.551874 −0.275937 0.961176i $$-0.588988\pi$$
−0.275937 + 0.961176i $$0.588988\pi$$
$$150$$ −0.135630 0.769193i −0.0110741 0.0628044i
$$151$$ 0.832748 4.72275i 0.0677681 0.384332i −0.931993 0.362476i $$-0.881931\pi$$
0.999761 0.0218558i $$-0.00695748\pi$$
$$152$$ −5.25877 + 1.91404i −0.426543 + 0.155249i
$$153$$ 1.50000 + 1.25865i 0.121268 + 0.101756i
$$154$$ −2.83750 −0.228652
$$155$$ 8.14930 + 6.83807i 0.654568 + 0.549247i
$$156$$ 1.39053 + 2.40847i 0.111331 + 0.192832i
$$157$$ 13.5954 + 4.94832i 1.08503 + 0.394919i 0.821778 0.569808i $$-0.192983\pi$$
0.263253 + 0.964727i $$0.415205\pi$$
$$158$$ 2.21688 3.83975i 0.176366 0.305474i
$$159$$ 9.23055 + 15.9878i 0.732030 + 1.26791i
$$160$$ 0.407604 + 2.31164i 0.0322239 + 0.182751i
$$161$$ −21.6668 + 7.88609i −1.70759 + 0.621511i
$$162$$ −3.30793 + 5.72951i −0.259896 + 0.450153i
$$163$$ 7.69846 6.45978i 0.602990 0.505969i −0.289415 0.957204i $$-0.593461\pi$$
0.892405 + 0.451235i $$0.149016\pi$$
$$164$$ −5.69459 + 4.77833i −0.444673 + 0.373125i
$$165$$ 3.78699 + 1.37835i 0.294817 + 0.107305i
$$166$$ 1.25877 7.13884i 0.0976995 0.554082i
$$167$$ 1.81315 10.2829i 0.140306 0.795713i −0.830712 0.556703i $$-0.812066\pi$$
0.971017 0.239010i $$-0.0768228\pi$$
$$168$$ 3.64543 + 1.32683i 0.281251 + 0.102367i
$$169$$ −7.43448 + 6.23827i −0.571883 + 0.479867i
$$170$$ −5.39440 + 4.52644i −0.413732 + 0.347162i
$$171$$ −1.82635 + 3.16333i −0.139665 + 0.241906i
$$172$$ 8.39053 3.05390i 0.639772 0.232858i
$$173$$ 0.182266 + 1.03368i 0.0138575 + 0.0785895i 0.990952 0.134215i $$-0.0428513\pi$$
−0.977095 + 0.212805i $$0.931740\pi$$
$$174$$ 6.93242 + 12.0073i 0.525545 + 0.910271i
$$175$$ −0.645430 + 1.11792i −0.0487899 + 0.0845066i
$$176$$ −1.05303 0.383273i −0.0793754 0.0288903i
$$177$$ −6.41534 11.1117i −0.482207 0.835207i
$$178$$ 9.95336 + 8.35186i 0.746036 + 0.625999i
$$179$$ 9.15570 0.684329 0.342164 0.939640i $$-0.388840\pi$$
0.342164 + 0.939640i $$0.388840\pi$$
$$180$$ 1.17365 + 0.984808i 0.0874786 + 0.0734032i
$$181$$ 21.2408 7.73103i 1.57882 0.574643i 0.603871 0.797082i $$-0.293624\pi$$
0.974947 + 0.222439i $$0.0714019\pi$$
$$182$$ 0.798133 4.52644i 0.0591616 0.335522i
$$183$$ −0.694593 3.93923i −0.0513458 0.291196i
$$184$$ −9.10607 −0.671308
$$185$$ 4.26991 13.6246i 0.313930 1.00170i
$$186$$ 6.94356 0.509127
$$187$$ −0.583778 3.31077i −0.0426901 0.242108i
$$188$$ −0.0675813 + 0.383273i −0.00492888 + 0.0279530i
$$189$$ 13.3157 4.84651i 0.968573 0.352532i
$$190$$ −10.0628 8.44372i −0.730035 0.612572i
$$191$$ −19.1334 −1.38444 −0.692222 0.721684i $$-0.743368\pi$$
−0.692222 + 0.721684i $$0.743368\pi$$
$$192$$ 1.17365 + 0.984808i 0.0847008 + 0.0710724i
$$193$$ 9.50640 + 16.4656i 0.684285 + 1.18522i 0.973661 + 0.228001i $$0.0732191\pi$$
−0.289375 + 0.957216i $$0.593448\pi$$
$$194$$ −13.8084 5.02585i −0.991385 0.360835i
$$195$$ −3.26399 + 5.65339i −0.233739 + 0.404848i
$$196$$ 0.294263 + 0.509678i 0.0210188 + 0.0364056i
$$197$$ 3.20914 + 18.1999i 0.228642 + 1.29669i 0.855599 + 0.517639i $$0.173189\pi$$
−0.626958 + 0.779053i $$0.715700\pi$$
$$198$$ −0.687319 + 0.250164i −0.0488456 + 0.0177784i
$$199$$ 2.78699 4.82721i 0.197564 0.342192i −0.750174 0.661241i $$-0.770030\pi$$
0.947738 + 0.319049i $$0.103364\pi$$
$$200$$ −0.390530 + 0.327693i −0.0276146 + 0.0231714i
$$201$$ 8.62314 7.23567i 0.608229 0.510365i
$$202$$ 2.84477 + 1.03541i 0.200157 + 0.0728513i
$$203$$ 3.97906 22.5663i 0.279275 1.58385i
$$204$$ −0.798133 + 4.52644i −0.0558805 + 0.316914i
$$205$$ −16.3969 5.96799i −1.14521 0.416823i
$$206$$ −6.44743 + 5.41004i −0.449214 + 0.376935i
$$207$$ −4.55303 + 3.82045i −0.316458 + 0.265540i
$$208$$ 0.907604 1.57202i 0.0629310 0.109000i
$$209$$ 5.89306 2.14490i 0.407631 0.148366i
$$210$$ 1.58125 + 8.96773i 0.109117 + 0.618832i
$$211$$ −10.8550 18.8015i −0.747292 1.29435i −0.949116 0.314925i $$-0.898021\pi$$
0.201825 0.979422i $$-0.435313\pi$$
$$212$$ 6.02481 10.4353i 0.413786 0.716698i
$$213$$ 3.71688 + 1.35283i 0.254677 + 0.0926947i
$$214$$ 3.02094 + 5.23243i 0.206508 + 0.357682i
$$215$$ 16.0556 + 13.4722i 1.09498 + 0.918797i
$$216$$ 5.59627 0.380778
$$217$$ −8.79086 7.37641i −0.596762 0.500743i
$$218$$ −18.8268 + 6.85240i −1.27511 + 0.464103i
$$219$$ −0.188663 + 1.06996i −0.0127487 + 0.0723012i
$$220$$ −0.456767 2.59045i −0.0307952 0.174648i
$$221$$ 5.44562 0.366312
$$222$$ −3.58125 8.60375i −0.240358 0.577446i
$$223$$ −10.1429 −0.679219 −0.339610 0.940567i $$-0.610295\pi$$
−0.339610 + 0.940567i $$0.610295\pi$$
$$224$$ −0.439693 2.49362i −0.0293782 0.166612i
