Properties

Label 74.2.f.a.7.1
Level $74$
Weight $2$
Character 74.7
Analytic conductor $0.591$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 74 = 2 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 74.f (of order \(9\), degree \(6\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(0.590892974957\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\Q(\zeta_{18})\)
Defining polynomial: \(x^{6} - x^{3} + 1\)
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 7.1
Root \(-0.173648 + 0.984808i\) of defining polynomial
Character \(\chi\) \(=\) 74.7
Dual form 74.2.f.a.53.1

$q$-expansion

\(f(q)\) \(=\) \(q+(0.939693 - 0.342020i) q^{2} +(-0.326352 - 0.118782i) q^{3} +(0.766044 - 0.642788i) q^{4} +(-0.0209445 - 0.118782i) q^{5} -0.347296 q^{6} +(0.233956 + 1.32683i) q^{7} +(0.500000 - 0.866025i) q^{8} +(-2.20574 - 1.85083i) q^{9} +O(q^{10})\) \(q+(0.939693 - 0.342020i) q^{2} +(-0.326352 - 0.118782i) q^{3} +(0.766044 - 0.642788i) q^{4} +(-0.0209445 - 0.118782i) q^{5} -0.347296 q^{6} +(0.233956 + 1.32683i) q^{7} +(0.500000 - 0.866025i) q^{8} +(-2.20574 - 1.85083i) q^{9} +(-0.0603074 - 0.104455i) q^{10} +(-2.26604 + 3.92490i) q^{11} +(-0.326352 + 0.118782i) q^{12} +(-0.592396 + 0.497079i) q^{13} +(0.673648 + 1.16679i) q^{14} +(-0.00727396 + 0.0412527i) q^{15} +(0.173648 - 0.984808i) q^{16} +(-2.29813 - 1.92836i) q^{17} +(-2.70574 - 0.984808i) q^{18} +(1.91875 + 0.698367i) q^{19} +(-0.0923963 - 0.0775297i) q^{20} +(0.0812519 - 0.460802i) q^{21} +(-0.786989 + 4.46324i) q^{22} +(-0.0282185 - 0.0488759i) q^{23} +(-0.266044 + 0.223238i) q^{24} +(4.68479 - 1.70513i) q^{25} +(-0.386659 + 0.669713i) q^{26} +(1.02094 + 1.76833i) q^{27} +(1.03209 + 0.866025i) q^{28} +(2.89053 - 5.00654i) q^{29} +(0.00727396 + 0.0412527i) q^{30} -3.34730 q^{31} +(-0.173648 - 0.984808i) q^{32} +(1.20574 - 1.01173i) q^{33} +(-2.81908 - 1.02606i) q^{34} +(0.152704 - 0.0555796i) q^{35} -2.87939 q^{36} +(5.60607 - 2.36051i) q^{37} +2.04189 q^{38} +(0.252374 - 0.0918566i) q^{39} +(-0.113341 - 0.0412527i) q^{40} +(-5.47565 + 4.59462i) q^{41} +(-0.0812519 - 0.460802i) q^{42} +9.31315 q^{43} +(0.786989 + 4.46324i) q^{44} +(-0.173648 + 0.300767i) q^{45} +(-0.0432332 - 0.0362770i) q^{46} +(-4.25877 - 7.37641i) q^{47} +(-0.173648 + 0.300767i) q^{48} +(4.87211 - 1.77330i) q^{49} +(3.81908 - 3.20459i) q^{50} +(0.520945 + 0.902302i) q^{51} +(-0.134285 + 0.761570i) q^{52} +(0.482926 - 2.73881i) q^{53} +(1.56418 + 1.31250i) q^{54} +(0.513671 + 0.186961i) q^{55} +(1.26604 + 0.460802i) q^{56} +(-0.543233 - 0.455827i) q^{57} +(1.00387 - 5.69323i) q^{58} +(-2.25624 + 12.7958i) q^{59} +(0.0209445 + 0.0362770i) q^{60} +(-8.82295 + 7.40333i) q^{61} +(-3.14543 + 1.14484i) q^{62} +(1.93969 - 3.35965i) q^{63} +(-0.500000 - 0.866025i) q^{64} +(0.0714517 + 0.0599551i) q^{65} +(0.786989 - 1.36310i) q^{66} +(0.889185 + 5.04282i) q^{67} -3.00000 q^{68} +(0.00340357 + 0.0193026i) q^{69} +(0.124485 - 0.104455i) q^{70} +(-12.6236 - 4.59462i) q^{71} +(-2.70574 + 0.984808i) q^{72} -8.71688 q^{73} +(4.46064 - 4.13554i) q^{74} -1.73143 q^{75} +(1.91875 - 0.698367i) q^{76} +(-5.73783 - 2.08840i) q^{77} +(0.205737 - 0.172634i) q^{78} +(0.720285 + 4.08494i) q^{79} -0.120615 q^{80} +(1.37686 + 7.80856i) q^{81} +(-3.57398 + 6.19031i) q^{82} +(-4.53596 - 3.80612i) q^{83} +(-0.233956 - 0.405223i) q^{84} +(-0.180922 + 0.313366i) q^{85} +(8.75150 - 3.18528i) q^{86} +(-1.53802 + 1.29055i) q^{87} +(2.26604 + 3.92490i) q^{88} +(1.32295 - 7.50281i) q^{89} +(-0.0603074 + 0.342020i) q^{90} +(-0.798133 - 0.669713i) q^{91} +(-0.0530334 - 0.0193026i) q^{92} +(1.09240 + 0.397600i) q^{93} +(-6.52481 - 5.47497i) q^{94} +(0.0427664 - 0.242540i) q^{95} +(-0.0603074 + 0.342020i) q^{96} +(5.12061 + 8.86916i) q^{97} +(3.97178 - 3.33272i) q^{98} +(12.2626 - 4.46324i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 3 q^{3} + 3 q^{5} + 6 q^{7} + 3 q^{8} - 3 q^{9} + O(q^{10}) \) \( 6 q - 3 q^{3} + 3 q^{5} + 6 q^{7} + 3 q^{8} - 3 q^{9} - 6 q^{10} - 9 q^{11} - 3 q^{12} + 3 q^{14} - 18 q^{15} - 6 q^{18} + 9 q^{19} + 3 q^{20} + 3 q^{21} + 3 q^{22} - 15 q^{23} + 3 q^{24} + 21 q^{25} - 9 q^{26} + 3 q^{27} - 3 q^{28} + 18 q^{30} - 18 q^{31} - 3 q^{33} + 3 q^{35} - 6 q^{36} + 9 q^{37} + 6 q^{38} + 18 q^{39} + 6 q^{40} + 6 q^{41} - 3 q^{42} + 12 q^{43} - 3 q^{44} + 15 q^{46} - 3 q^{47} + 6 q^{50} + 9 q^{52} - 18 q^{53} - 9 q^{54} - 18 q^{55} + 3 q^{56} + 12 q^{57} - 18 q^{58} - 6 q^{59} - 3 q^{60} - 12 q^{61} - 3 q^{62} + 6 q^{63} - 3 q^{64} - 3 q^{66} - 3 q^{67} - 18 q^{68} + 42 q^{69} - 12 q^{70} - 6 q^{71} - 6 q^{72} - 36 q^{73} + 18 q^{74} - 30 q^{75} + 9 q^{76} - 15 q^{77} - 9 q^{78} + 30 q^{79} - 12 q^{80} + 12 q^{81} - 6 q^{82} + 6 q^{83} - 6 q^{84} - 18 q^{85} + 12 q^{86} - 27 q^{87} + 9 q^{88} - 33 q^{89} - 6 q^{90} + 9 q^{91} + 12 q^{92} + 3 q^{93} - 12 q^{94} + 51 q^{95} - 6 q^{96} + 42 q^{97} + 9 q^{98} + 27 q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/74\mathbb{Z}\right)^\times\).

