# Properties

 Label 74.2.c.c.47.3 Level $74$ Weight $2$ Character 74.47 Analytic conductor $0.591$ Analytic rank $0$ Dimension $6$ CM no Inner twists $2$

# Learn more

## Newspace parameters

 Level: $$N$$ $$=$$ $$74 = 2 \cdot 37$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 74.c (of order $$3$$, degree $$2$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$0.590892974957$$ Analytic rank: $$0$$ Dimension: $$6$$ Relative dimension: $$3$$ over $$\Q(\zeta_{3})$$ Coefficient field: 6.0.4406832.1 Defining polynomial: $$x^{6} - x^{5} + 6x^{4} + 7x^{3} + 24x^{2} + 5x + 1$$ x^6 - x^5 + 6*x^4 + 7*x^3 + 24*x^2 + 5*x + 1 Coefficient ring: $$\Z[a_1, a_2, a_3]$$ Coefficient ring index: $$2^{2}$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

## Embedding invariants

 Embedding label 47.3 Root $$-0.827721 - 1.43366i$$ of defining polynomial Character $$\chi$$ $$=$$ 74.47 Dual form 74.2.c.c.63.3

## $q$-expansion

 $$f(q)$$ $$=$$ $$q+(-0.500000 + 0.866025i) q^{2} +(1.52569 + 2.64257i) q^{3} +(-0.500000 - 0.866025i) q^{4} +(-0.629755 - 1.09077i) q^{5} -3.05137 q^{6} +(-1.52569 - 2.64257i) q^{7} +1.00000 q^{8} +(-3.15544 + 5.46539i) q^{9} +O(q^{10})$$ $$q+(-0.500000 + 0.866025i) q^{2} +(1.52569 + 2.64257i) q^{3} +(-0.500000 - 0.866025i) q^{4} +(-0.629755 - 1.09077i) q^{5} -3.05137 q^{6} +(-1.52569 - 2.64257i) q^{7} +1.00000 q^{8} +(-3.15544 + 5.46539i) q^{9} +1.25951 q^{10} +5.31088 q^{11} +(1.52569 - 2.64257i) q^{12} +(-1.00000 - 1.73205i) q^{13} +3.05137 q^{14} +(1.92162 - 3.32834i) q^{15} +(-0.500000 + 0.866025i) q^{16} +(-2.55137 + 4.41911i) q^{17} +(-3.15544 - 5.46539i) q^{18} +(-2.39593 - 4.14988i) q^{19} +(-0.629755 + 1.09077i) q^{20} +(4.65544 - 8.06346i) q^{21} +(-2.65544 + 4.59936i) q^{22} +1.74049 q^{23} +(1.52569 + 2.64257i) q^{24} +(1.70682 - 2.95629i) q^{25} +2.00000 q^{26} -10.1027 q^{27} +(-1.52569 + 2.64257i) q^{28} -4.05137 q^{29} +(1.92162 + 3.32834i) q^{30} -0.791864 q^{31} +(-0.500000 - 0.866025i) q^{32} +(8.10275 + 14.0344i) q^{33} +(-2.55137 - 4.41911i) q^{34} +(-1.92162 + 3.32834i) q^{35} +6.31088 q^{36} +(-1.37024 + 5.92642i) q^{37} +4.79186 q^{38} +(3.05137 - 5.28514i) q^{39} +(-0.629755 - 1.09077i) q^{40} +(0.104068 + 0.180251i) q^{41} +(4.65544 + 8.06346i) q^{42} -4.36226 q^{43} +(-2.65544 - 4.59936i) q^{44} +7.94863 q^{45} +(-0.870245 + 1.50731i) q^{46} -3.20814 q^{47} -3.05137 q^{48} +(-1.15544 + 2.00128i) q^{49} +(1.70682 + 2.95629i) q^{50} -15.5704 q^{51} +(-1.00000 + 1.73205i) q^{52} +(-5.65544 + 9.79551i) q^{53} +(5.05137 - 8.74924i) q^{54} +(-3.34456 - 5.79294i) q^{55} +(-1.52569 - 2.64257i) q^{56} +(7.31088 - 12.6628i) q^{57} +(2.02569 - 3.50859i) q^{58} +(6.36226 - 11.0198i) q^{59} -3.84324 q^{60} +(-3.02569 - 5.24064i) q^{61} +(0.395932 - 0.685774i) q^{62} +19.2569 q^{63} +1.00000 q^{64} +(-1.25951 + 2.18154i) q^{65} -16.2055 q^{66} +(4.65544 + 8.06346i) q^{67} +5.10275 q^{68} +(2.65544 + 4.59936i) q^{69} +(-1.92162 - 3.32834i) q^{70} +(3.52569 + 6.10667i) q^{71} +(-3.15544 + 5.46539i) q^{72} -3.31088 q^{73} +(-4.44731 - 4.14988i) q^{74} +10.4163 q^{75} +(-2.39593 + 4.14988i) q^{76} +(-8.10275 - 14.0344i) q^{77} +(3.05137 + 5.28514i) q^{78} +(5.70682 + 9.88450i) q^{79} +1.25951 q^{80} +(-5.94731 - 10.3010i) q^{81} -0.208136 q^{82} +(1.78520 - 3.09205i) q^{83} -9.31088 q^{84} +6.42697 q^{85} +(2.18113 - 3.77783i) q^{86} +(-6.18113 - 10.7060i) q^{87} +5.31088 q^{88} +(-1.63642 + 2.83436i) q^{89} +(-3.97431 + 6.88371i) q^{90} +(-3.05137 + 5.28514i) q^{91} +(-0.870245 - 1.50731i) q^{92} +(-1.20814 - 2.09255i) q^{93} +(1.60407 - 2.77833i) q^{94} +(-3.01770 + 5.22681i) q^{95} +(1.52569 - 2.64257i) q^{96} +2.20814 q^{97} +(-1.15544 - 2.00128i) q^{98} +(-16.7582 + 29.0260i) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$6 q - 3 q^{2} - 3 