$$225$$ −0.0577812 + 0.327693i −0.00385208 + 0.0218462i
$$226$$ −2.39306 + 0.871001i −0.159184 + 0.0579381i
$$227$$ −3.34524 2.80699i −0.222031 0.186306i 0.524986 0.851111i $$-0.324070\pi$$
−0.747017 + 0.664804i $$0.768515\pi$$
$$228$$ −8.57398 −0.567826
$$229$$ −9.01889 7.56774i −0.595985 0.500091i 0.294167 0.955754i $$-0.404958\pi$$
−0.890152 + 0.455663i $$0.849402\pi$$
$$230$$ −10.6873 18.5110i −0.704701 1.22058i
$$231$$ −4.08512 1.48686i −0.268781 0.0978284i
$$232$$ 4.52481 7.83721i 0.297069 0.514538i
$$233$$ −8.13816 14.0957i −0.533148 0.923440i −0.999251 0.0387091i $$-0.987675\pi$$
0.466102 0.884731i $$-0.345658\pi$$
$$234$$ −0.205737 1.16679i −0.0134495 0.0762756i
$$235$$ −0.858441 + 0.312447i −0.0559985 + 0.0203818i
$$236$$ −4.18732 + 7.25265i −0.272571 + 0.472107i
$$237$$ 5.20368 4.36640i 0.338015 0.283628i
$$238$$ 5.81908 4.88279i 0.377195 0.316504i
$$239$$ 14.6493 + 5.33191i 0.947584 + 0.344893i 0.769157 0.639060i $$-0.220677\pi$$
0.178428 + 0.983953i $$0.442899\pi$$
$$240$$ −0.624485 + 3.54163i −0.0403103 + 0.228611i
$$241$$ −0.151826 + 0.861050i −0.00977999 + 0.0554651i −0.989307 0.145847i $$-0.953409\pi$$
0.979527 + 0.201312i $$0.0645205\pi$$
$$242$$ −9.15657 3.33272i −0.588607 0.214235i
$$243$$ 5.09627 4.27628i 0.326926 0.274323i
$$244$$ −2.00000 + 1.67820i −0.128037 + 0.107436i
$$245$$ −0.690722 + 1.19637i −0.0441286 + 0.0764330i
$$246$$ −10.7023 + 3.89533i −0.682356 + 0.248357i
$$247$$ 1.76399 + 10.0041i 0.112240 + 0.636543i
$$248$$ −2.26604 3.92490i −0.143894 0.249232i
$$249$$ 5.55303 9.61814i 0.351909 0.609525i
$$250$$ 9.90420 + 3.60483i 0.626397 + 0.227990i
$$251$$ 1.26991 + 2.19956i 0.0801563 + 0.138835i 0.903317 0.428974i $$-0.141125\pi$$
−0.823161 + 0.567809i $$0.807791\pi$$
$$252$$ −1.26604 1.06234i −0.0797533 0.0669210i
$$253$$ 10.2044 0.641545
$$254$$ 5.38326 + 4.51709i 0.337775 + 0.283427i
$$255$$ −10.1382 + 3.68999i −0.634876 + 0.231076i
$$256$$ 0.173648 0.984808i 0.0108530 0.0615505i
$$257$$ 2.89187 + 16.4006i 0.180390 + 1.02304i 0.931736 + 0.363135i $$0.118294\pi$$
−0.751346 + 0.659908i $$0.770595\pi$$
$$258$$ 13.6800 0.851682
$$259$$ −4.60607 + 14.6972i −0.286207 + 0.913242i
$$260$$ 4.26083 0.264245
$$261$$ −1.02569 5.81699i −0.0634888 0.360063i
$$262$$ 0.157451 0.892951i 0.00972738 0.0551667i
$$263$$ 6.14068 2.23503i 0.378651 0.137818i −0.145681 0.989332i $$-0.546537\pi$$
0.524332 + 0.851514i $$0.324315\pi$$
$$264$$ −1.31521 1.10359i −0.0809454 0.0679213i
$$265$$ 28.2841 1.73748
$$266$$ 10.8550 + 9.10846i 0.665565 + 0.558475i
$$267$$ 9.95336 + 17.2397i 0.609136 + 1.05505i
$$268$$ −6.90420 2.51292i −0.421741 0.153501i
$$269$$ 4.42902 7.67128i 0.270042 0.467726i −0.698830 0.715287i $$-0.746296\pi$$
0.968872 + 0.247561i $$0.0796291\pi$$
$$270$$ 6.56805 + 11.3762i 0.399719 + 0.692333i
$$271$$ 1.64930 + 9.35365i 0.100188 + 0.568194i 0.993034 + 0.117831i $$0.0375941\pi$$
−0.892846 + 0.450362i $$0.851295\pi$$
$$272$$ 2.81908 1.02606i 0.170932 0.0622141i
$$273$$ 3.52094 6.09845i 0.213097 0.369095i
$$274$$ −1.50000 + 1.25865i −0.0906183 + 0.0760378i
$$275$$ 0.437633 0.367218i 0.0263903 0.0221441i
$$276$$ −13.1099 4.77163i −0.789125 0.287218i
$$277$$ −5.11040 + 28.9825i −0.307054 + 1.74139i 0.306619 + 0.951832i $$0.400802\pi$$
−0.613674 + 0.789560i $$0.710309\pi$$
$$278$$ −2.36184 + 13.3947i −0.141654 + 0.803360i
$$279$$ −2.77972 1.01173i −0.166417 0.0605709i
$$280$$ 4.55303 3.82045i 0.272096 0.228315i
$$281$$ 4.54323 3.81223i 0.271027 0.227418i −0.497137 0.867672i $$-0.665615\pi$$
0.768163 + 0.640254i $$0.221171\pi$$
$$282$$ −0.298133 + 0.516382i −0.0177536 + 0.0307501i
$$283$$ −21.2062 + 7.71843i −1.26058 + 0.458813i −0.883963 0.467557i $$-0.845134\pi$$
−0.376615 + 0.926370i $$0.622912\pi$$
$$284$$ −0.448311 2.54250i −0.0266023 0.150869i
$$285$$ −10.0628 17.4293i −0.596071 1.03242i
$$286$$ −1.01707 + 1.76162i −0.0601409 + 0.104167i
$$287$$ 17.6878 + 6.43783i 1.04408 + 0.380013i
$$288$$ −0.326352 0.565258i −0.0192305 0.0333081i
$$289$$ −6.12836 5.14230i −0.360492 0.302488i
$$290$$ 21.2422 1.24738
$$291$$ −17.2463 14.4713i −1.01099 0.848325i
$$292$$ 0.666374 0.242540i 0.0389966 0.0141936i
$$293$$ −0.705737 + 4.00243i −0.0412296 + 0.233825i −0.998458 0.0555078i $$-0.982322\pi$$
0.957229 + 0.289333i $$0.0934333\pi$$
$$294$$ 0.156574 + 0.887975i 0.00913158 + 0.0517878i
$$295$$ −19.6578 −1.14452
$$296$$ −3.69459 + 4.83218i −0.214744 + 0.280865i
$$297$$ −6.27126 −0.363895
$$298$$ 1.16978 + 6.63414i 0.0677634 + 0.384305i
$$299$$ −2.87030 + 16.2783i −0.165994 + 0.941397i