\(n\) \(39\)
\(\chi(n)\) \(e\left(\frac{8}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.939693 0.342020i 0.664463 0.241845i
\(3\) −0.326352 0.118782i −0.188419 0.0685790i 0.246087 0.969248i \(-0.420855\pi\)
−0.434507 + 0.900669i \(0.643077\pi\)
\(4\) 0.766044 0.642788i 0.383022 0.321394i
\(5\) −0.0209445 0.118782i −0.00936668 0.0531211i 0.979766 0.200146i \(-0.0641415\pi\)
−0.989133 + 0.147024i \(0.953030\pi\)
\(6\) −0.347296 −0.141783
\(7\) 0.233956 + 1.32683i 0.0884269 + 0.501494i 0.996564 + 0.0828217i \(0.0263932\pi\)
−0.908137 + 0.418672i \(0.862496\pi\)
\(8\) 0.500000 0.866025i 0.176777 0.306186i
\(9\) −2.20574 1.85083i −0.735246 0.616944i
\(10\) −0.0603074 0.104455i −0.0190709 0.0330317i
\(11\) −2.26604 + 3.92490i −0.683238 + 1.18340i 0.290749 + 0.956799i \(0.406096\pi\)
−0.973987 + 0.226604i \(0.927238\pi\)
\(12\) −0.326352 + 0.118782i −0.0942097 + 0.0342895i
\(13\) −0.592396 + 0.497079i −0.164301 + 0.137865i −0.721231 0.692694i \(-0.756424\pi\)
0.556930 + 0.830559i \(0.311979\pi\)
\(14\) 0.673648 + 1.16679i 0.180040 + 0.311839i
\(15\) −0.00727396 + 0.0412527i −0.00187813 + 0.0106514i
\(16\) 0.173648 0.984808i 0.0434120 0.246202i
\(17\) −2.29813 1.92836i −0.557379 0.467697i 0.320051 0.947400i \(-0.396300\pi\)
−0.877431 + 0.479703i \(0.840744\pi\)
\(18\) −2.70574 0.984808i −0.637748 0.232121i
\(19\) 1.91875 + 0.698367i 0.440191 + 0.160216i 0.552602 0.833445i \(-0.313635\pi\)
−0.112411 + 0.993662i \(0.535857\pi\)
\(20\) −0.0923963 0.0775297i −0.0206604 0.0173362i
\(21\) 0.0812519 0.460802i 0.0177306 0.100555i
\(22\) −0.786989 + 4.46324i −0.167787 + 0.951565i
\(23\) −0.0282185 0.0488759i −0.00588396 0.0101913i 0.863068 0.505087i \(-0.168540\pi\)
−0.868952 + 0.494896i \(0.835206\pi\)
\(24\) −0.266044 + 0.223238i −0.0543061 + 0.0455682i
\(25\) 4.68479 1.70513i 0.936959 0.341025i
\(26\) −0.386659 + 0.669713i −0.0758301 + 0.131342i
\(27\) 1.02094 + 1.76833i 0.196481 + 0.340315i
\(28\) 1.03209 + 0.866025i 0.195046 + 0.163663i
\(29\) 2.89053 5.00654i 0.536758 0.929692i −0.462318 0.886714i \(-0.652982\pi\)
0.999076 0.0429778i \(-0.0136845\pi\)
\(30\) 0.00727396 + 0.0412527i 0.00132804 + 0.00753167i
\(31\) −3.34730 −0.601192 −0.300596 0.953752i \(-0.597186\pi\)
−0.300596 + 0.953752i \(0.597186\pi\)
\(32\) −0.173648 0.984808i −0.0306970 0.174091i
\(33\) 1.20574 1.01173i 0.209892 0.176120i
\(34\) −2.81908 1.02606i −0.483468 0.175968i
\(35\) 0.152704 0.0555796i 0.0258116 0.00939466i
\(36\) −2.87939 −0.479898
\(37\) 5.60607 2.36051i 0.921632 0.388066i
\(38\) 2.04189 0.331238
\(39\) 0.252374 0.0918566i 0.0404122 0.0147088i
\(40\) −0.113341 0.0412527i −0.0179208 0.00652262i
\(41\) −5.47565 + 4.59462i −0.855153 + 0.717559i −0.960918 0.276832i \(-0.910715\pi\)
0.105765 + 0.994391i \(0.466271\pi\)
\(42\) −0.0812519 0.460802i −0.0125374 0.0711034i
\(43\) 9.31315 1.42024 0.710121 0.704080i \(-0.248640\pi\)
0.710121 + 0.704080i \(0.248640\pi\)
\(44\) 0.786989 + 4.46324i 0.118643 + 0.672858i
\(45\) −0.173648 + 0.300767i −0.0258859 + 0.0448358i
\(46\) −0.0432332 0.0362770i −0.00637439 0.00534875i
\(47\) −4.25877 7.37641i −0.621206 1.07596i −0.989262 0.146156i \(-0.953310\pi\)
0.368056 0.929804i \(-0.380023\pi\)
\(48\) −0.173648 + 0.300767i −0.0250640 + 0.0434120i
\(49\) 4.87211 1.77330i 0.696016 0.253329i
\(50\) 3.81908 3.20459i 0.540099 0.453197i
\(51\) 0.520945 + 0.902302i 0.0729468 + 0.126348i
\(52\) −0.134285 + 0.761570i −0.0186220 + 0.105611i
\(53\) 0.482926 2.73881i 0.0663350 0.376204i −0.933509 0.358553i \(-0.883270\pi\)
0.999844 0.0176510i \(-0.00561877\pi\)
\(54\) 1.56418 + 1.31250i 0.212858 + 0.178609i
\(55\) 0.513671 + 0.186961i 0.0692633 + 0.0252098i
\(56\) 1.26604 + 0.460802i 0.169182 + 0.0615773i
\(57\) −0.543233 0.455827i −0.0719530 0.0603757i
\(58\) 1.00387 5.69323i 0.131815 0.747558i
\(59\) −2.25624 + 12.7958i −0.293738 + 1.66587i 0.378550 + 0.925581i \(0.376423\pi\)
−0.672288 + 0.740290i \(0.734688\pi\)
\(60\) 0.0209445 + 0.0362770i 0.00270393 + 0.00468334i
\(61\) −8.82295 + 7.40333i −1.12966 + 0.947900i −0.999052 0.0435341i \(-0.986138\pi\)
−0.130611 + 0.991434i \(0.541694\pi\)
\(62\) −3.14543 + 1.14484i −0.399470 + 0.145395i
\(63\) 1.93969 3.35965i 0.244378 0.423276i
\(64\) −0.500000 0.866025i −0.0625000 0.108253i
\(65\) 0.0714517 + 0.0599551i 0.00886250 + 0.00743652i
\(66\) 0.786989 1.36310i 0.0968716 0.167787i
\(67\) 0.889185 + 5.04282i 0.108631 + 0.616079i 0.989708 + 0.143104i \(0.0457085\pi\)
−0.881076 + 0.472974i \(0.843180\pi\)
\(68\) −3.00000 −0.363803
\(69\) 0.00340357 + 0.0193026i 0.000409741 + 0.00232376i
\(70\) 0.124485 0.104455i 0.0148788 0.0124848i
\(71\) −12.6236 4.59462i −1.49815 0.545281i −0.542567 0.840013i \(-0.682547\pi\)
−0.955580 + 0.294732i \(0.904770\pi\)
\(72\) −2.70574 + 0.984808i −0.318874 + 0.116061i
\(73\) −8.71688 −1.02023 −0.510117 0.860105i \(-0.670398\pi\)
−0.510117 + 0.860105i \(0.670398\pi\)
\(74\) 4.46064 4.13554i 0.518539 0.480747i
\(75\) −1.73143 −0.199928
\(76\) 1.91875 0.698367i 0.220096 0.0801082i
\(77\) −5.73783 2.08840i −0.653886 0.237995i
\(78\) 0.205737 0.172634i 0.0232951 0.0195469i
\(79\) 0.720285 + 4.08494i 0.0810384 + 0.459592i 0.998141 + 0.0609412i \(0.0194102\pi\)
−0.917103 + 0.398650i \(0.869479\pi\)
\(80\) −0.120615 −0.0134851
\(81\) 1.37686 + 7.80856i 0.152984 + 0.867617i
\(82\) −3.57398 + 6.19031i −0.394680 + 0.683606i
\(83\) −4.53596 3.80612i −0.497886 0.417776i 0.358956 0.933354i \(-0.383133\pi\)
−0.856843 + 0.515578i \(0.827577\pi\)
\(84\) −0.233956 0.405223i −0.0255266 0.0442134i
\(85\) −0.180922 + 0.313366i −0.0196238 + 0.0339894i
\(86\) 8.75150 3.18528i 0.943698 0.343478i
\(87\) −1.53802 + 1.29055i −0.164893 + 0.138362i
\(88\) 2.26604 + 3.92490i 0.241561 + 0.418396i
\(89\) 1.32295 7.50281i 0.140232 0.795297i −0.830840 0.556511i \(-0.812140\pi\)
0.971072 0.238785i \(-0.0767492\pi\)
\(90\) −0.0603074 + 0.342020i −0.00635696 + 0.0360521i
\(91\) −0.798133 0.669713i −0.0836671 0.0702050i
\(92\) −0.0530334 0.0193026i −0.00552912 0.00201243i
\(93\) 1.09240 + 0.397600i 0.113276 + 0.0412292i
\(94\) −6.52481 5.47497i −0.672983 0.564700i
\(95\) 0.0427664 0.242540i 0.00438774 0.0248841i
\(96\) −0.0603074 + 0.342020i −0.00615510 + 0.0349073i
\(97\) 5.12061 + 8.86916i 0.519920 + 0.900527i 0.999732 + 0.0231560i \(0.00737146\pi\)
−0.479812 + 0.877371i \(0.659295\pi\)
\(98\) 3.97178 3.33272i 0.401211 0.336656i
\(99\) 12.2626 4.46324i 1.23244 0.448572i
\(100\) 2.49273 4.31753i 0.249273 0.431753i
\(101\) 8.05690 + 13.9550i 0.801692 + 1.38857i 0.918502 + 0.395417i \(0.129400\pi\)
−0.116810 + 0.993154i \(0.537267\pi\)
\(102\) 0.798133 + 0.669713i 0.0790270 + 0.0663115i