q^{4} - q^{5} + 6 q^{8} - 7 q^{9}+O(q^{10})$$ 6 * q - 3 * q^2 - 3 * q^4 - q^5 + 6 * q^8 - 7 * q^9 $$6 q - 3 q^{2} - 3 q^{4} - q^{5} + 6 q^{8} - 7 q^{9} + 2 q^{10} + 8 q^{11} - 6 q^{13} - 4 q^{15} - 3 q^{16} + 3 q^{17} - 7 q^{18} - 8 q^{19} - q^{20} + 16 q^{21} - 4 q^{22} + 16 q^{23} - 20 q^{25} + 12 q^{26} - 24 q^{27} - 6 q^{29} - 4 q^{30} + 8 q^{31} - 3 q^{32} + 12 q^{33} + 3 q^{34} + 4 q^{35} + 14 q^{36} - 11 q^{37} + 16 q^{38} - q^{40} + 7 q^{41} + 16 q^{42} + 16 q^{43} - 4 q^{44} + 66 q^{45} - 8 q^{46} - 32 q^{47} + 5 q^{49} - 20 q^{50} - 64 q^{51} - 6 q^{52} - 22 q^{53} + 12 q^{54} - 32 q^{55} + 20 q^{57} + 3 q^{58} - 4 q^{59} + 8 q^{60} - 9 q^{61} - 4 q^{62} + 24 q^{63} + 6 q^{64} - 2 q^{65} - 24 q^{66} + 16 q^{67} - 6 q^{68} + 4 q^{69} + 4 q^{70} + 12 q^{71} - 7 q^{72} + 4 q^{73} - 2 q^{74} + 88 q^{75} - 8 q^{76} - 12 q^{77} + 4 q^{79} + 2 q^{80} - 11 q^{81} - 14 q^{82} - 4 q^{83} - 32 q^{84} - 18 q^{85} - 8 q^{86} - 16 q^{87} + 8 q^{88} - 9 q^{89} - 33 q^{90} - 8 q^{92} - 20 q^{93} + 16 q^{94} + 36 q^{95} + 26 q^{97} + 5 q^{98} - 52 q^{99}+O(q^{100})$$ 6 * q - 3 * q^2 - 3 * q^4 - q^5 + 6 * q^8 - 7 * q^9 + 2 * q^10 + 8 * q^11 - 6 * q^13 - 4 * q^15 - 3 * q^16 + 3 * q^17 - 7 * q^18 - 8 * q^19 - q^20 + 16 * q^21 - 4 * q^22 + 16 * q^23 - 20 * q^25 + 12 * q^26 - 24 * q^27 - 6 * q^29 - 4 * q^30 + 8 * q^31 - 3 * q^32 + 12 * q^33 + 3 * q^34 + 4 * q^35 + 14 * q^36 - 11 * q^37 + 16 * q^38 - q^40 + 7 * q^41 + 16 * q^42 + 16 * q^43 - 4 * q^44 + 66 * q^45 - 8 * q^46 - 32 * q^47 + 5 * q^49 - 20 * q^50 - 64 * q^51 - 6 * q^52 - 22 * q^53 + 12 * q^54 - 32 * q^55 + 20 * q^57 + 3 * q^58 - 4 * q^59 + 8 * q^60 - 9 * q^61 - 4 * q^62 + 24 * q^63 + 6 * q^64 - 2 * q^65 - 24 * q^66 + 16 * q^67 - 6 * q^68 + 4 * q^69 + 4 * q^70 + 12 * q^71 - 7 * q^72 + 4 * q^73 - 2 * q^74 + 88 * q^75 - 8 * q^76 - 12 * q^77 + 4 * q^79 + 2 * q^80 - 11 * q^81 - 14 * q^82 - 4 * q^83 - 32 * q^84 - 18 * q^85 - 8 * q^86 - 16 * q^87 + 8 * q^88 - 9 * q^89 - 33 * q^90 - 8 * q^92 - 20 * q^93 + 16 * q^94 + 36 * q^95 + 26 * q^97 + 5 * q^98 - 52 * q^99

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/74\mathbb{Z}\right)^\times$$.

 $$n$$ $$39$$ $$\chi(n)$$ $$e\left(\frac{2}{3}\right)$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ −0.500000 + 0.866025i −0.353553 + 0.612372i
$$3$$ 1.52569 + 2.64257i 0.880856 + 1.52569i 0.850391 + 0.526151i $$0.176365\pi$$
0.0304649 + 0.999536i $$0.490301\pi$$
$$4$$ −0.500000 0.866025i −0.250000 0.433013i
$$5$$ −0.629755 1.09077i −0.281635 0.487806i 0.690153 0.723664i $$-0.257543\pi$$
−0.971788 + 0.235858i $$0.924210\pi$$
$$6$$ −3.05137 −1.24572
$$7$$ −1.52569 2.64257i −0.576656 0.998797i −0.995860 0.0909046i $$-0.971024\pi$$
0.419204 0.907892i $$-0.362309\pi$$
$$8$$ 1.00000 0.353553
$$9$$ −3.15544 + 5.46539i −1.05181 + 1.82180i
$$10$$ 1.25951 0.398292
$$11$$ 5.31088 1.60129 0.800646 0.599138i $$-0.204490\pi$$
0.800646 + 0.599138i $$0.204490\pi$$
$$12$$ 1.52569 2.64257i 0.440428 0.762844i
$$13$$ −1.00000 1.73205i −0.277350 0.480384i 0.693375 0.720577i $$-0.256123\pi$$
−0.970725 + 0.240192i $$0.922790\pi$$
$$14$$ 3.05137 0.815514
$$15$$ 1.92162 3.32834i 0.496160 0.859374i
$$16$$ −0.500000 + 0.866025i −0.125000 + 0.216506i
$$17$$ −2.55137 + 4.41911i −0.618799 + 1.07179i 0.370906 + 0.928670i $$0.379047\pi$$
−0.989705 + 0.143121i $$0.954286\pi$$
$$18$$ −3.15544 5.46539i −0.743745 1.28820i
$$19$$ −2.39593 4.14988i −0.549664 0.952047i −0.998297 0.0583306i $$-0.981422\pi$$
0.448633 0.893716i $$-0.351911\pi$$
$$20$$ −0.629755 + 1.09077i −0.140818 + 0.243903i
$$21$$ 4.65544 8.06346i 1.01590 1.75959i
$$22$$ −2.65544 + 4.59936i −0.566142 + 0.980587i
$$23$$ 1.74049 0.362917 0.181459 0.983399i $$-0.441918\pi$$
0.181459 + 0.983399i $$0.441918\pi$$
$$24$$ 1.52569 + 2.64257i 0.311430 + 0.539412i