$$300$$ −0.733956 + 0.267138i −0.0423749 + 0.0154232i
$$301$$ −17.3195 14.5328i −0.998282 0.837658i
$$302$$ −4.79561 −0.275956
$$303$$ 3.55303 + 2.98135i 0.204116 + 0.171274i
$$304$$ 2.79813 + 4.84651i 0.160484 + 0.277966i
$$305$$ −5.75877 2.09602i −0.329746 0.120018i
$$306$$ 0.979055 1.69577i 0.0559689 0.0969409i
$$307$$ 5.59240 + 9.68631i 0.319175 + 0.552827i 0.980316 0.197434i $$-0.0632609\pi$$
−0.661141 + 0.750261i $$0.729928\pi$$
$$308$$ 0.492726 + 2.79439i 0.0280757 + 0.159225i
$$309$$ −12.1172 + 4.41030i −0.689324 + 0.250893i
$$310$$ 5.31908 9.21291i 0.302103 0.523258i
$$311$$ 6.32501 5.30731i 0.358658 0.300950i −0.445597 0.895233i $$-0.647009\pi$$
0.804256 + 0.594283i $$0.202564\pi$$
$$312$$ 2.13041 1.78763i 0.120611 0.101205i
$$313$$ 11.0633 + 4.02671i 0.625335 + 0.227603i 0.635199 0.772348i $$-0.280918\pi$$
−0.00986477 + 0.999951i $$0.503140\pi$$
$$314$$ 2.51233 14.2481i 0.141779 0.804067i
$$315$$ 0.673648 3.82045i 0.0379558 0.215258i
$$316$$ −4.16637 1.51644i −0.234377 0.0853062i
$$317$$ 10.1441 8.51190i 0.569749 0.478076i −0.311814 0.950143i $$-0.600937\pi$$
0.881562 + 0.472067i $$0.156492\pi$$
$$318$$ 14.1420 11.8666i 0.793045 0.665444i
$$319$$ −5.07057 + 8.78249i −0.283898 + 0.491725i
$$320$$ 2.20574 0.802823i 0.123304 0.0448791i
$$321$$ 1.60741 + 9.11608i 0.0897169 + 0.508810i
$$322$$ 11.5287 + 19.9683i 0.642469 + 1.11279i
$$323$$ −8.39440 + 14.5395i −0.467077 + 0.809001i
$$324$$ 6.21688 + 2.26276i 0.345382 + 0.125709i
$$325$$ 0.462697 + 0.801414i 0.0256658 + 0.0444544i
$$326$$ −7.69846 6.45978i −0.426378 0.357774i
$$327$$ −30.6955 −1.69747
$$328$$ 5.69459 + 4.77833i 0.314431 + 0.263839i
$$329$$ 0.926022 0.337044i 0.0510532 0.0185819i
$$330$$ 0.699807 3.96880i 0.0385231 0.218475i
$$331$$ 4.26217 + 24.1720i 0.234270 + 1.32861i 0.844145 + 0.536115i $$0.180109\pi$$
−0.609875 + 0.792498i $$0.708780\pi$$
$$332$$ −7.24897 −0.397839
$$333$$ 0.180045 + 3.96616i 0.00986639 + 0.217344i
$$334$$ −10.4415 −0.571334
$$335$$ −2.99479 16.9843i −0.163623 0.927950i
$$336$$ 0.673648 3.82045i 0.0367505 0.208423i
$$337$$ −11.3576 + 4.13381i −0.618686 + 0.225183i −0.632299 0.774724i $$-0.717889\pi$$
0.0136136 + 0.999907i $$0.495667\pi$$
$$338$$ 7.43448 + 6.23827i 0.404382 + 0.339317i
$$339$$ −3.90167 −0.211910
$$340$$ 5.39440 + 4.52644i 0.292552 + 0.245481i
$$341$$ 2.53936 + 4.39831i 0.137514 + 0.238182i
$$342$$ 3.43242 + 1.24930i 0.185604 + 0.0675543i
$$343$$ 9.60741 16.6405i 0.518751 0.898504i
$$344$$ −4.46451 7.73275i −0.240710 0.416922i
$$345$$ −5.68660 32.2503i −0.306156 1.73630i
$$346$$ 0.986329 0.358995i 0.0530254 0.0192997i
$$347$$ 0.904200 1.56612i 0.0485400 0.0840738i −0.840735 0.541447i $$-0.817876\pi$$
0.889275 + 0.457374i $$0.151210\pi$$
$$348$$ 10.6211 8.91215i 0.569350 0.477741i
$$349$$ 3.95677 3.32012i 0.211801 0.177722i −0.530715 0.847550i $$-0.678077\pi$$
0.742516 + 0.669828i $$0.233632\pi$$
$$350$$ 1.21301 + 0.441500i 0.0648382 + 0.0235992i
$$351$$ 1.76399 10.0041i 0.0941546 0.533977i
$$352$$ −0.194593 + 1.10359i −0.0103718 + 0.0588216i
$$353$$ 29.1570 + 10.6123i 1.55187 + 0.564835i 0.968856 0.247625i $$-0.0796500\pi$$
0.583017 + 0.812460i $$0.301872\pi$$
$$354$$ −9.82888 + 8.24741i −0.522399 + 0.438345i
$$355$$ 4.64227 3.89533i 0.246386 0.206743i
$$356$$ 6.49660 11.2524i 0.344319 0.596378i
$$357$$ 10.9363 3.98048i 0.578810 0.210670i
$$358$$ −1.58987 9.01660i −0.0840272 0.476542i
$$359$$ −1.51367 2.62175i −0.0798885 0.138371i 0.823313 0.567587i $$-0.192123\pi$$
−0.903202 + 0.429216i $$0.858790\pi$$
$$360$$ 0.766044 1.32683i 0.0403741 0.0699300i
$$361$$ −11.5753 4.21307i −0.609227 0.221741i
$$362$$ −11.3020 19.5756i −0.594020 1.02887i
$$363$$ −11.4363 9.59619i −0.600250 0.503669i
$$364$$ −4.59627 −0.240910
$$365$$ 1.27513 + 1.06996i 0.0667433 + 0.0560043i
$$366$$ −3.75877 + 1.36808i −0.196474 + 0.0715107i
$$367$$ 4.82651 27.3725i 0.251942 1.42883i −0.551860 0.833937i $$-0.686082\pi$$
0.803802 0.594897i $$-0.202807\pi$$
$$368$$ 1.58125 + 8.96773i 0.0824285 + 0.467475i
$$369$$ 4.85204 0.252587
$$370$$ −14.1591 1.83915i −0.736097 0.0956131i
$$371$$ −30.5107 −1.58404
$$372$$ −1.20574 6.83807i −0.0625146 0.354538i
$$373$$ 0.898681 5.09667i 0.0465319 0.263896i −0.952662 0.304030i $$-0.901668\pi$$
0.999194 + 0.0401346i $$0.0127787\pi$$
$$374$$ −3.15910 + 1.14982i −0.163353 + 0.0594557i
$$375$$ 12.3701 + 10.3797i 0.638787 + 0.536006i
$$376$$ 0.389185 0.0200707
$$377$$ −12.5838 10.5590i −0.648098 0.543818i
$$378$$ −7.08512 12.2718i −0.364419 0.631193i