\(103\) 9.81567 17.0012i 0.967167 1.67518i 0.263491 0.964662i \(-0.415126\pi\)
0.703676 0.710521i \(-0.251541\pi\)
\(104\) 0.134285 + 0.761570i 0.0131678 + 0.0746781i
\(105\) −0.0564370 −0.00550769
\(106\) −0.482926 2.73881i −0.0469059 0.266017i
\(107\) −0.488856 + 0.410199i −0.0472595 + 0.0396554i −0.666111 0.745852i \(-0.732043\pi\)
0.618852 + 0.785508i \(0.287598\pi\)
\(108\) 1.91875 + 0.698367i 0.184632 + 0.0672004i
\(109\) −6.81908 + 2.48194i −0.653149 + 0.237727i −0.647276 0.762256i \(-0.724092\pi\)
−0.00587340 + 0.999983i \(0.501870\pi\)
\(110\) 0.546637 0.0521198
\(111\) −2.10994 + 0.104455i −0.200266 + 0.00991447i
\(112\) 1.34730 0.127308
\(113\) 12.9893 4.72773i 1.22193 0.444747i 0.351105 0.936336i \(-0.385806\pi\)
0.870827 + 0.491589i \(0.163584\pi\)
\(114\) −0.666374 0.242540i −0.0624117 0.0227160i
\(115\) −0.00521457 + 0.00437554i −0.000486261 + 0.000408021i
\(116\) −1.00387 5.69323i −0.0932070 0.528603i
\(117\) 2.22668 0.205857
\(118\) 2.25624 + 12.7958i 0.207704 + 1.17795i
\(119\) 2.02094 3.50038i 0.185260 0.320879i
\(120\) 0.0320889 + 0.0269258i 0.00292930 + 0.00245798i
\(121\) −4.76991 8.26173i −0.433629 0.751067i
\(122\) −5.75877 + 9.97448i −0.521375 + 0.903047i
\(123\) 2.33275 0.849051i 0.210337 0.0765564i
\(124\) −2.56418 + 2.15160i −0.230270 + 0.193219i
\(125\) −0.602196 1.04303i −0.0538621 0.0932919i
\(126\) 0.673648 3.82045i 0.0600133 0.340353i
\(127\) 2.10354 11.9298i 0.186659 1.05860i −0.737146 0.675733i \(-0.763827\pi\)
0.923805 0.382863i \(-0.125062\pi\)
\(128\) −0.766044 0.642788i −0.0677094 0.0568149i
\(129\) −3.03936 1.10624i −0.267601 0.0973988i
\(130\) 0.0876485 + 0.0319015i 0.00768728 + 0.00279794i
\(131\) 16.5817 + 13.9137i 1.44875 + 1.21565i 0.933485 + 0.358617i \(0.116752\pi\)
0.515267 + 0.857030i \(0.327693\pi\)
\(132\) 0.273318 1.55007i 0.0237893 0.134916i
\(133\) −0.477711 + 2.70924i −0.0414228 + 0.234921i
\(134\) 2.56031 + 4.43458i 0.221177 + 0.383090i
\(135\) 0.188663 0.158307i 0.0162375 0.0136249i
\(136\) −2.81908 + 1.02606i −0.241734 + 0.0879840i
\(137\) −4.31908 + 7.48086i −0.369004 + 0.639133i −0.989410 0.145147i \(-0.953634\pi\)
0.620406 + 0.784281i \(0.286968\pi\)
\(138\) 0.00980018 + 0.0169744i 0.000834247 + 0.00144496i
\(139\) −10.2686 8.61635i −0.870969 0.730830i 0.0933331 0.995635i \(-0.470248\pi\)
−0.964302 + 0.264805i \(0.914692\pi\)
\(140\) 0.0812519 0.140732i 0.00686704 0.0118941i
\(141\) 0.513671 + 2.91317i 0.0432589 + 0.245333i
\(142\) −13.4338 −1.12734
\(143\) −0.608593 3.45150i −0.0508931 0.288629i
\(144\) −2.20574 + 1.85083i −0.183811 + 0.154236i
\(145\) −0.655230 0.238484i −0.0544139 0.0198050i
\(146\) −8.19119 + 2.98135i −0.677908 + 0.246738i
\(147\) −1.80066 −0.148516
\(148\) 2.77719 5.41177i 0.228284 0.444845i
\(149\) 4.39693 0.360210 0.180105 0.983647i \(-0.442356\pi\)
0.180105 + 0.983647i \(0.442356\pi\)
\(150\) −1.62701 + 0.592184i −0.132845 + 0.0483516i
\(151\) −13.8550 5.04282i −1.12751 0.410379i −0.290120 0.956990i \(-0.593695\pi\)
−0.837387 + 0.546611i \(0.815918\pi\)
\(152\) 1.56418 1.31250i 0.126872 0.106458i
\(153\) 1.50000 + 8.50692i 0.121268 + 0.687744i
\(154\) −6.10607 −0.492041
\(155\) 0.0701076 + 0.397600i 0.00563117 + 0.0319360i
\(156\) 0.134285 0.232589i 0.0107514 0.0186220i
\(157\) −11.9907 10.0614i −0.956959 0.802984i 0.0234964 0.999724i \(-0.492520\pi\)
−0.980456 + 0.196740i \(0.936965\pi\)
\(158\) 2.07398 + 3.59224i 0.164997 + 0.285783i
\(159\) −0.482926 + 0.836452i −0.0382985 + 0.0663350i
\(160\) −0.113341 + 0.0412527i −0.00896038 + 0.00326131i
\(161\) 0.0582480 0.0488759i 0.00459058 0.00385196i
\(162\) 3.96451 + 6.86673i 0.311481 + 0.539501i
\(163\) −0.830222 + 4.70842i −0.0650280 + 0.368792i 0.934876 + 0.354973i \(0.115510\pi\)
−0.999905 + 0.0138191i \(0.995601\pi\)
\(164\) −1.24123 + 7.03936i −0.0969237 + 0.549682i
\(165\) −0.145430 0.122030i −0.0113217 0.00950002i
\(166\) −5.56418 2.02520i −0.431864 0.157186i
\(167\) −1.88413 0.685768i −0.145799 0.0530663i 0.268090 0.963394i \(-0.413608\pi\)
−0.413889 + 0.910327i \(0.635830\pi\)
\(168\) −0.358441 0.300767i −0.0276543 0.0232047i
\(169\) −2.15358 + 12.2136i −0.165660 + 0.939505i
\(170\) −0.0628336 + 0.356347i −0.00481912 + 0.0273306i
\(171\) −2.93969 5.09170i −0.224804 0.389372i
\(172\) 7.13429 5.98638i 0.543984 0.456457i
\(173\) 12.9500 4.71340i 0.984567 0.358353i 0.200953 0.979601i \(-0.435596\pi\)
0.783614 + 0.621248i \(0.213374\pi\)
\(174\) −1.00387 + 1.73875i −0.0761032 + 0.131815i
\(175\) 3.35844 + 5.81699i 0.253874 + 0.439723i
\(176\) 3.47178 + 2.91317i 0.261695 + 0.219588i
\(177\) 2.25624 3.90793i 0.169590 0.293738i
\(178\) −1.32295 7.50281i −0.0991592 0.562360i
\(179\) −14.7246 −1.10057 −0.550285 0.834977i \(-0.685481\pi\)
−0.550285 + 0.834977i \(0.685481\pi\)
\(180\) 0.0603074 + 0.342020i 0.00449505 + 0.0254927i
\(181\) −8.34911 + 7.00573i −0.620584 + 0.520732i −0.897987 0.440022i \(-0.854971\pi\)
0.277403 + 0.960754i \(0.410526\pi\)
\(182\) −0.979055 0.356347i −0.0725724 0.0264142i
\(183\) 3.75877 1.36808i 0.277856 0.101131i
\(184\) −0.0564370 −0.00416059
\(185\) −0.397804 0.616462i −0.0292471 0.0453232i
\(186\) 1.16250 0.0852389
\(187\) 12.7763 4.65020i 0.934296 0.340056i
\(188\) −8.00387 2.91317i −0.583742 0.212465i
\(189\) −2.10741 + 1.76833i −0.153292 + 0.128627i
\(190\) −0.0427664 0.242540i −0.00310260 0.0175957i
\(191\) 9.05737 0.655368 0.327684 0.944787i \(-0.393732\pi\)
0.327684 + 0.944787i \(0.393732\pi\)
\(192\) 0.0603074 + 0.342020i 0.00435231 + 0.0246832i
\(193\) −6.29473 + 10.9028i −0.453105 + 0.784800i −0.998577 0.0533286i \(-0.983017\pi\)
0.545472 + 0.838129i \(0.316350\pi\)
\(194\) 7.84524 + 6.58294i 0.563255 + 0.472627i
\(195\) −0.0161968 0.0280537i −0.00115988 0.00200896i
\(196\) 2.59240 4.49016i 0.185171 0.320726i
\(197\) 11.2169 4.08261i 0.799170 0.290874i 0.0900273 0.995939i \(-0.471305\pi\)
0.709142 + 0.705065i \(0.249082\pi\)
\(198\) 9.99660 8.38814i 0.710427 0.596119i
\(199\) −1.14543 1.98394i −0.0811974 0.140638i 0.822567 0.568668i \(-0.192541\pi\)
−0.903765 + 0.428030i \(0.859208\pi\)
\(200\) 0.865715 4.90971i 0.0612153 0.347169i
\(201\) 0.308811 1.75135i 0.0217818 0.123531i
\(202\) 12.3439 + 10.3578i 0.868513 + 0.728769i
\(203\) 7.31908 + 2.66393i 0.513699 + 0.186971i
\(204\) 0.979055 + 0.356347i 0.0685476 + 0.0249493i
\(205\) 0.660444 + 0.554179i 0.0461274 + 0.0387055i
\(206\) 3.40895 19.3331i 0.237513 1.34700i
\(207\) −0.0282185 + 0.160035i −0.00196132 + 0.0111232i
\(208\) 0.386659 + 0.669713i 0.0268100 + 0.0464363i
\(209\) −7.08899 + 5.94837i −0.490356 + 0.411457i
\(210\) −0.0530334 + 0.0193026i −0.00365965 + 0.00133200i