$$25$$ 1.70682 2.95629i 0.341363 0.591259i
$$26$$ 2.00000 0.392232
$$27$$ −10.1027 −1.94427
$$28$$ −1.52569 + 2.64257i −0.288328 + 0.499398i
$$29$$ −4.05137 −0.752321 −0.376161 0.926554i $$-0.622756\pi$$
−0.376161 + 0.926554i $$0.622756\pi$$
$$30$$ 1.92162 + 3.32834i 0.350838 + 0.607669i
$$31$$ −0.791864 −0.142223 −0.0711115 0.997468i $$-0.522655\pi$$
−0.0711115 + 0.997468i $$0.522655\pi$$
$$32$$ −0.500000 0.866025i −0.0883883 0.153093i
$$33$$ 8.10275 + 14.0344i 1.41051 + 2.44307i
$$34$$ −2.55137 4.41911i −0.437557 0.757871i
$$35$$ −1.92162 + 3.32834i −0.324813 + 0.562592i
$$36$$ 6.31088 1.05181
$$37$$ −1.37024 + 5.92642i −0.225267 + 0.974297i
$$38$$ 4.79186 0.777343
$$39$$ 3.05137 5.28514i 0.488611 0.846299i
$$40$$ −0.629755 1.09077i −0.0995730 0.172466i
$$41$$ 0.104068 + 0.180251i 0.0162527 + 0.0281505i 0.874037 0.485859i $$-0.161493\pi$$
−0.857785 + 0.514009i $$0.828160\pi$$
$$42$$ 4.65544 + 8.06346i 0.718350 + 1.24422i
$$43$$ −4.36226 −0.665238 −0.332619 0.943061i $$-0.607932\pi$$
−0.332619 + 0.943061i $$0.607932\pi$$
$$44$$ −2.65544 4.59936i −0.400323 0.693380i
$$45$$ 7.94863 1.18491
$$46$$ −0.870245 + 1.50731i −0.128311 + 0.222240i
$$47$$ −3.20814 −0.467955 −0.233977 0.972242i $$-0.575174\pi$$
−0.233977 + 0.972242i $$0.575174\pi$$
$$48$$ −3.05137 −0.440428
$$49$$ −1.15544 + 2.00128i −0.165063 + 0.285898i
$$50$$ 1.70682 + 2.95629i 0.241380 + 0.418083i
$$51$$ −15.5704 −2.18029
$$52$$ −1.00000 + 1.73205i −0.138675 + 0.240192i
$$53$$ −5.65544 + 9.79551i −0.776835 + 1.34552i 0.156923 + 0.987611i $$0.449843\pi$$
−0.933757 + 0.357906i $$0.883491\pi$$
$$54$$ 5.05137 8.74924i 0.687405 1.19062i
$$55$$ −3.34456 5.79294i −0.450980 0.781120i
$$56$$ −1.52569 2.64257i −0.203879 0.353128i
$$57$$ 7.31088 12.6628i 0.968350 1.67723i
$$58$$ 2.02569 3.50859i 0.265986 0.460701i
$$59$$ 6.36226 11.0198i 0.828296 1.43465i −0.0710788 0.997471i $$-0.522644\pi$$
0.899374 0.437179i $$-0.144022\pi$$
$$60$$ −3.84324 −0.496160
$$61$$ −3.02569 5.24064i −0.387400 0.670996i 0.604699 0.796454i $$-0.293293\pi$$
−0.992099 + 0.125458i $$0.959960\pi$$
$$62$$ 0.395932 0.685774i 0.0502834 0.0870934i
$$63$$ 19.2569 2.42614
$$64$$ 1.00000 0.125000
$$65$$ −1.25951 + 2.18154i −0.156223 + 0.270586i
$$66$$ −16.2055 −1.99476
$$67$$ 4.65544 + 8.06346i 0.568753 + 0.985109i 0.996690 + 0.0813001i $$0.0259072\pi$$
−0.427937 + 0.903809i $$0.640759\pi$$
$$68$$ 5.10275 0.618799
$$69$$ 2.65544 + 4.59936i 0.319678 + 0.553698i
$$70$$ −1.92162 3.32834i −0.229677 0.397813i
$$71$$ 3.52569 + 6.10667i 0.418422 + 0.724728i 0.995781 0.0917622i $$-0.0292500\pi$$
−0.577359 + 0.816491i $$0.695917\pi$$
$$72$$ −3.15544 + 5.46539i −0.371872 + 0.644102i
$$73$$ −3.31088 −0.387510 −0.193755 0.981050i $$-0.562067\pi$$
−0.193755 + 0.981050i $$0.562067\pi$$
$$74$$ −4.44731 4.14988i −0.516989 0.482413i
$$75$$ 10.4163 1.20277
$$76$$ −2.39593 + 4.14988i −0.274832 + 0.476023i
$$77$$ −8.10275 14.0344i −0.923394 1.59937i
$$78$$ 3.05137 + 5.28514i 0.345500 + 0.598424i
$$79$$ 5.70682 + 9.88450i 0.642067 + 1.11209i 0.984971 + 0.172722i $$0.0552563\pi$$
−0.342904 + 0.939371i $$0.611410\pi$$
$$80$$ 1.25951 0.140818
$$81$$ −5.94731 10.3010i −0.660812 1.14456i
$$82$$ −0.208136 −0.0229848
$$83$$ 1.78520 3.09205i 0.195951 0.339397i −0.751261 0.660005i $$-0.770554\pi$$
0.947212 + 0.320608i $$0.103887\pi$$
$$84$$ −9.31088 −1.01590
$$85$$ 6.42697 0.697102
$$86$$ 2.18113 3.77783i 0.235197 0.407374i
$$87$$ −6.18113 10.7060i −0.662687 1.14781i
$$88$$ 5.31088 0.566142
$$89$$ −1.63642 + 2.83436i −0.173460 + 0.300442i −0.939627 0.342199i $$-0.888828\pi$$
0.766167 + 0.642641i $$0.222162\pi$$
$$90$$ −3.97431 + 6.88371i −0.418929 + 0.725607i
$$91$$ −3.05137 + 5.28514i −0.319871 + 0.554033i
$$92$$ −0.870245 1.50731i −0.0907293 0.157148i
$$93$$ −1.20814 2.09255i −0.125278 0.216988i