$$379$$ 19.8195 + 7.21372i 1.01806 + 0.370544i 0.796523 0.604608i $$-0.206670\pi$$
0.221538 + 0.975152i $$0.428892\pi$$
$$380$$ −6.56805 + 11.3762i −0.336934 + 0.583586i
$$381$$ 5.38326 + 9.32407i 0.275793 + 0.477687i
$$382$$ 3.32248 + 18.8427i 0.169993 + 0.964078i
$$383$$ 36.6771 13.3494i 1.87411 0.682121i 0.911455 0.411400i $$-0.134960\pi$$
0.962658 0.270721i $$-0.0872621\pi$$
$$384$$ 0.766044 1.32683i 0.0390920 0.0677094i
$$385$$ −5.10220 + 4.28125i −0.260032 + 0.218193i
$$386$$ 14.5646 12.2212i 0.741321 0.622042i
$$387$$ −5.47653 1.99329i −0.278388 0.101325i
$$388$$ −2.55169 + 14.4713i −0.129542 + 0.734671i
$$389$$ 2.78312 15.7838i 0.141110 0.800273i −0.829299 0.558805i $$-0.811260\pi$$
0.970409 0.241468i $$-0.0776289\pi$$
$$390$$ 6.13429 + 2.23270i 0.310622 + 0.113057i
$$391$$ −20.9270 + 17.5598i −1.05832 + 0.888037i
$$392$$ 0.450837 0.378297i 0.0227707 0.0191069i
$$393$$ 0.694593 1.20307i 0.0350376 0.0606868i
$$394$$ 17.3662 6.32077i 0.874896 0.318436i
$$395$$ −1.80722 10.2492i −0.0909310 0.515695i
$$396$$ 0.365715 + 0.633436i 0.0183779 + 0.0318314i
$$397$$ −7.32042 + 12.6793i −0.367401 + 0.636358i −0.989158 0.146852i $$-0.953086\pi$$
0.621757 + 0.783210i $$0.286419\pi$$
$$398$$ −5.23783 1.90641i −0.262548 0.0955598i
$$399$$ 10.8550 + 18.8015i 0.543432 + 0.941251i
$$400$$ 0.390530 + 0.327693i 0.0195265 + 0.0163847i
$$401$$ 11.8075 0.589637 0.294818 0.955553i $$-0.404741\pi$$
0.294818 + 0.955553i $$0.404741\pi$$
$$402$$ −8.62314 7.23567i −0.430083 0.360883i
$$403$$ −7.73055 + 2.81369i −0.385086 + 0.140160i
$$404$$ 0.525692 2.98135i 0.0261542 0.148328i
$$405$$ 2.69665 + 15.2935i 0.133998 + 0.759939i
$$406$$ −22.9145 −1.13723
$$407$$ 4.14022 5.41501i 0.205223 0.268412i
$$408$$ 4.59627 0.227549
$$409$$ 0.975652 + 5.53320i 0.0482429 + 0.273599i 0.999382 0.0351652i $$-0.0111957\pi$$
−0.951139 + 0.308764i $$0.900085\pi$$
$$410$$ −3.03003 + 17.1842i −0.149642 + 0.848665i
$$411$$ −2.81908 + 1.02606i −0.139055 + 0.0506118i
$$412$$ 6.44743 + 5.41004i 0.317642 + 0.266533i
$$413$$ 21.2053 1.04345
$$414$$ 4.55303 + 3.82045i 0.223769 + 0.187765i
$$415$$ −8.50774 14.7358i −0.417629 0.723354i
$$416$$ −1.70574 0.620838i −0.0836306 0.0304391i
$$417$$ −10.4192 + 18.0466i −0.510231 + 0.883746i
$$418$$ −3.13563 5.43107i −0.153369 0.265642i
$$419$$ −1.76171 9.99114i −0.0860650 0.488099i −0.997122 0.0758179i $$-0.975843\pi$$
0.911057 0.412281i $$-0.135268\pi$$
$$420$$ 8.55690 3.11446i 0.417534 0.151970i
$$421$$ −5.48158 + 9.49438i −0.267156 + 0.462728i −0.968126 0.250463i $$-0.919417\pi$$
0.700970 + 0.713190i $$0.252751\pi$$
$$422$$ −16.6309 + 13.9550i −0.809579 + 0.679317i
$$423$$ 0.194593 0.163283i 0.00946142 0.00793908i
$$424$$ −11.3229 4.12122i −0.549891 0.200144i
$$425$$ −0.265578 + 1.50617i −0.0128824 + 0.0730598i
$$426$$ 0.686852 3.89533i 0.0332781 0.188729i
$$427$$ 6.21213 + 2.26103i 0.300626 + 0.109419i
$$428$$ 4.62836 3.88365i 0.223720 0.187723i
$$429$$ −2.38737 + 2.00324i −0.115264 + 0.0967176i
$$430$$ 10.4795 18.1511i 0.505367 0.875322i
$$431$$ −4.80066 + 1.74730i −0.231240 + 0.0841643i −0.455041 0.890470i $$-0.650375\pi$$
0.223802 + 0.974635i $$0.428153\pi$$
$$432$$ −0.971782 5.51125i −0.0467549 0.265160i
$$433$$ 13.8712 + 24.0257i 0.666609 + 1.15460i 0.978846 + 0.204596i $$0.0655882\pi$$
−0.312237 + 0.950004i $$0.601078\pi$$
$$434$$ −5.73783 + 9.93821i −0.275424 + 0.477049i
$$435$$ 30.5822 + 11.1310i 1.46630 + 0.533691i
$$436$$ 10.0175 + 17.3509i 0.479753 + 0.830957i
$$437$$ −39.0376 32.7564i −1.86742 1.56695i
$$438$$ 1.08647 0.0519134
$$439$$ −22.3214 18.7298i −1.06534 0.893927i −0.0707180 0.997496i $$-0.522529\pi$$
−0.994622 + 0.103570i $$0.966973\pi$$
$$440$$ −2.47178 + 0.899655i −0.117838 + 0.0428894i
$$441$$ 0.0667040 0.378297i 0.00317638 0.0180141i
$$442$$ −0.945622 5.36289i −0.0449787 0.255087i
$$443$$ 6.97864 0.331565 0.165783 0.986162i $$-0.446985\pi$$
0.165783 + 0.986162i $$0.446985\pi$$
$$444$$ −7.85117 + 5.02087i −0.372600 + 0.238280i
$$445$$ 30.4989 1.44579
$$446$$ 1.76130 + 9.98881i 0.0833998 + 0.472984i
$$447$$ −1.79220 + 10.1641i −0.0847683 + 0.480745i
$$448$$ −2.37939 + 0.866025i −0.112415 + 0.0409159i
$$449$$ 13.9834 + 11.7335i 0.659917 + 0.553736i 0.910062 0.414472i $$-0.136034\pi$$
−0.250145 + 0.968208i $$0.580478\pi$$
$$450$$ 0.332748 0.0156859
$$451$$ −6.38144 5.35467i −0.300490 0.252141i
$$452$$ 1.27332 + 2.20545i 0.0598919 + 0.103736i
$$453$$ −6.90420 2.51292i −0.324388 0.118067i
$$454$$ −2.18345 + 3.78184i −0.102474 + 0.177491i
$$455$$ −5.39440 9.34337i −0.252893 0.438024i