\(211\) −0.477711 + 0.827420i −0.0328870 + 0.0569620i −0.882000 0.471249i \(-0.843803\pi\)
0.849113 + 0.528211i \(0.177137\pi\)
\(212\) −1.39053 2.40847i −0.0955020 0.165414i
\(213\) 3.57398 + 2.99892i 0.244885 + 0.205483i
\(214\) −0.319078 + 0.552659i −0.0218117 + 0.0377790i
\(215\) −0.195060 1.10624i −0.0133030 0.0754448i
\(216\) 2.04189 0.138933
\(217\) −0.783119 4.44129i −0.0531616 0.301494i
\(218\) −5.55896 + 4.66452i −0.376500 + 0.315921i
\(219\) 2.84477 + 1.03541i 0.192232 + 0.0699666i
\(220\) 0.513671 0.186961i 0.0346317 0.0126049i
\(221\) 2.31996 0.156057
\(222\) −1.94697 + 0.819797i −0.130672 + 0.0550212i
\(223\) −17.8648 −1.19632 −0.598159 0.801377i \(-0.704101\pi\)
−0.598159 + 0.801377i \(0.704101\pi\)
\(224\) 1.26604 0.460802i 0.0845912 0.0307887i
\(225\) −13.4893 4.90971i −0.899288 0.327314i
\(226\) 10.5890 8.88522i 0.704369 0.591036i
\(227\) 1.53684 + 8.71583i 0.102003 + 0.578490i 0.992375 + 0.123256i \(0.0393335\pi\)
−0.890372 + 0.455235i \(0.849555\pi\)
\(228\) −0.709141 −0.0469640
\(229\) −3.02347 17.1470i −0.199797 1.13310i −0.905420 0.424516i \(-0.860444\pi\)
0.705624 0.708587i \(-0.250667\pi\)
\(230\) −0.00340357 + 0.00589515i −0.000224425 + 0.000388715i
\(231\) 1.62449 + 1.36310i 0.106883 + 0.0896857i
\(232\) −2.89053 5.00654i −0.189773 0.328696i
\(233\) 2.09627 3.63084i 0.137331 0.237864i −0.789155 0.614195i \(-0.789481\pi\)
0.926485 + 0.376330i \(0.122814\pi\)
\(234\) 2.09240 0.761570i 0.136784 0.0497854i
\(235\) −0.786989 + 0.660362i −0.0513375 + 0.0430773i
\(236\) 6.49660 + 11.2524i 0.422892 + 0.732471i
\(237\) 0.250152 1.41868i 0.0162491 0.0921535i
\(238\) 0.701867 3.98048i 0.0454953 0.258016i
\(239\) 6.57011 + 5.51297i 0.424985 + 0.356605i 0.830056 0.557681i \(-0.188309\pi\)
−0.405071 + 0.914285i \(0.632753\pi\)
\(240\) 0.0393628 + 0.0143269i 0.00254086 + 0.000924798i
\(241\) 19.6532 + 7.15317i 1.26597 + 0.460776i 0.885769 0.464127i \(-0.153632\pi\)
0.380203 + 0.924903i \(0.375854\pi\)
\(242\) −7.30793 6.13208i −0.469772 0.394185i
\(243\) 1.54189 8.74449i 0.0989122 0.560959i
\(244\) −2.00000 + 11.3426i −0.128037 + 0.726133i
\(245\) −0.312681 0.541580i −0.0199765 0.0346003i
\(246\) 1.90167 1.59569i 0.121246 0.101738i
\(247\) −1.48380 + 0.540060i −0.0944121 + 0.0343632i
\(248\) −1.67365 + 2.89884i −0.106277 + 0.184077i
\(249\) 1.02822 + 1.78093i 0.0651607 + 0.112862i
\(250\) −0.922618 0.774169i −0.0583515 0.0489627i
\(251\) −3.39780 + 5.88517i −0.214467 + 0.371469i −0.953108 0.302631i \(-0.902135\pi\)
0.738640 + 0.674100i \(0.235468\pi\)
\(252\) −0.673648 3.82045i −0.0424358 0.240666i
\(253\) 0.255777 0.0160806
\(254\) −2.10354 11.9298i −0.131988 0.748540i
\(255\) 0.0962667 0.0807773i 0.00602845 0.00505847i
\(256\) −0.939693 0.342020i −0.0587308 0.0213763i
\(257\) 9.28611 3.37987i 0.579252 0.210830i −0.0357438 0.999361i \(-0.511380\pi\)
0.614996 + 0.788531i \(0.289158\pi\)
\(258\) −3.23442 −0.201366
\(259\) 4.44356 + 6.88603i 0.276110 + 0.427877i
\(260\) 0.0932736 0.00578458
\(261\) −15.6420 + 5.69323i −0.968217 + 0.352402i
\(262\) 20.3405 + 7.40333i 1.25664 + 0.457379i
\(263\) −15.8195 + 13.2742i −0.975475 + 0.818521i −0.983401 0.181448i \(-0.941922\pi\)
0.00792564 + 0.999969i \(0.497477\pi\)
\(264\) −0.273318 1.55007i −0.0168216 0.0953999i
\(265\) −0.335437 −0.0206057
\(266\) 0.477711 + 2.70924i 0.0292904 + 0.166114i
\(267\) −1.32295 + 2.29141i −0.0809631 + 0.140232i
\(268\) 3.92262 + 3.29147i 0.239612 + 0.201058i
\(269\) −13.8131 23.9251i −0.842203 1.45874i −0.888029 0.459788i \(-0.847925\pi\)
0.0458262 0.998949i \(-0.485408\pi\)
\(270\) 0.123141 0.213286i 0.00749412 0.0129802i
\(271\) −6.42989 + 2.34029i −0.390588 + 0.142162i −0.529846 0.848094i \(-0.677750\pi\)
0.139258 + 0.990256i \(0.455528\pi\)
\(272\) −2.29813 + 1.92836i −0.139345 + 0.116924i
\(273\) 0.180922 + 0.313366i 0.0109499 + 0.0189658i
\(274\) −1.50000 + 8.50692i −0.0906183 + 0.513922i
\(275\) −3.92350 + 22.2513i −0.236596 + 1.34180i
\(276\) 0.0150147 + 0.0125989i 0.000903782 + 0.000758363i
\(277\) 22.3957 + 8.15138i 1.34563 + 0.489769i 0.911581 0.411120i \(-0.134862\pi\)
0.434049 + 0.900889i \(0.357085\pi\)
\(278\) −12.5963 4.58467i −0.755474 0.274970i
\(279\) 7.38326 + 6.19529i 0.442024 + 0.370902i
\(280\) 0.0282185 0.160035i 0.00168638 0.00956392i
\(281\) 5.51367 31.2696i 0.328918 1.86539i −0.151657 0.988433i \(-0.548461\pi\)
0.480575 0.876954i \(-0.340428\pi\)
\(282\) 1.47906 + 2.56180i 0.0880765 + 0.152553i
\(283\) −4.52687 + 3.79850i −0.269095 + 0.225797i −0.767343 0.641237i \(-0.778421\pi\)
0.498248 + 0.867035i \(0.333977\pi\)
\(284\) −12.6236 + 4.59462i −0.749073 + 0.272640i
\(285\) −0.0427664 + 0.0740736i −0.00253326 + 0.00438774i
\(286\) −1.75237 3.03520i −0.103620 0.179475i
\(287\) −7.37733 6.19031i −0.435470 0.365403i
\(288\) −1.43969 + 2.49362i −0.0848347 + 0.146938i
\(289\) −1.38919 7.87846i −0.0817168 0.463439i
\(290\) −0.697281 −0.0409458
\(291\) −0.617622 3.50271i −0.0362056 0.205332i
\(292\) −6.67752 + 5.60310i −0.390772 + 0.327897i
\(293\) 1.59240 + 0.579585i 0.0930288 + 0.0338597i 0.388115 0.921611i \(-0.373126\pi\)
−0.295086 + 0.955471i \(0.595348\pi\)
\(294\) −1.69207 + 0.615862i −0.0986833 + 0.0359178i
\(295\) 1.56717 0.0912442
\(296\) 0.758770 6.03525i 0.0441026 0.350792i
\(297\) −9.25402 −0.536973
\(298\) 4.13176 1.50384i 0.239346 0.0871150i
\(299\) 0.0410117 + 0.0149270i 0.00237177 + 0.000863253i
\(300\) −1.32635 + 1.11294i −0.0765770 + 0.0642557i
\(301\) 2.17886 + 12.3569i 0.125588 + 0.712242i
\(302\) −14.7442 −0.848435
\(303\) −0.971782 5.51125i −0.0558274 0.316613i
\(304\) 1.02094 1.76833i 0.0585552 0.101421i
\(305\) 1.06418 + 0.892951i 0.0609346 + 0.0511302i
\(306\) 4.31908 + 7.48086i 0.246905 + 0.427652i
\(307\) 6.11334 10.5886i 0.348907 0.604324i −0.637149 0.770741i \(-0.719886\pi\)
0.986056 + 0.166417i \(0.0532196\pi\)
\(308\) −5.73783 + 2.08840i −0.326943 + 0.118998i
\(309\) −5.22281 + 4.38246i −0.297115 + 0.249309i
\(310\) 0.201867 + 0.349643i 0.0114653 + 0.0198584i
\(311\) −0.212134 + 1.20307i −0.0120290 + 0.0682198i −0.990231 0.139434i \(-0.955472\pi\)
0.978202 + 0.207654i \(0.0665828\pi\)
\(312\) 0.0466368 0.264490i 0.00264029 0.0149738i
\(313\) −13.3380 11.1919i −0.753906 0.632602i 0.182627 0.983182i \(-0.441540\pi\)
−0.936533 + 0.350580i \(0.885985\pi\)
\(314\) −14.7087 5.35354i −0.830062 0.302118i
\(315\) −0.439693 0.160035i −0.0247739 0.00901695i
\(316\) 3.17752 + 2.66625i 0.178749 + 0.149989i
\(317\) −1.51027 + 8.56515i −0.0848250 + 0.481067i 0.912569 + 0.408922i \(0.134095\pi\)
−0.997394 + 0.0721443i \(0.977016\pi\)
\(318\) −0.167718 + 0.951178i −0.00940518 + 0.0533394i
\(319\) 13.1001 + 22.6901i 0.733467 + 1.27040i