$$94$$ 1.60407 2.77833i 0.165447 0.286563i
$$95$$ −3.01770 + 5.22681i −0.309610 + 0.536260i
$$96$$ 1.52569 2.64257i 0.155715 0.269706i
$$97$$ 2.20814 0.224202 0.112101 0.993697i $$-0.464242\pi$$
0.112101 + 0.993697i $$0.464242\pi$$
$$98$$ −1.15544 2.00128i −0.116717 0.202160i
$$99$$ −16.7582 + 29.0260i −1.68426 + 2.91723i
$$100$$ −3.41363 −0.341363
$$101$$ 3.36226 0.334557 0.167279 0.985910i $$-0.446502\pi$$
0.167279 + 0.985910i $$0.446502\pi$$
$$102$$ 7.78520 13.4844i 0.770849 1.33515i
$$103$$ 17.1541 1.69025 0.845123 0.534572i $$-0.179527\pi$$
0.845123 + 0.534572i $$0.179527\pi$$
$$104$$ −1.00000 1.73205i −0.0980581 0.169842i
$$105$$ −11.7272 −1.14445
$$106$$ −5.65544 9.79551i −0.549305 0.951424i
$$107$$ −0.181130 0.313726i −0.0175104 0.0303290i 0.857137 0.515088i $$-0.172241\pi$$
−0.874648 + 0.484759i $$0.838907\pi$$
$$108$$ 5.05137 + 8.74924i 0.486069 + 0.841896i
$$109$$ −0.233823 + 0.404994i −0.0223962 + 0.0387914i −0.877006 0.480479i $$-0.840463\pi$$
0.854610 + 0.519270i $$0.173796\pi$$
$$110$$ 6.68912 0.637782
$$111$$ −17.7515 + 5.42090i −1.68490 + 0.514529i
$$112$$ 3.05137 0.288328
$$113$$ 0.344558 0.596791i 0.0324133 0.0561414i −0.849364 0.527808i $$-0.823014\pi$$
0.881777 + 0.471667i $$0.156347\pi$$
$$114$$ 7.31088 + 12.6628i 0.684727 + 1.18598i
$$115$$ −1.09608 1.89847i −0.102210 0.177033i
$$116$$ 2.02569 + 3.50859i 0.188080 + 0.325765i
$$117$$ 12.6218 1.16688
$$118$$ 6.36226 + 11.0198i 0.585693 + 1.01445i
$$119$$ 15.5704 1.42734
$$120$$ 1.92162 3.32834i 0.175419 0.303835i
$$121$$ 17.2055 1.56414
$$122$$ 6.05137 0.547866
$$123$$ −0.317551 + 0.550014i −0.0286326 + 0.0495931i
$$124$$ 0.395932 + 0.685774i 0.0355557 + 0.0615843i
$$125$$ −10.5971 −0.947830
$$126$$ −9.62844 + 16.6769i −0.857769 + 1.48570i
$$127$$ 7.49201 12.9765i 0.664809 1.15148i −0.314528 0.949248i $$-0.601846\pi$$
0.979337 0.202234i $$-0.0648203\pi$$
$$128$$ −0.500000 + 0.866025i −0.0441942 + 0.0765466i
$$129$$ −6.65544 11.5276i −0.585979 1.01495i
$$130$$ −1.25951 2.18154i −0.110466 0.191333i
$$131$$ −6.04471 + 10.4697i −0.528129 + 0.914746i 0.471334 + 0.881955i $$0.343773\pi$$
−0.999462 + 0.0327906i $$0.989561\pi$$
$$132$$ 8.10275 14.0344i 0.705254 1.22154i
$$133$$ −7.31088 + 12.6628i −0.633934 + 1.09801i
$$134$$ −9.31088 −0.804338
$$135$$ 6.36226 + 11.0198i 0.547576 + 0.948430i
$$136$$ −2.55137 + 4.41911i −0.218779 + 0.378936i
$$137$$ −16.6865 −1.42562 −0.712811 0.701356i $$-0.752578\pi$$
−0.712811 + 0.701356i $$0.752578\pi$$
$$138$$ −5.31088 −0.452093
$$139$$ 9.09608 15.7549i 0.771520 1.33631i −0.165210 0.986258i $$-0.552830\pi$$
0.936730 0.350053i $$-0.113836\pi$$
$$140$$ 3.84324 0.324813
$$141$$ −4.89461 8.47772i −0.412201 0.713953i
$$142$$ −7.05137 −0.591738
$$143$$ −5.31088 9.19872i −0.444118 0.769236i
$$144$$ −3.15544 5.46539i −0.262954 0.455449i
$$145$$ 2.55137 + 4.41911i 0.211880 + 0.366987i
$$146$$ 1.65544 2.86731i 0.137005 0.237300i
$$147$$ −7.05137 −0.581588
$$148$$ 5.81755 1.77654i 0.478200 0.146031i
$$149$$ 13.5324 1.10861 0.554307 0.832312i $$-0.312983\pi$$
0.554307 + 0.832312i $$0.312983\pi$$
$$150$$ −5.20814 + 9.02076i −0.425243 + 0.736542i
$$151$$ −0.610734 1.05782i −0.0497008 0.0860844i 0.840105 0.542424i $$-0.182493\pi$$
−0.889806 + 0.456340i $$0.849160\pi$$
$$152$$ −2.39593 4.14988i −0.194336 0.336599i
$$153$$ −16.1014 27.8885i −1.30172 2.25465i
$$154$$ 16.2055 1.30588
$$155$$ 0.498680 + 0.863740i 0.0400550 + 0.0693772i
$$156$$ −6.10275 −0.488611
$$157$$ −9.38795 + 16.2604i −0.749240 + 1.29772i 0.198948 + 0.980010i $$0.436248\pi$$
−0.948188 + 0.317711i $$0.897086\pi$$
$$158$$ −11.4136 −0.908020
$$159$$ −34.5137 −2.73712
$$160$$ −0.629755 + 1.09077i −0.0497865 + 0.0862328i
$$161$$ −2.65544 4.59936i −0.209278 0.362480i
$$162$$ 11.8946 0.934529
$$163$$ 3.92162 6.79244i 0.307165 0.532025i −0.670576 0.741841i $$-0.733953\pi$$