$$456$$ 1.48886 + 8.44372i 0.0697221 + 0.395413i
$$457$$ 21.4209 7.79656i 1.00203 0.364708i 0.211660 0.977343i $$-0.432113\pi$$
0.790365 + 0.612636i $$0.209891\pi$$
$$458$$ −5.88666 + 10.1960i −0.275066 + 0.476427i
$$459$$ 12.8610 10.7916i 0.600299 0.503710i
$$460$$ −16.3739 + 13.7394i −0.763438 + 0.640601i
$$461$$ −8.17277 2.97465i −0.380644 0.138543i 0.144610 0.989489i $$-0.453807\pi$$
−0.525254 + 0.850946i $$0.676030\pi$$
$$462$$ −0.754900 + 4.28125i −0.0351211 + 0.199182i
$$463$$ 0.592701 3.36137i 0.0275451 0.156216i −0.967933 0.251209i $$-0.919172\pi$$
0.995478 + 0.0949930i $$0.0302829\pi$$
$$464$$ −8.50387 3.09516i −0.394782 0.143689i
$$465$$ 12.4855 10.4765i 0.578999 0.485838i
$$466$$ −12.4684 + 10.4622i −0.577586 + 0.484653i
$$467$$ −18.3170 + 31.7260i −0.847611 + 1.46810i 0.0357242 + 0.999362i $$0.488626\pi$$
−0.883335 + 0.468743i $$0.844707\pi$$
$$468$$ −1.11334 + 0.405223i −0.0514642 + 0.0187314i
$$469$$ 3.23055 + 18.3214i 0.149173 + 0.846002i
$$470$$ 0.456767 + 0.791143i 0.0210691 + 0.0364927i
$$471$$ 11.0831 19.1964i 0.510681 0.884525i
$$472$$ 7.86959 + 2.86429i 0.362227 + 0.131840i
$$473$$ 5.00299 + 8.66544i 0.230038 + 0.398437i
$$474$$ −5.20368 4.36640i −0.239013 0.200556i
$$475$$ −2.85298 −0.130904
$$476$$ −5.81908 4.88279i −0.266717 0.223802i
$$477$$ −7.39053 + 2.68993i −0.338389 + 0.123164i
$$478$$ 2.70708 15.3526i 0.123819 0.702213i
$$479$$ −3.57832 20.2936i −0.163497 0.927240i −0.950600 0.310418i $$-0.899531\pi$$
0.787103 0.616822i $$-0.211580\pi$$
$$480$$ 3.59627 0.164146
$$481$$ 7.47359 + 8.12771i 0.340766 + 0.370592i
$$482$$ 0.874333 0.0398248
$$483$$ 6.13429 + 34.7893i 0.279120 + 1.58297i
$$484$$ −1.69207 + 9.59619i −0.0769121 + 0.436190i
$$485$$ −32.4124 + 11.7972i −1.47177 + 0.535681i
$$486$$ −5.09627 4.27628i −0.231171 0.193976i
$$487$$ 42.2867 1.91620 0.958098 0.286442i $$-0.0924726\pi$$
0.958098 + 0.286442i $$0.0924726\pi$$
$$488$$ 2.00000 + 1.67820i 0.0905357 + 0.0759685i
$$489$$ −7.69846 13.3341i −0.348137 0.602990i
$$490$$ 1.29813 + 0.472482i 0.0586437 + 0.0213446i
$$491$$ −16.5560 + 28.6759i −0.747163 + 1.29412i 0.202014 + 0.979383i $$0.435251\pi$$
−0.949177 + 0.314742i $$0.898082\pi$$
$$492$$ 5.69459 + 9.86332i 0.256732 + 0.444673i
$$493$$ −4.71436 26.7364i −0.212324 1.20415i
$$494$$ 9.54576 3.47437i 0.429484 0.156319i
$$495$$ −0.858441 + 1.48686i −0.0385840 + 0.0668295i
$$496$$ −3.47178 + 2.91317i −0.155888 + 0.130805i
$$497$$ −5.00774 + 4.20199i −0.224628 + 0.188485i
$$498$$ −10.4363 3.79850i −0.467661 0.170215i
$$499$$ −1.73577 + 9.84402i −0.0777036 + 0.440679i 0.920990 + 0.389586i $$0.127382\pi$$
−0.998694 + 0.0510934i $$0.983729\pi$$
$$500$$ 1.83022 10.3797i 0.0818500 0.464195i
$$501$$ −15.0326 5.47140i −0.671605 0.244444i
$$502$$ 1.94562 1.63257i 0.0868374 0.0728652i
$$503$$ 25.5023 21.3990i 1.13709 0.954132i 0.137751 0.990467i $$-0.456013\pi$$
0.999340 + 0.0363348i $$0.0115683\pi$$
$$504$$ −0.826352 + 1.43128i −0.0368086 + 0.0637544i
$$505$$ 6.67752 2.43042i 0.297146 0.108152i
$$506$$ −1.77197 10.0494i −0.0787739 0.446749i
$$507$$ 7.43448 + 12.8769i 0.330177 + 0.571883i
$$508$$ 3.51367 6.08586i 0.155894 0.270016i
$$509$$ −19.3751 7.05196i −0.858786 0.312573i −0.125169 0.992135i $$-0.539947\pi$$
−0.733617 + 0.679563i $$0.762170\pi$$
$$510$$ 5.39440 + 9.34337i 0.238868 + 0.413732i
$$511$$ −1.37551 1.15419i −0.0608492 0.0510585i
$$512$$ −1.00000 −0.0441942
$$513$$ 23.9911 + 20.1310i 1.05923 + 0.888803i
$$514$$ 15.6493 5.69588i 0.690261 0.251234i
$$515$$ −3.43061 + 19.4559i −0.151171 + 0.857331i
$$516$$ −2.37551 13.4722i −0.104576 0.593081i
$$517$$ −0.436127 −0.0191808
$$518$$ 15.2738 + 1.98394i 0.671092 + 0.0871694i
$$519$$ 1.60813 0.0705889
$$520$$ −0.739885 4.19610i −0.0324461 0.184011i
$$521$$ −4.53121 + 25.6978i −0.198516 + 1.12584i 0.708806 + 0.705404i $$0.249234\pi$$
−0.907322 + 0.420437i $$0.861877\pi$$
$$522$$ −5.55051 + 2.02022i −0.242939 + 0.0884226i
$$523$$ 1.10535 + 0.927500i 0.0483337 + 0.0405567i 0.666634 0.745385i $$-0.267734\pi$$
−0.618301 + 0.785942i $$0.712179\pi$$
$$524$$ −0.906726 −0.0396105
$$525$$ 1.51501 + 1.27125i 0.0661207 + 0.0554818i
$$526$$ −3.26739 5.65928i −0.142465 0.246756i
$$527$$ −12.7763 4.65020i −0.556545 0.202566i
$$528$$ −0.858441 + 1.48686i −0.0373588 + 0.0647074i
$$529$$ −29.9602 51.8926i −1.30262 2.25620i
$$530$$ −4.91147 27.8544i −0.213341 1.20992i
$$531$$ 5.13651 1.86954i 0.222905 0.0811309i
$$532$$ 7.08512 12.2718i 0.307179 0.532050i
$$533$$ 10.3369 8.67366i 0.447739 0.375698i
$$534$$ 15.2494 12.7958i 0.659908 0.553728i