\(320\) −0.0923963 + 0.0775297i −0.00516511 + 0.00433404i
\(321\) 0.208263 0.0758016i 0.0116241 0.00423083i
\(322\) 0.0380187 0.0658503i 0.00211870 0.00366969i
\(323\) −3.06283 5.30498i −0.170421 0.295177i
\(324\) 6.07398 + 5.09667i 0.337443 + 0.283148i
\(325\) −1.92767 + 3.33882i −0.106928 + 0.185205i
\(326\) 0.830222 + 4.70842i 0.0459818 + 0.260775i
\(327\) 2.52023 0.139369
\(328\) 1.24123 + 7.03936i 0.0685354 + 0.388684i
\(329\) 8.79086 7.37641i 0.484656 0.406674i
\(330\) −0.178396 0.0649308i −0.00982037 0.00357432i
\(331\) 7.74510 2.81899i 0.425709 0.154945i −0.120276 0.992741i \(-0.538378\pi\)
0.545985 + 0.837795i \(0.316156\pi\)
\(332\) −5.92127 −0.324972
\(333\) −16.7344 5.16923i −0.917041 0.283272i
\(334\) −2.00505 −0.109712
\(335\) 0.580375 0.211239i 0.0317092 0.0115412i
\(336\) −0.439693 0.160035i −0.0239872 0.00873063i
\(337\) 10.7456 9.01660i 0.585348 0.491166i −0.301350 0.953514i \(-0.597437\pi\)
0.886699 + 0.462348i \(0.152993\pi\)
\(338\) 2.15358 + 12.2136i 0.117139 + 0.664330i
\(339\) −4.80066 −0.260736
\(340\) 0.0628336 + 0.356347i 0.00340763 + 0.0193256i
\(341\) 7.58512 13.1378i 0.410757 0.711453i
\(342\) −4.50387 3.77920i −0.243541 0.204356i
\(343\) 8.20826 + 14.2171i 0.443205 + 0.767653i
\(344\) 4.65657 8.06542i 0.251066 0.434858i
\(345\) 0.00222152 0.000808567i 0.000119603 4.35318e-5i
\(346\) 10.5569 8.85829i 0.567543 0.476225i
\(347\) −9.92262 17.1865i −0.532674 0.922619i −0.999272 0.0381490i \(-0.987854\pi\)
0.466598 0.884470i \(-0.345479\pi\)
\(348\) −0.348641 + 1.97724i −0.0186891 + 0.105991i
\(349\) 2.98633 16.9363i 0.159855 0.906580i −0.794358 0.607450i \(-0.792192\pi\)
0.954212 0.299130i \(-0.0966964\pi\)
\(350\) 5.14543 + 4.31753i 0.275035 + 0.230782i
\(351\) −1.48380 0.540060i −0.0791996 0.0288263i
\(352\) 4.25877 + 1.55007i 0.226993 + 0.0826188i
\(353\) 12.9272 + 10.8472i 0.688046 + 0.577339i 0.918345 0.395781i \(-0.129526\pi\)
−0.230299 + 0.973120i \(0.573971\pi\)
\(354\) 0.783585 4.44393i 0.0416471 0.236192i
\(355\) −0.281364 + 1.59569i −0.0149332 + 0.0846906i
\(356\) −3.80928 6.59786i −0.201891 0.349686i
\(357\) −1.07532 + 0.902302i −0.0569121 + 0.0477549i
\(358\) −13.8366 + 5.03612i −0.731288 + 0.266167i
\(359\) 8.05690 13.9550i 0.425227 0.736515i −0.571214 0.820801i \(-0.693528\pi\)
0.996442 + 0.0842859i \(0.0268609\pi\)
\(360\) 0.173648 + 0.300767i 0.00915206 + 0.0158518i
\(361\) −11.3610 9.53298i −0.597946 0.501736i
\(362\) −5.44949 + 9.43880i −0.286419 + 0.496092i
\(363\) 0.575322 + 3.26281i 0.0301966 + 0.171253i
\(364\) −1.04189 −0.0546098
\(365\) 0.182571 + 1.03541i 0.00955620 + 0.0541959i
\(366\) 3.06418 2.57115i 0.160167 0.134396i
\(367\) 32.9666 + 11.9989i 1.72084 + 0.626336i 0.997912 0.0645839i \(-0.0205720\pi\)
0.722931 + 0.690920i \(0.242794\pi\)
\(368\) −0.0530334 + 0.0193026i −0.00276456 + 0.00100622i
\(369\) 20.5817 1.07144
\(370\) −0.584655 0.443228i −0.0303948 0.0230423i
\(371\) 3.74691 0.194530
\(372\) 1.09240 0.397600i 0.0566381 0.0206146i
\(373\) 27.9047 + 10.1565i 1.44485 + 0.525882i 0.941148 0.337996i \(-0.109749\pi\)
0.503701 + 0.863878i \(0.331971\pi\)
\(374\) 10.4153 8.73951i 0.538565 0.451909i
\(375\) 0.0726338 + 0.411927i 0.00375079 + 0.0212718i
\(376\) −8.51754 −0.439259
\(377\) 0.776311 + 4.40268i 0.0399821 + 0.226750i
\(378\) −1.37551 + 2.38246i −0.0707488 + 0.122541i
\(379\) 0.321137 + 0.269466i 0.0164957 + 0.0138415i 0.650998 0.759079i \(-0.274351\pi\)
−0.634502 + 0.772921i \(0.718795\pi\)
\(380\) −0.123141 0.213286i −0.00631700 0.0109414i
\(381\) −2.10354 + 3.64344i −0.107768 + 0.186659i
\(382\) 8.51114 3.09780i 0.435468 0.158497i
\(383\) −4.92443 + 4.13209i −0.251627 + 0.211140i −0.759872 0.650072i \(-0.774739\pi\)
0.508246 + 0.861212i \(0.330294\pi\)
\(384\) 0.173648 + 0.300767i 0.00886145 + 0.0153485i
\(385\) −0.127889 + 0.725293i −0.00651781 + 0.0369644i
\(386\) −2.18614 + 12.3982i −0.111271 + 0.631052i
\(387\) −20.5424 17.2371i −1.04423 0.876210i
\(388\) 9.62361 + 3.50271i 0.488565 + 0.177823i
\(389\) 2.92602 + 1.06498i 0.148355 + 0.0539969i 0.415130 0.909762i \(-0.363736\pi\)
−0.266775 + 0.963759i \(0.585958\pi\)
\(390\) −0.0248149 0.0208222i −0.00125655 0.00105437i
\(391\) −0.0294005 + 0.166739i −0.00148685 + 0.00843234i
\(392\) 0.900330 5.10602i 0.0454735 0.257893i
\(393\) −3.75877 6.51038i −0.189605 0.328405i
\(394\) 9.14409 7.67280i 0.460672 0.386550i
\(395\) 0.470133 0.171114i 0.0236549 0.00860969i
\(396\) 6.52481 11.3013i 0.327884 0.567912i
\(397\) −9.85369 17.0671i −0.494543 0.856573i 0.505438 0.862863i \(-0.331331\pi\)
−0.999980 + 0.00629016i \(0.997998\pi\)
\(398\) −1.75490 1.47254i −0.0879652 0.0738116i
\(399\) 0.477711 0.827420i 0.0239155 0.0414228i
\(400\) −0.865715 4.90971i −0.0432857 0.245486i
\(401\) 18.9162 0.944631 0.472316 0.881430i \(-0.343418\pi\)
0.472316 + 0.881430i \(0.343418\pi\)
\(402\) −0.308811 1.75135i −0.0154021 0.0873496i
\(403\) 1.98293 1.66387i 0.0987766 0.0828834i
\(404\) 15.1420 + 5.51125i 0.753344 + 0.274195i
\(405\) 0.898681 0.327093i 0.0446558 0.0162534i
\(406\) 7.78880 0.386552
\(407\) −3.43882 + 27.3523i −0.170456 + 1.35580i
\(408\) 1.04189 0.0515812
\(409\) −5.99020 + 2.18025i −0.296196 + 0.107807i −0.485844 0.874046i \(-0.661488\pi\)
0.189648 + 0.981852i \(0.439265\pi\)
\(410\) 0.810155 + 0.294872i 0.0400107 + 0.0145627i
\(411\) 2.29813 1.92836i 0.113359 0.0951191i
\(412\) −3.40895 19.3331i −0.167947 0.952474i
\(413\) −17.5057 −0.861398
\(414\) 0.0282185 + 0.160035i 0.00138686 + 0.00786529i
\(415\) −0.357097 + 0.618509i −0.0175292 + 0.0303614i
\(416\) 0.592396 + 0.497079i 0.0290446 + 0.0243713i
\(417\) 2.32770 + 4.03169i 0.113988 + 0.197433i
\(418\) −4.62701 + 8.01422i −0.226315 + 0.391988i
\(419\) −19.6258 + 7.14322i −0.958785 + 0.348969i −0.773557 0.633727i \(-0.781524\pi\)
−0.185227 + 0.982696i \(0.559302\pi\)
\(420\) −0.0432332 + 0.0362770i −0.00210957 + 0.00177014i
\(421\) 2.90420 + 5.03022i 0.141542 + 0.245158i 0.928077 0.372387i \(-0.121461\pi\)
−0.786535 + 0.617545i \(0.788127\pi\)
\(422\) −0.165907 + 0.940908i −0.00807625 + 0.0458027i
\(423\) −4.25877 + 24.1527i −0.207069 + 1.17434i
\(424\) −2.13041 1.78763i −0.103462 0.0868150i
\(425\) −14.0544 5.11538i −0.681737 0.248132i
\(426\) 4.38413 + 1.59569i 0.212412 + 0.0773116i
\(427\) −11.8871 9.97448i −0.575258 0.482699i
\(428\) −0.110815 + 0.628461i −0.00535642 + 0.0303778i
\(429\) −0.211362 + 1.19869i −0.0102047 + 0.0578735i
\(430\) −0.561652 0.972809i −0.0270852 0.0469130i
\(431\) 8.70233 7.30212i 0.419177 0.351731i −0.408673 0.912681i \(-0.634008\pi\)
0.827850 + 0.560950i \(0.189564\pi\)
\(432\) 1.91875 0.698367i 0.0923158 0.0336002i
\(433\) −17.8025 + 30.8348i −0.855532 + 1.48183i 0.0206183 + 0.999787i \(0.493437\pi\)