0.977741 + 0.209816i $$0.0672863\pi$$
$$164$$ 0.104068 0.180251i 0.00812636 0.0140753i
$$165$$ 10.2055 17.6764i 0.794497 1.37611i
$$166$$ 1.78520 + 3.09205i 0.138558 + 0.239990i
$$167$$ 6.00000 + 10.3923i 0.464294 + 0.804181i 0.999169 0.0407502i $$-0.0129748\pi$$
−0.534875 + 0.844931i $$0.679641\pi$$
$$168$$ 4.65544 8.06346i 0.359175 0.622110i
$$169$$ 4.50000 7.79423i 0.346154 0.599556i
$$170$$ −3.21348 + 5.56592i −0.246463 + 0.426886i
$$171$$ 30.2409 2.31258
$$172$$ 2.18113 + 3.77783i 0.166310 + 0.288057i
$$173$$ −2.23382 + 3.86910i −0.169834 + 0.294162i −0.938362 0.345655i $$-0.887657\pi$$
0.768527 + 0.639817i $$0.220990\pi$$
$$174$$ 12.3623 0.937180
$$175$$ −10.4163 −0.787396
$$176$$ −2.65544 + 4.59936i −0.200162 + 0.346690i
$$177$$ 38.8273 2.91844
$$178$$ −1.63642 2.83436i −0.122655 0.212445i
$$179$$ −14.1027 −1.05409 −0.527044 0.849838i $$-0.676700\pi$$
−0.527044 + 0.849838i $$0.676700\pi$$
$$180$$ −3.97431 6.88371i −0.296228 0.513082i
$$181$$ −6.73250 11.6610i −0.500423 0.866758i −1.00000 0.000488579i $$-0.999844\pi$$
0.499577 0.866270i $$-0.333489\pi$$
$$182$$ −3.05137 5.28514i −0.226183 0.391760i
$$183$$ 9.23250 15.9912i 0.682486 1.18210i
$$184$$ 1.74049 0.128311
$$185$$ 7.32727 2.23757i 0.538711 0.164510i
$$186$$ 2.41627 0.177170
$$187$$ −13.5501 + 23.4694i −0.990878 + 1.71625i
$$188$$ 1.60407 + 2.77833i 0.116989 + 0.202630i
$$189$$ 15.4136 + 26.6972i 1.12118 + 1.94194i
$$190$$ −3.01770 5.22681i −0.218927 0.379193i
$$191$$ 9.42697 0.682111 0.341056 0.940043i $$-0.389216\pi$$
0.341056 + 0.940043i $$0.389216\pi$$
$$192$$ 1.52569 + 2.64257i 0.110107 + 0.190711i
$$193$$ 2.48098 0.178585 0.0892924 0.996005i $$-0.471539\pi$$
0.0892924 + 0.996005i $$0.471539\pi$$
$$194$$ −1.10407 + 1.91230i −0.0792675 + 0.137295i
$$195$$ −7.68648 −0.550440
$$196$$ 2.31088 0.165063
$$197$$ 0.974313 1.68756i 0.0694169 0.120234i −0.829228 0.558911i $$-0.811219\pi$$
0.898645 + 0.438677i $$0.144553\pi$$
$$198$$ −16.7582 29.0260i −1.19095 2.06279i
$$199$$ −1.98667 −0.140831 −0.0704156 0.997518i $$-0.522433\pi$$
−0.0704156 + 0.997518i $$0.522433\pi$$
$$200$$ 1.70682 2.95629i 0.120690 0.209041i
$$201$$ −14.2055 + 24.6046i −1.00198 + 1.73548i
$$202$$ −1.68113 + 2.91180i −0.118284 + 0.204874i
$$203$$ 6.18113 + 10.7060i 0.433830 + 0.751416i
$$204$$ 7.78520 + 13.4844i 0.545073 + 0.944094i
$$205$$ 0.131075 0.227028i 0.00915467 0.0158564i
$$206$$ −8.57706 + 14.8559i −0.597592 + 1.03506i
$$207$$ −5.49201 + 9.51245i −0.381721 + 0.661161i
$$208$$ 2.00000 0.138675
$$209$$ −12.7245 22.0395i −0.880173 1.52450i
$$210$$ 5.86358 10.1560i 0.404625 0.700832i
$$211$$ −17.0868 −1.17630 −0.588151 0.808751i $$-0.700144\pi$$
−0.588151 + 0.808751i $$0.700144\pi$$
$$212$$ 11.3109 0.776835
$$213$$ −10.7582 + 18.6337i −0.737139 + 1.27676i
$$214$$ 0.362259 0.0247635
$$215$$ 2.74716 + 4.75821i 0.187354 + 0.324507i
$$216$$ −10.1027 −0.687405
$$217$$ 1.20814 + 2.09255i 0.0820136 + 0.142052i
$$218$$ −0.233823 0.404994i −0.0158365 0.0274297i
$$219$$ −5.05137 8.74924i −0.341340 0.591219i
$$220$$ −3.34456 + 5.79294i −0.225490 + 0.390560i
$$221$$ 10.2055 0.686496
$$222$$ 4.18113 18.0837i 0.280619 1.21370i
$$223$$ 1.94599 0.130313 0.0651564 0.997875i $$-0.479245\pi$$
0.0651564 + 0.997875i $$0.479245\pi$$
$$224$$ −1.52569 + 2.64257i −0.101939 + 0.176564i
$$225$$ 10.7715 + 18.6568i 0.718102 + 1.24379i
$$226$$ 0.344558 + 0.596791i 0.0229196 + 0.0396980i
$$227$$ −2.29318 3.97191i −0.152204 0.263625i 0.779833 0.625987i $$-0.215304\pi$$
−0.932037 + 0.362362i $$0.881970\pi$$
$$228$$ −14.6218 −0.968350
$$229$$ 0.817551 + 1.41604i 0.0540253 + 0.0935745i 0.891773 0.452483i $$-0.149462\pi$$
−0.837748 + 0.546057i $$0.816128\pi$$
$$230$$ 2.19216 0.144547
$$231$$ 24.7245 42.8241i 1.62675 2.81762i
$$232$$ −4.05137 −0.265986