$$535$$ 13.3268 + 4.85057i 0.576169 + 0.209708i
$$536$$ −1.27584 + 7.23567i −0.0551081 + 0.312534i
$$537$$ 2.43582 13.8142i 0.105113 0.596128i
$$538$$ −8.32383 3.02962i −0.358866 0.130616i
$$539$$ −0.505215 + 0.423925i −0.0217611 + 0.0182598i
$$540$$ 10.0628 8.44372i 0.433035 0.363360i
$$541$$ 2.72921 4.72713i 0.117338 0.203235i −0.801374 0.598164i $$-0.795897\pi$$
0.918712 + 0.394929i $$0.129231\pi$$
$$542$$ 8.92514 3.24849i 0.383368 0.139534i
$$543$$ −6.01367 34.1052i −0.258071 1.46360i
$$544$$ −1.50000 2.59808i −0.0643120 0.111392i
$$545$$ −23.5141 + 40.7277i −1.00723 + 1.74458i
$$546$$ −6.61721 2.40847i −0.283190 0.103073i
$$547$$ −20.1086 34.8291i −0.859781 1.48918i −0.872137 0.489261i $$-0.837266\pi$$
0.0123559 0.999924i $$-0.496067\pi$$
$$548$$ 1.50000 + 1.25865i 0.0640768 + 0.0537668i
$$549$$ 1.70409 0.0727287
$$550$$ −0.437633 0.367218i −0.0186607 0.0156582i
$$551$$ 47.5899 17.3213i 2.02740 0.737913i
$$552$$ −2.42262 + 13.7394i −0.103113 + 0.584786i
$$553$$ 1.94949 + 11.0561i 0.0829009 + 0.470154i
$$554$$ 29.4296 1.25035
$$555$$ −19.4210 10.0673i −0.824377 0.427331i
$$556$$ 13.6013 0.576824
$$557$$ −3.06640 17.3904i −0.129928 0.736856i −0.978259 0.207389i $$-0.933503\pi$$
0.848331 0.529466i $$-0.177608\pi$$
$$558$$ −0.513671 + 2.91317i −0.0217454 + 0.123324i
$$559$$ −15.2306 + 5.54347i −0.644184 + 0.234464i
$$560$$ −4.55303 3.82045i −0.192401 0.161443i
$$561$$ −5.15064 −0.217460
$$562$$ −4.54323 3.81223i −0.191645 0.160809i
$$563$$ −1.15523 2.00092i −0.0486871 0.0843286i 0.840655 0.541571i $$-0.182170\pi$$
−0.889342 + 0.457243i $$0.848837\pi$$
$$564$$ 0.560307 + 0.203935i 0.0235932 + 0.00858722i
$$565$$ −2.98886 + 5.17685i −0.125742 + 0.217792i
$$566$$ 11.2836 + 19.5437i 0.474284 + 0.821485i
$$567$$ −2.90895 16.4975i −0.122164 0.692828i
$$568$$ −2.42602 + 0.883000i −0.101794 + 0.0370498i
$$569$$ 0.141559 0.245188i 0.00593447 0.0102788i −0.863043 0.505131i $$-0.831444\pi$$
0.868977 + 0.494852i $$0.164778\pi$$
$$570$$ −15.4172 + 12.9365i −0.645754 + 0.541852i
$$571$$ −8.40420 + 7.05196i −0.351705 + 0.295115i −0.801474 0.598029i $$-0.795951\pi$$
0.449769 + 0.893145i $$0.351506\pi$$
$$572$$ 1.91147 + 0.695720i 0.0799227 + 0.0290895i
$$573$$ −5.09034 + 28.8687i −0.212652 + 1.20601i
$$574$$ 3.26857 18.5370i 0.136428 0.773719i
$$575$$ −4.36231 1.58775i −0.181921 0.0662138i
$$576$$ −0.500000 + 0.419550i −0.0208333 + 0.0174812i
$$577$$ −12.1382 + 10.1851i −0.505318 + 0.424012i −0.859478 0.511173i $$-0.829211\pi$$
0.354160 + 0.935185i $$0.384767\pi$$
$$578$$ −4.00000 + 6.92820i −0.166378 + 0.288175i
$$579$$ 27.3726 9.96280i 1.13757 0.414040i
$$580$$ −3.68866 20.9194i −0.153163 0.868633i
$$581$$ 9.17752 + 15.8959i 0.380748 + 0.659474i
$$582$$ −11.2567 + 19.4972i −0.466606 + 0.808185i
$$583$$ 12.6887 + 4.61830i 0.525511 + 0.191270i
$$584$$ −0.354570 0.614134i −0.0146722 0.0254130i
$$585$$ −2.13041 1.78763i −0.0880818 0.0739094i
$$586$$ 4.06418 0.167890
$$587$$ −14.2947 11.9947i −0.590007 0.495074i 0.298209 0.954500i $$-0.403611\pi$$
−0.888216 + 0.459426i $$0.848055\pi$$
$$588$$ 0.847296 0.308391i 0.0349419 0.0127178i
$$589$$ 4.40420 24.9775i 0.181472 1.02918i
$$590$$ 3.41353 + 19.3591i 0.140533 + 0.797002i
$$591$$ 28.3141 1.16469
$$592$$ 5.40033 + 2.79936i 0.221952 + 0.115053i
$$593$$ −39.4329 −1.61932 −0.809658 0.586901i $$-0.800348\pi$$
−0.809658 + 0.586901i $$0.800348\pi$$
$$594$$ 1.08899 + 6.17598i 0.0446819 + 0.253404i
$$595$$ 3.09627 17.5598i 0.126935 0.719882i
$$596$$ 6.33022 2.30401i 0.259296 0.0943760i
$$597$$ −6.54189 5.48930i −0.267742 0.224662i
$$598$$ 16.5294 0.675937
$$599$$ 5.35710 + 4.49514i 0.218885 + 0.183666i 0.745636 0.666353i $$-0.232146\pi$$
−0.526751 + 0.850019i $$0.676590\pi$$
$$600$$ 0.390530 + 0.676417i 0.0159433 + 0.0276146i
$$601$$ −33.7301 12.2768i −1.37588 0.500780i −0.454954 0.890515i $$-0.650344\pi$$
−0.920927 + 0.389735i $$0.872567\pi$$
$$602$$ −11.3045 + 19.5800i −0.460738 + 0.798022i
$$603$$ 2.39780 + 4.15312i 0.0976461 + 0.169128i
$$604$$ 0.832748 + 4.72275i 0.0338841 + 0.192166i
$$605$$ −21.4932 + 7.82288i −0.873823 + 0.318045i
$$606$$ 2.31908 4.01676i 0.0942061 0.163170i
$$607$$ 8.60788 7.22287i 0.349383 0.293167i −0.451159 0.892443i $$-0.648989\pi$$
0.800542 + 0.599276i $$0.204545\pi$$
$$608$$ 4.28699 3.59721i 0.173860 0.145886i
$$609$$ −32.9898 12.0073i −1.33681 0.486560i
$$610$$ −1.06418 + 6.03525i −0.0430873 + 0.244360i
$$611$$ 0.122674 0.695720i 0.00496286 0.0281458i
$$612$$ −1.84002 0.669713i −0.0743785 0.0270716i