−0.876150 + 0.482038i \(0.839897\pi\)
\(434\) −2.25490 3.90560i −0.108239 0.187475i
\(435\) 0.185508 + 0.155659i 0.00889442 + 0.00746330i
\(436\) −3.62836 + 6.28450i −0.173767 + 0.300973i
\(437\) −0.0200109 0.113487i −0.000957250 0.00542884i
\(438\) 3.02734 0.144652
\(439\) 3.90777 + 22.1620i 0.186507 + 1.05774i 0.924003 + 0.382385i \(0.124897\pi\)
−0.737496 + 0.675352i \(0.763992\pi\)
\(440\) 0.418748 0.351371i 0.0199630 0.0167510i
\(441\) −14.0287 5.10602i −0.668033 0.243144i
\(442\) 2.18004 0.793471i 0.103694 0.0377416i
\(443\) −26.0942 −1.23977 −0.619887 0.784691i \(-0.712821\pi\)
−0.619887 + 0.784691i \(0.712821\pi\)
\(444\) −1.54916 + 1.43626i −0.0735200 + 0.0681618i
\(445\) −0.918910 −0.0435605
\(446\) −16.7875 + 6.11013i −0.794909 + 0.289323i
\(447\) −1.43494 0.522277i −0.0678706 0.0247029i
\(448\) 1.03209 0.866025i 0.0487616 0.0409159i
\(449\) −1.13310 6.42615i −0.0534745 0.303269i 0.946327 0.323212i \(-0.104763\pi\)
−0.999801 + 0.0199431i \(0.993651\pi\)
\(450\) −14.3550 −0.676703
\(451\) −5.62536 31.9030i −0.264888 1.50225i
\(452\) 6.91147 11.9710i 0.325088 0.563070i
\(453\) 3.92262 + 3.29147i 0.184301 + 0.154647i
\(454\) 4.42514 + 7.66458i 0.207682 + 0.359716i
\(455\) −0.0628336 + 0.108831i −0.00294568 + 0.00510208i
\(456\) −0.666374 + 0.242540i −0.0312058 + 0.0113580i
\(457\) −25.0835 + 21.0476i −1.17336 + 0.984564i −1.00000 0.000294571i \(-0.999906\pi\)
−0.173358 + 0.984859i \(0.555462\pi\)
\(458\) −8.70574 15.0788i −0.406792 0.704585i
\(459\) 1.06371 6.03260i 0.0496498 0.281578i
\(460\) −0.00118205 + 0.00670372i −5.51132e−5 + 0.000312562i
\(461\) 14.9722 + 12.5632i 0.697327 + 0.585127i 0.921012 0.389535i \(-0.127364\pi\)
−0.223685 + 0.974662i \(0.571809\pi\)
\(462\) 1.99273 + 0.725293i 0.0927100 + 0.0337437i
\(463\) −40.2943 14.6659i −1.87264 0.681584i −0.965278 0.261224i \(-0.915874\pi\)
−0.907358 0.420359i \(-0.861904\pi\)
\(464\) −4.42855 3.71599i −0.205590 0.172511i
\(465\) 0.0243481 0.138085i 0.00112912 0.00640354i
\(466\) 0.728026 4.12884i 0.0337251 0.191265i
\(467\) −10.5444 18.2635i −0.487937 0.845132i 0.511966 0.859005i \(-0.328917\pi\)
−0.999904 + 0.0138732i \(0.995584\pi\)
\(468\) 1.70574 1.43128i 0.0788477 0.0661611i
\(469\) −6.48293 + 2.35959i −0.299354 + 0.108956i
\(470\) −0.513671 + 0.889704i −0.0236939 + 0.0410390i
\(471\) 2.71806 + 4.70782i 0.125242 + 0.216925i
\(472\) 9.95336 + 8.35186i 0.458141 + 0.384426i
\(473\) −21.1040 + 36.5532i −0.970363 + 1.68072i
\(474\) −0.250152 1.41868i −0.0114899 0.0651623i
\(475\) 10.1797 0.467079
\(476\) −0.701867 3.98048i −0.0321700 0.182445i
\(477\) −6.13429 + 5.14728i −0.280870 + 0.235678i
\(478\) 8.05943 + 2.93339i 0.368630 + 0.134170i
\(479\) 22.7430 8.27779i 1.03916 0.378222i 0.234596 0.972093i \(-0.424623\pi\)
0.804560 + 0.593871i \(0.202401\pi\)
\(480\) 0.0418891 0.00191197
\(481\) −2.14765 + 4.18502i −0.0979245 + 0.190820i
\(482\) 20.9145 0.952628
\(483\) −0.0248149 + 0.00903189i −0.00112912 + 0.000410965i
\(484\) −8.96451 3.26281i −0.407478 0.148310i
\(485\) 0.946251 0.793999i 0.0429671 0.0360536i
\(486\) −1.54189 8.74449i −0.0699415 0.396658i
\(487\) 28.9682 1.31268 0.656338 0.754467i \(-0.272105\pi\)
0.656338 + 0.754467i \(0.272105\pi\)
\(488\) 2.00000 + 11.3426i 0.0905357 + 0.513454i
\(489\) 0.830222 1.43799i 0.0375439 0.0650280i
\(490\) −0.479055 0.401975i −0.0216415 0.0181594i
\(491\) 14.0758 + 24.3800i 0.635231 + 1.10025i 0.986466 + 0.163966i \(0.0524286\pi\)
−0.351235 + 0.936287i \(0.614238\pi\)
\(492\) 1.24123 2.14987i 0.0559589 0.0969237i
\(493\) −16.2973 + 5.93172i −0.733991 + 0.267151i
\(494\) −1.20961 + 1.01498i −0.0544228 + 0.0456662i
\(495\) −0.786989 1.36310i −0.0353725 0.0612670i
\(496\) −0.581252 + 3.29644i −0.0260990 + 0.148015i
\(497\) 3.14290 17.8243i 0.140978 0.799529i
\(498\) 1.57532 + 1.32185i 0.0705919 + 0.0592336i
\(499\) 4.40255 + 1.60240i 0.197085 + 0.0717332i 0.438677 0.898645i \(-0.355447\pi\)
−0.241592 + 0.970378i \(0.577669\pi\)
\(500\) −1.13176 0.411927i −0.0506138 0.0184219i
\(501\) 0.533433 + 0.447603i 0.0238320 + 0.0199974i
\(502\) −1.18004 + 6.69237i −0.0526680 + 0.298695i
\(503\) 4.39037 24.8990i 0.195757 1.11019i −0.715580 0.698531i \(-0.753838\pi\)
0.911337 0.411661i \(-0.135051\pi\)
\(504\) −1.93969 3.35965i −0.0864008 0.149651i
\(505\) 1.48886 1.24930i 0.0662532 0.0555930i
\(506\) 0.240352 0.0874810i 0.0106850 0.00388901i
\(507\) 2.15358 3.73011i 0.0956439 0.165660i
\(508\) −6.05690 10.4909i −0.268732 0.465457i
\(509\) 16.3739 + 13.7394i 0.725761 + 0.608986i 0.928972 0.370149i \(-0.120693\pi\)
−0.203211 + 0.979135i \(0.565138\pi\)
\(510\) 0.0628336 0.108831i 0.00278232 0.00481912i
\(511\) −2.03936 11.5658i −0.0902161 0.511641i
\(512\) −1.00000 −0.0441942
\(513\) 0.723993 + 4.10597i 0.0319651 + 0.181283i
\(514\) 7.57011 6.35207i 0.333903 0.280178i
\(515\) −2.22503 0.809846i −0.0980467 0.0356861i
\(516\) −3.03936 + 1.10624i −0.133800 + 0.0486994i
\(517\) 38.6023 1.69773
\(518\) 6.53074 + 4.95096i 0.286944 + 0.217533i
\(519\) −4.78611 −0.210087
\(520\) 0.0876485 0.0319015i 0.00384364 0.00139897i
\(521\) 18.6853 + 6.80088i 0.818616 + 0.297952i 0.717178 0.696890i \(-0.245433\pi\)
0.101438 + 0.994842i \(0.467656\pi\)
\(522\) −12.7515 + 10.6998i −0.558118 + 0.468316i
\(523\) −2.94919 16.7257i −0.128959 0.731363i −0.978877 0.204448i \(-0.934460\pi\)
0.849918 0.526914i \(-0.176651\pi\)
\(524\) 21.6459 0.945605
\(525\) −0.405078 2.29731i −0.0176790 0.100263i
\(526\) −10.3255 + 17.8842i −0.450212 + 0.779790i
\(527\) 7.69253 + 6.45480i 0.335092 + 0.281176i
\(528\) −0.786989 1.36310i −0.0342493 0.0593215i
\(529\) 11.4984 19.9158i 0.499931 0.865905i
\(530\) −0.315207 + 0.114726i −0.0136917 + 0.00498338i
\(531\) 28.6596 24.0482i 1.24372 1.04360i
\(532\) 1.37551 + 2.38246i 0.0596361 + 0.103293i
\(533\) 0.959866 5.44367i 0.0415764 0.235791i
\(534\) −0.459455 + 2.60570i −0.0198826 + 0.112760i
\(535\) 0.0589632 + 0.0494760i 0.00254920 + 0.00213903i
\(536\) 4.81180 + 1.75135i 0.207838 + 0.0756469i
\(537\) 4.80541 + 1.74903i 0.207369 + 0.0754760i
\(538\) −21.1630 17.7578i −0.912400 0.765595i
\(539\) −4.08037 + 23.1410i −0.175754 + 0.996751i
\(540\) 0.0427664 0.242540i 0.00184037 0.0104373i
\(541\) −14.6348 25.3481i −0.629197 1.08980i −0.987713 0.156278i \(-0.950050\pi\)
0.358516 0.933524i \(-0.383283\pi\)
\(542\) −5.24170 + 4.39831i −0.225150 + 0.188923i
\(543\) 3.55690 1.29461i 0.152641 0.0555569i
\(544\) −1.50000 + 2.59808i −0.0643120 + 0.111392i
\(545\) 0.437633 + 0.758003i 0.0187461 + 0.0324693i
\(546\) 0.277189 + 0.232589i 0.0118626 + 0.00995389i
\(547\) 0.666841 1.15500i 0.0285121 0.0493843i −0.851417 0.524489i \(-0.824256\pi\)