$$233$$ 8.03804 0.526590 0.263295 0.964715i $$-0.415191\pi$$
0.263295 + 0.964715i $$0.415191\pi$$
$$234$$ −6.31088 + 10.9308i −0.412555 + 0.714567i
$$235$$ 2.02034 + 3.49933i 0.131792 + 0.228271i
$$236$$ −12.7245 −0.828296
$$237$$ −17.4136 + 30.1613i −1.13114 + 1.95919i
$$238$$ −7.78520 + 13.4844i −0.504639 + 0.874061i
$$239$$ −0.317551 + 0.550014i −0.0205407 + 0.0355775i −0.876113 0.482106i $$-0.839872\pi$$
0.855572 + 0.517683i $$0.173205\pi$$
$$240$$ 1.92162 + 3.32834i 0.124040 + 0.214844i
$$241$$ 3.75819 + 6.50938i 0.242086 + 0.419306i 0.961308 0.275474i $$-0.0888349\pi$$
−0.719222 + 0.694780i $$0.755502\pi$$
$$242$$ −8.60275 + 14.9004i −0.553006 + 0.957834i
$$243$$ 2.99333 5.18461i 0.192022 0.332593i
$$244$$ −3.02569 + 5.24064i −0.193700 + 0.335498i
$$245$$ 2.91058 0.185950
$$246$$ −0.317551 0.550014i −0.0202463 0.0350676i
$$247$$ −4.79186 + 8.29975i −0.304899 + 0.528101i
$$248$$ −0.791864 −0.0502834
$$249$$ 10.8946 0.690418
$$250$$ 5.29853 9.17732i 0.335108 0.580425i
$$251$$ −8.88128 −0.560581 −0.280291 0.959915i $$-0.590431\pi$$
−0.280291 + 0.959915i $$0.590431\pi$$
$$252$$ −9.62844 16.6769i −0.606534 1.05055i
$$253$$ 9.24354 0.581136
$$254$$ 7.49201 + 12.9765i 0.470091 + 0.814221i
$$255$$ 9.80554 + 16.9837i 0.614047 + 1.06356i
$$256$$ −0.500000 0.866025i −0.0312500 0.0541266i
$$257$$ 6.05005 10.4790i 0.377392 0.653662i −0.613290 0.789858i $$-0.710154\pi$$
0.990682 + 0.136196i $$0.0434876\pi$$
$$258$$ 13.3109 0.828699
$$259$$ 17.7515 5.42090i 1.10303 0.336838i
$$260$$ 2.51902 0.156223
$$261$$ 12.7839 22.1423i 0.791302 1.37058i
$$262$$ −6.04471 10.4697i −0.373443 0.646823i
$$263$$ 9.57040 + 16.5764i 0.590136 + 1.02215i 0.994214 + 0.107421i $$0.0342592\pi$$
−0.404078 + 0.914725i $$0.632408\pi$$
$$264$$ 8.10275 + 14.0344i 0.498690 + 0.863756i
$$265$$ 14.2462 0.875136
$$266$$ −7.31088 12.6628i −0.448259 0.776408i
$$267$$ −9.98667 −0.611174
$$268$$ 4.65544 8.06346i 0.284376 0.492554i
$$269$$ −15.7892 −0.962686 −0.481343 0.876532i $$-0.659851\pi$$
−0.481343 + 0.876532i $$0.659851\pi$$
$$270$$ −12.7245 −0.774390
$$271$$ 9.55005 16.5412i 0.580125 1.00481i −0.415340 0.909666i $$-0.636337\pi$$
0.995464 0.0951386i $$-0.0303294\pi$$
$$272$$ −2.55137 4.41911i −0.154700 0.267948i
$$273$$ −18.6218 −1.12704
$$274$$ 8.34324 14.4509i 0.504033 0.873012i
$$275$$ 9.06471 15.7005i 0.546622 0.946778i
$$276$$ 2.65544 4.59936i 0.159839 0.276849i
$$277$$ −8.20015 14.2031i −0.492699 0.853380i 0.507265 0.861790i $$-0.330656\pi$$
−0.999965 + 0.00840971i $$0.997323\pi$$
$$278$$ 9.09608 + 15.7549i 0.545547 + 0.944915i
$$279$$ 2.49868 4.32784i 0.149592 0.259101i
$$280$$ −1.92162 + 3.32834i −0.114839 + 0.198906i
$$281$$ 2.39725 4.15216i 0.143008 0.247697i −0.785620 0.618709i $$-0.787656\pi$$
0.928628 + 0.371012i $$0.120989\pi$$
$$282$$ 9.78922 0.582940
$$283$$ −12.9730 22.4699i −0.771164 1.33570i −0.936925 0.349530i $$-0.886341\pi$$
0.165761 0.986166i $$-0.446992\pi$$
$$284$$ 3.52569 6.10667i 0.209211 0.362364i
$$285$$ −18.4163 −1.09089
$$286$$ 10.6218 0.628078
$$287$$ 0.317551 0.550014i 0.0187444 0.0324663i
$$288$$ 6.31088 0.371872
$$289$$ −4.51902 7.82717i −0.265825 0.460422i
$$290$$ −5.10275 −0.299644
$$291$$ 3.36893 + 5.83515i 0.197490 + 0.342063i
$$292$$ 1.65544 + 2.86731i 0.0968774 + 0.167797i
$$293$$ −11.0257 19.0971i −0.644128 1.11566i −0.984502 0.175372i $$-0.943887\pi$$
0.340375 0.940290i $$-0.389446\pi$$
$$294$$ 3.52569 6.10667i 0.205622 0.356148i
$$295$$ −16.0267 −0.933108
$$296$$ −1.37024 + 5.92642i −0.0796439 + 0.344466i
$$297$$ −53.6545 −3.11335
$$298$$ −6.76618 + 11.7194i −0.391954 + 0.678884i
$$299$$ −1.74049 3.01462i −0.100655 0.174340i
$$300$$ −5.20814 9.02076i −0.300692 0.520814i
$$301$$ 6.65544 + 11.5276i 0.383613 + 0.664438i
$$302$$ 1.22147 0.0702876
$$303$$ 5.12976 + 8.88500i 0.294697 + 0.510430i