$$613$$ 0.735767 0.617381i 0.0297173 0.0249358i −0.627808 0.778368i $$-0.716048\pi$$
0.657525 + 0.753432i $$0.271603\pi$$
$$614$$ 8.56805 7.18945i 0.345778 0.290142i
$$615$$ −13.3669 + 23.1521i −0.539005 + 0.933585i
$$616$$ 2.66637 0.970481i 0.107431 0.0391018i
$$617$$ −3.71641 21.0768i −0.149617 0.848521i −0.963543 0.267553i $$-0.913785\pi$$
0.813926 0.580969i $$-0.197326\pi$$
$$618$$ 6.44743 + 11.1673i 0.259354 + 0.449214i
$$619$$ −5.72550 + 9.91686i −0.230127 + 0.398592i −0.957845 0.287284i $$-0.907248\pi$$
0.727718 + 0.685876i $$0.240581\pi$$
$$620$$ −9.99660 3.63846i −0.401473 0.146124i
$$621$$ 25.4800 + 44.1326i 1.02248 + 1.77098i
$$622$$ −6.32501 5.30731i −0.253610 0.212804i
$$623$$ −32.8999 −1.31811
$$624$$ −2.13041 1.78763i −0.0852849 0.0715625i
$$625$$ 25.6434 9.33342i 1.02573 0.373337i
$$626$$ 2.04442 11.5945i 0.0817113 0.463408i
$$627$$ −1.66843 9.46216i −0.0666308 0.377882i
$$628$$ −14.4679 −0.577333
$$629$$ 0.827534 + 18.2295i 0.0329959 + 0.726858i
$$630$$ −3.87939 −0.154558
$$631$$ 8.35710 + 47.3954i 0.332691 + 1.88678i 0.448938 + 0.893563i $$0.351802\pi$$
−0.116247 + 0.993220i $$0.537087\pi$$
$$632$$ −0.769915 + 4.36640i −0.0306256 + 0.173686i
$$633$$ −31.2558 + 11.3762i −1.24231 + 0.452163i
$$634$$ −10.1441 8.51190i −0.402873 0.338051i
$$635$$ 16.4953 0.654594
$$636$$ −14.1420 11.8666i −0.560768 0.470540i
$$637$$ −0.534148 0.925172i −0.0211637 0.0366566i
$$638$$ 9.52956 + 3.46848i 0.377279 + 0.137318i
$$639$$ −0.842549 + 1.45934i −0.0333307 + 0.0577305i
$$640$$ −1.17365 2.03282i −0.0463925 0.0803542i
$$641$$ 5.53121 + 31.3691i 0.218470 + 1.23900i 0.874783 + 0.484515i $$0.161004\pi$$
−0.656313 + 0.754488i $$0.727885\pi$$
$$642$$ 8.69846 3.16598i 0.343301 0.124951i
$$643$$ −11.2897 + 19.5543i −0.445221 + 0.771146i −0.998068 0.0621372i $$-0.980208\pi$$
0.552846 + 0.833283i $$0.313542\pi$$
$$644$$ 17.6630 14.8210i 0.696019 0.584029i
$$645$$ 24.5985 20.6406i 0.968567 0.812724i
$$646$$ 15.7763 + 5.74211i 0.620711 + 0.225920i
$$647$$ 5.12954 29.0911i 0.201663 1.14369i −0.700942 0.713218i $$-0.747237\pi$$
0.902605 0.430469i $$-0.141652\pi$$
$$648$$ 1.14883 6.51536i 0.0451304 0.255947i
$$649$$ −8.81877 3.20977i −0.346167 0.125995i
$$650$$ 0.708892 0.594831i 0.0278050 0.0233312i
$$651$$ −13.4684 + 11.3013i −0.527867 + 0.442933i
$$652$$ −5.02481 + 8.70323i −0.196787 + 0.340845i
$$653$$ 8.71600 3.17237i 0.341084 0.124144i −0.165799 0.986160i $$-0.553020\pi$$
0.506882 + 0.862015i $$0.330798\pi$$
$$654$$ 5.33022 + 30.2292i 0.208428 + 1.18205i
$$655$$ −1.06418 1.84321i −0.0415809 0.0720202i
$$656$$ 3.71688 6.43783i 0.145120 0.251355i
$$657$$ −0.434945 0.158307i −0.0169688 0.00617614i
$$658$$ −0.492726 0.853427i −0.0192085 0.0332700i
$$659$$ 20.8418 + 17.4884i 0.811883 + 0.681250i 0.951056 0.309018i $$-0.100000\pi$$
−0.139174 + 0.990268i $$0.544445\pi$$
$$660$$ −4.03003 −0.156869
$$661$$ 8.43763 + 7.08001i 0.328186 + 0.275381i 0.791960 0.610573i $$-0.209061\pi$$
−0.463774 + 0.885953i $$0.653505\pi$$
$$662$$ 23.0646 8.39484i 0.896433 0.326275i
$$663$$ 1.44878 8.21643i 0.0562659 0.319100i
$$664$$ 1.25877 + 7.13884i 0.0488498 + 0.277041i
$$665$$ 33.2618 1.28984
$$666$$ 3.87464 0.866025i 0.150139 0.0335578i
$$667$$ 82.4065 3.19079
$$668$$ 1.81315 + 10.2829i 0.0701528 + 0.397856i
$$669$$ −2.69846 + 15.3037i −0.104329 + 0.591677i
$$670$$ −16.2062 + 5.89858i −0.626100 + 0.227882i
$$671$$ −2.24123 1.88061i −0.0865217 0.0726003i
$$672$$ −3.87939 −0.149651
$$673$$ 10.1141 + 8.48670i 0.389868 + 0.327138i 0.816562 0.577258i $$-0.195877\pi$$
−0.426694 + 0.904396i $$0.640322\pi$$
$$674$$ 6.04323 + 10.4672i 0.232777 + 0.403181i
$$675$$ 2.68092 + 0.975776i 0.103189 + 0.0375576i
$$676$$ 4.85251 8.40480i 0.186635 0.323261i
$$677$$ 17.7763 + 30.7895i 0.683199 + 1.18334i 0.973999 + 0.226552i $$0.0727452\pi$$
−0.290800 + 0.956784i $$0.593921\pi$$
$$678$$ 0.677519 + 3.84240i 0.0260199 + 0.147566i
$$679$$ 34.9641 12.7259i 1.34180 0.488375i
$$680$$ 3.52094 6.09845i 0.135022 0.233865i
$$681$$ −5.12520 + 4.30055i −0.196398 + 0.164798i
$$682$$ 3.89053 3.26454i 0.148976 0.125006i
$$683$$ −30.8756 11.2378i −1.18142 0.430002i −0.324717 0.945811i $$-0.605269\pi$$
−0.856704 + 0.515809i $$0.827491\pi$$
$$684$$ 0.634285 3.59721i 0.0242525 0.137543i
$$685$$ −0.798133 + 4.52644i −0.0304951 + 0.172946i
$$686$$ −18.0560 6.57186i −0.689382 0.250915i
$$687$$ −13.8177 + 11.5945i −0.527179 + 0.442356i
$$688$$ −6.84002 + 5.73946i −0.260773 + 0.218815i
$$689$$ −10.9363 + 18.9422i −0.416639 + 0.721641i
$$690$$ −30.7729 + 11.2004i −1.17150 + 0.426393i