0.879929 + 0.475105i \(0.157590\pi\)
\(548\) 1.50000 + 8.50692i 0.0640768 + 0.363398i
\(549\) 33.1634 1.41538
\(550\) 3.92350 + 22.2513i 0.167298 + 0.948797i
\(551\) 9.04260 7.58765i 0.385228 0.323245i
\(552\) 0.0184183 + 0.00670372i 0.000783935 + 0.000285329i
\(553\) −5.25150 + 1.91139i −0.223316 + 0.0812805i
\(554\) 23.8331 1.01257
\(555\) 0.0565991 + 0.248436i 0.00240250 + 0.0105455i
\(556\) −13.4047 −0.568485
\(557\) −30.3790 + 11.0570i −1.28720 + 0.468502i −0.892807 0.450440i \(-0.851267\pi\)
−0.394392 + 0.918942i \(0.629045\pi\)
\(558\) 9.05690 + 3.29644i 0.383409 + 0.139550i
\(559\) −5.51707 + 4.62937i −0.233347 + 0.195802i
\(560\) −0.0282185 0.160035i −0.00119245 0.00676271i
\(561\) −4.72193 −0.199360
\(562\) −5.51367 31.2696i −0.232580 1.31903i
\(563\) 8.34389 14.4520i 0.351653 0.609081i −0.634886 0.772606i \(-0.718953\pi\)
0.986539 + 0.163525i \(0.0522863\pi\)
\(564\) 2.26604 + 1.90144i 0.0954177 + 0.0800649i
\(565\) −0.833626 1.44388i −0.0350709 0.0607446i
\(566\) −2.95471 + 5.11770i −0.124196 + 0.215113i
\(567\) −10.0385 + 3.65371i −0.421577 + 0.153441i
\(568\) −10.2909 + 8.63506i −0.431795 + 0.362319i
\(569\) 0.213011 + 0.368946i 0.00892989 + 0.0154670i 0.870456 0.492247i \(-0.163824\pi\)
−0.861526 + 0.507714i \(0.830491\pi\)
\(570\) −0.0148526 + 0.0842334i −0.000622108 + 0.00352815i
\(571\) 2.42262 13.7394i 0.101383 0.574974i −0.891220 0.453571i \(-0.850150\pi\)
0.992603 0.121403i \(-0.0387392\pi\)
\(572\) −2.68479 2.25281i −0.112257 0.0941947i
\(573\) −2.95589 1.07586i −0.123484 0.0449445i
\(574\) −9.04963 3.29380i −0.377724 0.137480i
\(575\) −0.215537 0.180857i −0.00898852 0.00754227i
\(576\) −0.500000 + 2.83564i −0.0208333 + 0.118152i
\(577\) −1.90373 + 10.7966i −0.0792535 + 0.449469i 0.919196 + 0.393801i \(0.128840\pi\)
−0.998449 + 0.0556680i \(0.982271\pi\)
\(578\) −4.00000 6.92820i −0.166378 0.288175i
\(579\) 3.34936 2.81044i 0.139194 0.116798i
\(580\) −0.655230 + 0.238484i −0.0272069 + 0.00990252i
\(581\) 3.98886 6.90890i 0.165486 0.286629i
\(582\) −1.77837 3.08023i −0.0737158 0.127680i
\(583\) 9.65523 + 8.10170i 0.399879 + 0.335538i
\(584\) −4.35844 + 7.54904i −0.180354 + 0.312382i
\(585\) −0.0466368 0.264490i −0.00192819 0.0109353i
\(586\) 1.69459 0.0700030
\(587\) −2.21167 12.5430i −0.0912853 0.517704i −0.995823 0.0913099i \(-0.970895\pi\)
0.904537 0.426395i \(-0.140216\pi\)
\(588\) −1.37939 + 1.15744i −0.0568849 + 0.0477321i
\(589\) −6.42262 2.33764i −0.264639 0.0963209i
\(590\) 1.47266 0.536004i 0.0606284 0.0220669i
\(591\) −4.14559 −0.170527
\(592\) −1.35117 5.93080i −0.0555326 0.243754i
\(593\) 33.6786 1.38301 0.691507 0.722369i \(-0.256947\pi\)
0.691507 + 0.722369i \(0.256947\pi\)
\(594\) −8.69594 + 3.16506i −0.356799 + 0.129864i
\(595\) −0.458111 0.166739i −0.0187807 0.00683562i
\(596\) 3.36824 2.82629i 0.137969 0.115769i
\(597\) 0.138156 + 0.783520i 0.00565434 + 0.0320673i
\(598\) 0.0436438 0.00178473
\(599\) −2.36484 13.4117i −0.0966246 0.547986i −0.994237 0.107201i \(-0.965811\pi\)
0.897613 0.440785i \(-0.145300\pi\)
\(600\) −0.865715 + 1.49946i −0.0353427 + 0.0612153i
\(601\) 12.3962 + 10.4017i 0.505652 + 0.424292i 0.859596 0.510974i \(-0.170715\pi\)
−0.353944 + 0.935267i \(0.615160\pi\)
\(602\) 6.27379 + 10.8665i 0.255700 + 0.442886i
\(603\) 7.37211 12.7689i 0.300216 0.519989i
\(604\) −13.8550 + 5.04282i −0.563753 + 0.205189i
\(605\) −0.881445 + 0.739620i −0.0358358 + 0.0300698i
\(606\) −2.79813 4.84651i −0.113666 0.196876i
\(607\) −7.17247 + 40.6771i −0.291121 + 1.65103i 0.391440 + 0.920204i \(0.371977\pi\)
−0.682562 + 0.730828i \(0.739134\pi\)
\(608\) 0.354570 2.01087i 0.0143797 0.0815515i
\(609\) −2.07217 1.73875i −0.0839684 0.0704579i
\(610\) 1.30541 + 0.475129i 0.0528544 + 0.0192374i
\(611\) 6.18954 + 2.25281i 0.250402 + 0.0911389i
\(612\) 6.61721 + 5.55250i 0.267485 + 0.224446i
\(613\) −5.40255 + 30.6394i −0.218207 + 1.23751i 0.657047 + 0.753850i \(0.271805\pi\)
−0.875254 + 0.483664i \(0.839306\pi\)
\(614\) 2.12314 12.0409i 0.0856830 0.485932i
\(615\) −0.149711 0.259306i −0.00603691 0.0104562i
\(616\) −4.67752 + 3.92490i −0.188463 + 0.158139i
\(617\) −17.9547 + 6.53498i −0.722829 + 0.263088i −0.677126 0.735867i \(-0.736775\pi\)
−0.0457029 + 0.998955i \(0.514553\pi\)
\(618\) −3.40895 + 5.90447i −0.137128 + 0.237513i
\(619\) −19.4636 33.7120i −0.782309 1.35500i −0.930593 0.366055i \(-0.880708\pi\)
0.148284 0.988945i \(-0.452625\pi\)
\(620\) 0.309278 + 0.259515i 0.0124209 + 0.0104224i
\(621\) 0.0576190 0.0997991i 0.00231217 0.00400480i
\(622\) 0.212134 + 1.20307i 0.00850579 + 0.0482387i
\(623\) 10.2645 0.411237
\(624\) −0.0466368 0.264490i −0.00186697 0.0105881i
\(625\) 18.9841 15.9296i 0.759364 0.637182i
\(626\) −16.3614 5.95507i −0.653934 0.238013i
\(627\) 3.02007 1.09921i 0.120610 0.0438984i
\(628\) −15.6527 −0.624611
\(629\) −17.4354 5.38576i −0.695195 0.214744i
\(630\) −0.467911 −0.0186420
\(631\) 0.635163 0.231180i 0.0252854 0.00920314i −0.329346 0.944209i \(-0.606828\pi\)
0.354632 + 0.935006i \(0.384606\pi\)
\(632\) 3.89780 + 1.41868i 0.155046 + 0.0564322i
\(633\) 0.254185 0.213286i 0.0101029 0.00847737i
\(634\) 1.51027 + 8.56515i 0.0599804 + 0.340166i
\(635\) −1.46110 −0.0579821
\(636\) 0.167718 + 0.951178i 0.00665047 + 0.0377167i
\(637\) −2.00475 + 3.47232i −0.0794310 + 0.137579i
\(638\) 20.0706 + 16.8412i 0.794602 + 0.666750i
\(639\) 19.3405 + 33.4987i 0.765098 + 1.32519i
\(640\) −0.0603074 + 0.104455i −0.00238386 + 0.00412896i
\(641\) −17.6853 + 6.43691i −0.698526 + 0.254243i −0.666781 0.745253i \(-0.732328\pi\)
−0.0317444 + 0.999496i \(0.510106\pi\)
\(642\) 0.169778 0.142460i 0.00670059 0.00562247i
\(643\) −22.6582 39.2452i −0.893553 1.54768i −0.835585 0.549361i \(-0.814871\pi\)
−0.0579679 0.998318i \(-0.518462\pi\)
\(644\) 0.0132037 0.0748822i 0.000520300 0.00295077i
\(645\) −0.0677435 + 0.384192i −0.00266740 + 0.0151276i
\(646\) −4.69253 3.93750i −0.184625 0.154919i
\(647\) −18.9859 6.91031i −0.746413 0.271672i −0.0593177 0.998239i \(-0.518893\pi\)
−0.687096 + 0.726567i \(0.741115\pi\)
\(648\) 7.45084 + 2.71188i 0.292697 + 0.106533i
\(649\) −45.1095 37.8514i −1.77070 1.48580i
\(650\) −0.669473 + 3.79677i −0.0262589 + 0.148922i
\(651\) −0.271974 + 1.54244i −0.0106595 + 0.0604531i
\(652\) 2.39053 + 4.14052i 0.0936204 + 0.162155i
\(653\) −13.4586 + 11.2931i −0.526675 + 0.441933i −0.866951 0.498393i \(-0.833924\pi\)
0.340277 + 0.940325i \(0.389479\pi\)
\(654\) 2.36824 0.861969i 0.0926055 0.0337057i
\(655\) 1.30541 2.26103i 0.0510065 0.0883458i
\(656\) 3.57398 + 6.19031i 0.139540 + 0.241691i
\(657\) 19.2271 + 16.1335i 0.750123 + 0.629428i