$$304$$ 4.79186 0.274832
$$305$$ −3.81088 + 6.60065i −0.218211 + 0.377952i
$$306$$ 32.2029 1.84091
$$307$$ −5.74049 −0.327627 −0.163814 0.986491i $$-0.552380\pi$$
−0.163814 + 0.986491i $$0.552380\pi$$
$$308$$ −8.10275 + 14.0344i −0.461697 + 0.799683i
$$309$$ 26.1718 + 45.3309i 1.48886 + 2.57879i
$$310$$ −0.997361 −0.0566463
$$311$$ 5.26618 9.12129i 0.298617 0.517221i −0.677202 0.735797i $$-0.736808\pi$$
0.975820 + 0.218576i $$0.0701412\pi$$
$$312$$ 3.05137 5.28514i 0.172750 0.299212i
$$313$$ −12.4150 + 21.5033i −0.701735 + 1.21544i 0.266122 + 0.963939i $$0.414257\pi$$
−0.967857 + 0.251501i $$0.919076\pi$$
$$314$$ −9.38795 16.2604i −0.529792 0.917627i
$$315$$ −12.1271 21.0048i −0.683286 1.18349i
$$316$$ 5.70682 9.88450i 0.321034 0.556046i
$$317$$ 13.1461 22.7698i 0.738361 1.27888i −0.214873 0.976642i $$-0.568934\pi$$
0.953233 0.302236i $$-0.0977331\pi$$
$$318$$ 17.2569 29.8898i 0.967717 1.67614i
$$319$$ −21.5164 −1.20469
$$320$$ −0.629755 1.09077i −0.0352044 0.0609758i
$$321$$ 0.552694 0.957294i 0.0308484 0.0534309i
$$322$$ 5.31088 0.295964
$$323$$ 24.4517 1.36053
$$324$$ −5.94731 + 10.3010i −0.330406 + 0.572280i
$$325$$ −6.82727 −0.378709
$$326$$ 3.92162 + 6.79244i 0.217198 + 0.376199i
$$327$$ −1.42697 −0.0789114
$$328$$ 0.104068 + 0.180251i 0.00574620 + 0.00995271i
$$329$$ 4.89461 + 8.47772i 0.269849 + 0.467392i
$$330$$ 10.2055 + 17.6764i 0.561794 + 0.973056i
$$331$$ −14.8946 + 25.7982i −0.818682 + 1.41800i 0.0879717 + 0.996123i $$0.471961\pi$$
−0.906654 + 0.421876i $$0.861372\pi$$
$$332$$ −3.57040 −0.195951
$$333$$ −28.0664 26.1894i −1.53803 1.43517i
$$334$$ −12.0000 −0.656611
$$335$$ 5.86358 10.1560i 0.320362 0.554882i
$$336$$ 4.65544 + 8.06346i 0.253975 + 0.439898i
$$337$$ 6.36358 + 11.0220i 0.346646 + 0.600409i 0.985651 0.168794i $$-0.0539871\pi$$
−0.639005 + 0.769202i $$0.720654\pi$$
$$338$$ 4.50000 + 7.79423i 0.244768 + 0.423950i
$$339$$ 2.10275 0.114206
$$340$$ −3.21348 5.56592i −0.174276 0.301854i
$$341$$ −4.20550 −0.227740
$$342$$ −15.1204 + 26.1894i −0.817620 + 1.41616i
$$343$$ −14.3082 −0.772573
$$344$$ −4.36226 −0.235197
$$345$$ 3.34456 5.79294i 0.180065 0.311882i
$$346$$ −2.23382 3.86910i −0.120091 0.208004i
$$347$$ 29.5651 1.58714 0.793569 0.608480i $$-0.208220\pi$$
0.793569 + 0.608480i $$0.208220\pi$$
$$348$$ −6.18113 + 10.7060i −0.331343 + 0.573903i
$$349$$ 16.2515 28.1485i 0.869924 1.50675i 0.00785093 0.999969i $$-0.497501\pi$$
0.862073 0.506784i $$-0.169166\pi$$
$$350$$ 5.20814 9.02076i 0.278387 0.482180i
$$351$$ 10.1027 + 17.4985i 0.539245 + 0.933999i
$$352$$ −2.65544 4.59936i −0.141536 0.245147i
$$353$$ −2.05269 + 3.55537i −0.109254 + 0.189233i −0.915468 0.402390i $$-0.868179\pi$$
0.806214 + 0.591624i $$0.201513\pi$$
$$354$$ −19.4136 + 33.6254i −1.03182 + 1.78717i
$$355$$ 4.44064 7.69141i 0.235685 0.408218i
$$356$$ 3.27284 0.173460
$$357$$ 23.7556 + 41.1458i 1.25728 + 2.17767i
$$358$$ 7.05137 12.2133i 0.372677 0.645495i
$$359$$ −28.2055 −1.48863 −0.744315 0.667829i $$-0.767224\pi$$
−0.744315 + 0.667829i $$0.767224\pi$$
$$360$$ 7.94863 0.418929
$$361$$ −1.98098 + 3.43116i −0.104262 + 0.180587i
$$362$$ 13.4650 0.707705
$$363$$ 26.2502 + 45.4667i 1.37778 + 2.38638i
$$364$$ 6.10275 0.319871
$$365$$ 2.08505 + 3.61141i 0.109136 + 0.189030i
$$366$$ 9.23250 + 15.9912i 0.482591 + 0.835872i
$$367$$ 2.00000 + 3.46410i 0.104399 + 0.180825i 0.913493 0.406855i $$-0.133375\pi$$
−0.809093 + 0.587680i $$0.800041\pi$$
$$368$$ −0.870245 + 1.50731i −0.0453646 + 0.0785739i
$$369$$ −1.31352 −0.0683793
$$370$$ −1.72584 + 7.46439i −0.0897220 + 0.388055i
$$371$$ 34.5137 1.79186
$$372$$ −1.20814 + 2.09255i −0.0626389 + 0.108494i
$$373$$ −18.6785 32.3521i −0.967136 1.67513i −0.703765 0.710433i $$-0.748499\pi$$
−0.263371 0.964695i $$-0.584834\pi$$