$$691$$ −7.38089 41.8591i −0.280782 1.59240i −0.719973 0.694002i $$-0.755846\pi$$
0.439191 0.898394i $$-0.355265\pi$$
$$692$$ −0.524815 0.909006i −0.0199505 0.0345552i
$$693$$ 0.926022 1.60392i 0.0351767 0.0609278i
$$694$$ −1.69934 0.618509i −0.0645061 0.0234783i
$$695$$ 15.9632 + 27.6490i 0.605517 + 1.04879i
$$696$$ −10.6211 8.91215i −0.402591 0.337814i
$$697$$ 22.3013 0.844722
$$698$$ −3.95677 3.32012i −0.149766 0.125668i
$$699$$ −23.4329 + 8.52887i −0.886313 + 0.322592i
$$700$$ 0.224155 1.27125i 0.00847228 0.0480487i
$$701$$ −2.88161 16.3424i −0.108837 0.617244i −0.989618 0.143721i $$-0.954093\pi$$
0.880781 0.473523i $$-0.157018\pi$$
$$702$$ −10.1584 −0.383404
$$703$$ −33.2211 + 7.42528i −1.25296 + 0.280050i
$$704$$ 1.12061 0.0422348
$$705$$ 0.243041 + 1.37835i 0.00915344 + 0.0519117i
$$706$$ 5.38800 30.5569i 0.202780 1.15002i
$$707$$ −7.20321 + 2.62175i −0.270905 + 0.0986012i
$$708$$ 9.82888 + 8.24741i 0.369392 + 0.309957i
$$709$$ 5.68779 0.213609 0.106805 0.994280i $$-0.465938\pi$$
0.106805 + 0.994280i $$0.465938\pi$$
$$710$$ −4.64227 3.89533i −0.174221 0.146189i
$$711$$ 1.44697 + 2.50622i 0.0542655 + 0.0939906i
$$712$$ −12.2096 4.44393i −0.457574 0.166543i
$$713$$ 20.6348 35.7404i 0.772778 1.33849i
$$714$$ −5.81908 10.0789i −0.217774 0.377195i
$$715$$ 0.829126 + 4.70221i 0.0310076 + 0.175853i
$$716$$ −8.60354 + 3.13143i −0.321529 + 0.117027i
$$717$$ 11.9422 20.6845i 0.445990 0.772478i
$$718$$ −2.31908 + 1.94594i −0.0865472 + 0.0726217i
$$719$$ 9.21735 7.73427i 0.343749 0.288440i −0.454525 0.890734i $$-0.650191\pi$$
0.798274 + 0.602294i $$0.205747\pi$$
$$720$$ −1.43969 0.524005i −0.0536542 0.0195285i
$$721$$ 3.70068 20.9876i 0.137821 0.781620i
$$722$$ −2.13903 + 12.1311i −0.0796066 + 0.451471i
$$723$$ 1.25877 + 0.458155i 0.0468142 + 0.0170390i
$$724$$ −17.3157 + 14.5296i −0.643532 + 0.539987i
$$725$$ 3.53415 2.96550i 0.131255 0.110136i
$$726$$ −7.46451 + 12.9289i −0.277034 + 0.479837i
$$727$$ −25.5898 + 9.31391i −0.949072 + 0.345434i −0.769742 0.638355i $$-0.779615\pi$$
−0.179330 + 0.983789i $$0.557393\pi$$
$$728$$ 0.798133 + 4.52644i 0.0295808 + 0.167761i
$$729$$ −15.0201 26.0155i −0.556299 0.963538i
$$730$$ 0.832282 1.44155i 0.0308041 0.0533543i
$$731$$ −25.1716 9.16171i −0.931005 0.338858i
$$732$$ 2.00000 + 3.46410i 0.0739221 + 0.128037i
$$733$$ −16.2324 13.6206i −0.599556 0.503087i 0.291747 0.956496i $$-0.405764\pi$$
−0.891303 + 0.453408i $$0.850208\pi$$
$$734$$ −27.7948 −1.02592
$$735$$ 1.62133 + 1.36046i 0.0598037 + 0.0501812i
$$736$$ 8.55690 3.11446i 0.315412 0.114800i
$$737$$ 1.42973 8.10840i 0.0526648 0.298677i
$$738$$ −0.842549 4.77833i −0.0310146 0.175893i
$$739$$ −30.6195 −1.12636 −0.563178 0.826336i $$-0.690421\pi$$
−0.563178 + 0.826336i $$0.690421\pi$$
$$740$$ 0.647489 + 14.2634i 0.0238022 + 0.524331i
$$741$$ 15.5635 0.571741
$$742$$ 5.29813 + 30.0472i 0.194501 + 1.10307i
$$743$$ −2.98798 + 16.9457i −0.109618 + 0.621676i 0.879656 + 0.475610i $$0.157772\pi$$
−0.989275 + 0.146067i $$0.953339\pi$$
$$744$$ −6.52481 + 2.37484i −0.239211 + 0.0870658i
$$745$$ 12.1131 + 10.1641i 0.443789 + 0.372383i
$$746$$ −5.17530 −0.189481
$$747$$ 3.62449 + 3.04130i 0.132613 + 0.111275i
$$748$$ 1.68092 + 2.91144i 0.0614606 + 0.106453i
$$749$$ −14.3760 5.23243i −0.525287 0.191189i
$$750$$ 8.07398 13.9845i 0.294820 0.510643i
$$751$$ 13.7506 + 23.8168i 0.501767 + 0.869086i 0.999998 + 0.00204181i $$0.000649930\pi$$
−0.498231 + 0.867045i $$0.666017\pi$$
$$752$$ −0.0675813 0.383273i −0.00246444 0.0139765i
$$753$$ 3.65657 1.33088i 0.133253 0.0485001i
$$754$$ −8.21348 + 14.2262i −0.299117 + 0.518086i
$$755$$ −8.62314 + 7.23567i −0.313828 + 0.263333i
$$756$$ −10.8550 + 9.10846i −0.394794 + 0.331271i
$$757$$ −18.0753 6.57888i −0.656959 0.239113i −0.00803598 0.999968i $$-0.502558\pi$$
−0.648923 + 0.760854i $$0.724780\pi$$
$$758$$ 3.66250 20.7711i 0.133028 0.754440i
$$759$$ 2.71482 15.3965i 0.0985418 0.558858i
$$760$$ 12.3439 + 4.49281i 0.447760 + 0.162971i
$$761$$ 30.1313 25.2832i 1.09226 0.916515i 0.0953800 0.995441i $$-0.469593\pi$$
0.996881 + 0.0789255i $$0.0251489\pi$$
$$762$$ 8.24763 6.92058i 0.298780 0.250706i
$$763$$ 25.3653 43.9340i 0.918286 1.59052i
$$764$$ 17.9795 6.54401i 0.650476 0.236754i
$$765$$ −0.798133 4.52644i −0.0288566 0.163654i
$$766$$ −19.5155 33.8018i −0.705123 1.22131i
$$767$$ 7.60085 13.1651i 0.274451 0.475363i
$$768$$ −1.43969 0.524005i −0.0519504 0.0189084i
$$769$$ −6.48087 11.2252i −0.233706 0.404791i 0.725190 0.688549i $$-0.241752\pi$$
−0.958896 + 0.283758i $$0.908419\pi$$