\(658\) 5.73783 9.93821i 0.223684 0.387432i
\(659\) 5.65389 + 32.0648i 0.220244 + 1.24907i 0.871571 + 0.490269i \(0.163102\pi\)
−0.651327 + 0.758797i \(0.725787\pi\)
\(660\) −0.189845 −0.00738971
\(661\) 4.07650 + 23.1190i 0.158558 + 0.899225i 0.955461 + 0.295118i \(0.0953590\pi\)
−0.796903 + 0.604107i \(0.793530\pi\)
\(662\) 6.31386 5.29796i 0.245395 0.205911i
\(663\) −0.757122 0.275570i −0.0294042 0.0107022i
\(664\) −5.56418 + 2.02520i −0.215932 + 0.0785928i
\(665\) 0.331815 0.0128672
\(666\) −17.4932 + 0.866025i −0.677847 + 0.0335578i
\(667\) −0.326266 −0.0126331
\(668\) −1.88413 + 0.685768i −0.0728993 + 0.0265332i
\(669\) 5.83022 + 2.12203i 0.225409 + 0.0820423i
\(670\) 0.473126 0.397000i 0.0182784 0.0153374i
\(671\) −9.06418 51.4055i −0.349919 1.98449i
\(672\) −0.467911 −0.0180501
\(673\) 2.29989 + 13.0433i 0.0886542 + 0.502783i 0.996508 + 0.0834962i \(0.0266086\pi\)
−0.907854 + 0.419287i \(0.862280\pi\)
\(674\) 7.01367 12.1480i 0.270156 0.467925i
\(675\) 7.79813 + 6.54341i 0.300150 + 0.251856i
\(676\) 6.20099 + 10.7404i 0.238500 + 0.413093i
\(677\) −2.69253 + 4.66360i −0.103482 + 0.179237i −0.913117 0.407697i \(-0.866332\pi\)
0.809635 + 0.586934i \(0.199665\pi\)
\(678\) −4.51114 + 1.64192i −0.173249 + 0.0630576i
\(679\) −10.5699 + 8.86916i −0.405634 + 0.340367i
\(680\) 0.180922 + 0.313366i 0.00693805 + 0.0120171i
\(681\) 0.533738 3.02698i 0.0204529 0.115994i
\(682\) 2.63429 14.9398i 0.100872 0.572074i
\(683\) 19.2547 + 16.1566i 0.736759 + 0.618214i 0.931965 0.362548i \(-0.118093\pi\)
−0.195206 + 0.980762i \(0.562538\pi\)
\(684\) −5.52481 2.01087i −0.211247 0.0768875i
\(685\) 0.979055 + 0.356347i 0.0374078 + 0.0136153i
\(686\) 12.5758 + 10.5523i 0.480146 + 0.402890i
\(687\) −1.05004 + 5.95507i −0.0400615 + 0.227200i
\(688\) 1.61721 9.17166i 0.0616556 0.349666i
\(689\) 1.07532 + 1.86251i 0.0409665 + 0.0709561i
\(690\) 0.00181100 0.00151961i 6.89436e−5 5.78505e-5i
\(691\) −38.6467 + 14.0662i −1.47019 + 0.535105i −0.948152 0.317818i \(-0.897050\pi\)
−0.522037 + 0.852923i \(0.674828\pi\)
\(692\) 6.89053 11.9347i 0.261939 0.453691i
\(693\) 8.79086 + 15.2262i 0.333937 + 0.578396i
\(694\) −15.2023 12.7563i −0.577073 0.484221i
\(695\) −0.808400 + 1.40019i −0.0306644 + 0.0531123i
\(696\) 0.348641 + 1.97724i 0.0132152 + 0.0749470i
\(697\) 21.4439 0.812244
\(698\) −2.98633 16.9363i −0.113034 0.641049i
\(699\) −1.11540 + 0.935932i −0.0421883 + 0.0354002i
\(700\) 6.31180 + 2.29731i 0.238564 + 0.0868301i
\(701\) −29.1523 + 10.6106i −1.10107 + 0.400756i −0.827709 0.561157i \(-0.810356\pi\)
−0.273357 + 0.961913i \(0.588134\pi\)
\(702\) −1.57903 −0.0595967
\(703\) 12.4051 0.614134i 0.467868 0.0231625i
\(704\) 4.53209 0.170810
\(705\) 0.335275 0.122030i 0.0126272 0.00459592i
\(706\) 15.8576 + 5.77168i 0.596807 + 0.217220i
\(707\) −16.6309 + 13.9550i −0.625469 + 0.524831i
\(708\) −0.783585 4.44393i −0.0294489 0.167013i
\(709\) −19.3773 −0.727731 −0.363865 0.931452i \(-0.618543\pi\)
−0.363865 + 0.931452i \(0.618543\pi\)
\(710\) 0.281364 + 1.59569i 0.0105594 + 0.0598853i
\(711\) 5.97178 10.3434i 0.223959 0.387909i
\(712\) −5.83615 4.89711i −0.218719 0.183527i
\(713\) 0.0944557 + 0.163602i 0.00353739 + 0.00612694i
\(714\) −0.701867 + 1.21567i −0.0262667 + 0.0454953i
\(715\) −0.397231 + 0.144580i −0.0148556 + 0.00540699i
\(716\) −11.2797 + 9.46480i −0.421543 + 0.353716i
\(717\) −1.48932 2.57958i −0.0556198 0.0963363i
\(718\) 2.79813 15.8690i 0.104425 0.592226i
\(719\) −5.30675 + 30.0961i −0.197908 + 1.12239i 0.710307 + 0.703892i \(0.248556\pi\)
−0.908216 + 0.418503i \(0.862555\pi\)
\(720\) 0.266044 + 0.223238i 0.00991489 + 0.00831958i
\(721\) 24.8542 + 9.04617i 0.925617 + 0.336897i
\(722\) −13.9363 5.07239i −0.518655 0.188775i
\(723\) −5.56418 4.66890i −0.206934 0.173638i
\(724\) −1.89259 + 10.7334i −0.0703375 + 0.398904i
\(725\) 5.00475 28.3833i 0.185872 1.05413i
\(726\) 1.65657 + 2.86927i 0.0614812 + 0.106489i
\(727\) 39.9843 33.5508i 1.48294 1.24433i 0.579958 0.814647i \(-0.303069\pi\)
0.902979 0.429685i \(-0.141375\pi\)
\(728\) −0.979055 + 0.356347i −0.0362862 + 0.0132071i
\(729\) 10.3516 17.9296i 0.383394 0.664058i
\(730\) 0.525692 + 0.910526i 0.0194567 + 0.0337001i
\(731\) −21.4029 17.9591i −0.791613 0.664242i
\(732\) 2.00000 3.46410i 0.0739221 0.128037i
\(733\) 0.211829 + 1.20134i 0.00782408 + 0.0443726i 0.988470 0.151418i \(-0.0483839\pi\)
−0.980646 + 0.195790i \(0.937273\pi\)
\(734\) 35.0823 1.29491
\(735\) 0.0377140 + 0.213887i 0.00139110 + 0.00788933i
\(736\) −0.0432332 + 0.0362770i −0.00159360 + 0.00133719i
\(737\) −21.8075 7.93729i −0.803290 0.292374i
\(738\) 19.3405 7.03936i 0.711933 0.259123i
\(739\) −2.61318 −0.0961273 −0.0480637 0.998844i \(-0.515305\pi\)
−0.0480637 + 0.998844i \(0.515305\pi\)
\(740\) −0.700989 0.216534i −0.0257689 0.00795995i
\(741\) 0.548392 0.0201457
\(742\) 3.52094 1.28152i 0.129258 0.0470460i
\(743\) 21.1989 + 7.71578i 0.777713 + 0.283064i 0.700219 0.713928i \(-0.253086\pi\)
0.0774945 + 0.996993i \(0.475308\pi\)
\(744\) 0.890530 0.747243i 0.0326484 0.0273953i
\(745\) −0.0920916 0.522277i −0.00337397 0.0191348i
\(746\) 29.6955 1.08723
\(747\) 2.96064 + 16.7906i 0.108324 + 0.614336i
\(748\) 6.79813 11.7747i 0.248564 0.430526i
\(749\) −0.658633 0.552659i −0.0240659 0.0201937i
\(750\) 0.209141 + 0.362242i 0.00763674 + 0.0132272i
\(751\) −21.3346 + 36.9525i −0.778509 + 1.34842i 0.154292 + 0.988025i \(0.450690\pi\)
−0.932801 + 0.360392i \(0.882643\pi\)
\(752\) −8.00387 + 2.91317i −0.291871 + 0.106232i
\(753\) 1.80793 1.51704i 0.0658848 0.0552839i
\(754\) 2.23530 + 3.87165i 0.0814048 + 0.140997i
\(755\) −0.308811 + 1.75135i −0.0112388 + 0.0637383i
\(756\) −0.477711 + 2.70924i −0.0173742 + 0.0985339i
\(757\) −17.8610 14.9871i −0.649168 0.544717i 0.257650 0.966238i \(-0.417052\pi\)
−0.906818 + 0.421522i \(0.861496\pi\)
\(758\) 0.393933 + 0.143380i 0.0143083 + 0.00520779i
\(759\) −0.0834734 0.0303818i −0.00302989 0.00110279i
\(760\) −0.188663 0.158307i −0.00684352 0.00574240i
\(761\) −0.714822 + 4.05396i −0.0259123 + 0.146956i −0.995019 0.0996862i \(-0.968216\pi\)
0.969107 + 0.246642i \(0.0793272\pi\)
\(762\) −0.730552 + 4.14317i −0.0264651 + 0.150091i
\(763\) −4.88847 8.46708i −0.176975 0.306529i
\(764\) 6.93835 5.82197i 0.251021 0.210631i
\(765\) 0.979055 0.356347i 0.0353978 0.0128838i
\(766\) −3.21419 + 5.56715i −0.116134 + 0.201149i
\(767\) −5.02394 8.70172i −0.181404 0.314201i
\(768\) 0.266044 + 0.223238i 0.00960005 + 0.00805540i
\(769\) −3.09017 + 5.35234i −0.111435 + 0.193010i −0.916349 0.400381i \(-0.868878\pi\)
0.804914 + 0.593391i \(0.202211\pi\)
\(770\) 0.127889 + 0.725293i 0.00460879 + 0.0261377i
\(771\) −3.43201