$$374$$ −13.5501 23.4694i −0.700657 1.21357i
$$375$$ −16.1678 28.0034i −0.834901 1.44609i
$$376$$ −3.20814 −0.165447
$$377$$ 4.05137 + 7.01719i 0.208656 + 0.361403i
$$378$$ −30.8273 −1.58558
$$379$$ 2.45397 4.25040i 0.126052 0.218329i −0.796092 0.605176i $$-0.793103\pi$$
0.922144 + 0.386848i $$0.126436\pi$$
$$380$$ 6.03540 0.309610
$$381$$ 45.7219 2.34240
$$382$$ −4.71348 + 8.16399i −0.241163 + 0.417706i
$$383$$ −10.3042 17.8474i −0.526521 0.911961i −0.999522 0.0308995i $$-0.990163\pi$$
0.473002 0.881062i $$-0.343171\pi$$
$$384$$ −3.05137 −0.155715
$$385$$ −10.2055 + 17.6764i −0.520120 + 0.900875i
$$386$$ −1.24049 + 2.14859i −0.0631393 + 0.109360i
$$387$$ 13.7649 23.8414i 0.699707 1.21193i
$$388$$ −1.10407 1.91230i −0.0560506 0.0970824i
$$389$$ 12.7839 + 22.1423i 0.648168 + 1.12266i 0.983560 + 0.180582i $$0.0577980\pi$$
−0.335392 + 0.942079i $$0.608869\pi$$
$$390$$ 3.84324 6.65668i 0.194610 0.337074i
$$391$$ −4.44064 + 7.69141i −0.224573 + 0.388972i
$$392$$ −1.15544 + 2.00128i −0.0583587 + 0.101080i
$$393$$ −36.8893 −1.86082
$$394$$ 0.974313 + 1.68756i 0.0490852 + 0.0850180i
$$395$$ 7.18780 12.4496i 0.361657 0.626409i
$$396$$ 33.5164 1.68426
$$397$$ −30.2923 −1.52033 −0.760163 0.649733i $$-0.774881\pi$$
−0.760163 + 0.649733i $$0.774881\pi$$
$$398$$ 0.993334 1.72050i 0.0497913 0.0862411i
$$399$$ −44.6165 −2.23362
$$400$$ 1.70682 + 2.95629i 0.0853408 + 0.147815i
$$401$$ 27.5164 1.37410 0.687051 0.726609i $$-0.258905\pi$$
0.687051 + 0.726609i $$0.258905\pi$$
$$402$$ −14.2055 24.6046i −0.708506 1.22717i
$$403$$ 0.791864 + 1.37155i 0.0394455 + 0.0683217i
$$404$$ −1.68113 2.91180i −0.0836393 0.144868i
$$405$$ −7.49069 + 12.9743i −0.372216 + 0.644696i
$$406$$ −12.3623 −0.613529
$$407$$ −7.27721 + 31.4745i −0.360718 + 1.56013i
$$408$$ −15.5704 −0.770849
$$409$$ −3.62309 + 6.27537i −0.179150 + 0.310297i −0.941590 0.336762i $$-0.890668\pi$$
0.762439 + 0.647060i $$0.224001\pi$$
$$410$$ 0.131075 + 0.227028i 0.00647333 + 0.0112121i
$$411$$ −25.4583 44.0951i −1.25577 2.17505i
$$412$$ −8.57706 14.8559i −0.422561 0.731898i
$$413$$ −38.8273 −1.91056
$$414$$ −5.49201 9.51245i −0.269918 0.467511i
$$415$$ −4.49695 −0.220747
$$416$$ −1.00000 + 1.73205i −0.0490290 + 0.0849208i
$$417$$ 55.5111 2.71839
$$418$$ 25.4490 1.24475
$$419$$ 2.28388 3.95579i 0.111575 0.193253i −0.804831 0.593505i $$-0.797744\pi$$
0.916405 + 0.400251i $$0.131077\pi$$
$$420$$ 5.86358 + 10.1560i 0.286113 + 0.495563i
$$421$$ 26.8432 1.30826 0.654130 0.756382i $$-0.273035\pi$$
0.654130 + 0.756382i $$0.273035\pi$$
$$422$$ 8.54339 14.7976i 0.415886 0.720335i
$$423$$ 10.1231 17.5337i 0.492201 0.852518i
$$424$$ −5.65544 + 9.79551i −0.274653 + 0.475712i
$$425$$ 8.70946 + 15.0852i 0.422471 + 0.731741i
$$426$$ −10.7582 18.6337i −0.521236 0.902807i
$$427$$ −9.23250 + 15.9912i −0.446792 + 0.773867i
$$428$$ −0.181130 + 0.313726i −0.00875522 + 0.0151645i
$$429$$ 16.2055 28.0687i 0.782409 1.35517i
$$430$$ −5.49431 −0.264959
$$431$$ 10.3959 + 18.0063i 0.500754 + 0.867332i 1.00000 0.000871345i $$0.000277358\pi$$
−0.499245 + 0.866461i $$0.666389\pi$$
$$432$$ 5.05137 8.74924i 0.243034 0.420948i
$$433$$ 27.6572 1.32912 0.664559 0.747235i $$-0.268619\pi$$
0.664559 + 0.747235i $$0.268619\pi$$
$$434$$ −2.41627 −0.115985
$$435$$ −7.78520 + 13.4844i −0.373272 + 0.646525i
$$436$$ 0.467647 0.0223962
$$437$$ −4.17009 7.22282i −0.199483 0.345514i
$$438$$ 10.1027 0.482728
$$439$$ 3.46765 + 6.00614i 0.165502 + 0.286657i 0.936833 0.349776i $$-0.113742\pi$$
−0.771332 + 0.636433i $$0.780409\pi$$
$$440$$ −3.34456 5.79294i −0.159446 0.276168i
$$441$$ −7.29186 12.6299i −0.347232 0.601423i
$$442$$ −5.10275 + 8.83822i −0.242713 + 0.420391i
$$443$$ −19.8653 −0.943829 −0.471915 0.881644i $$-0.656437\pi$$
−0.471915 + 0.881644i $$0.656437\pi$$
$$444$$ 13.5704 + 12.6628i 0.644022 + 0.600951i
$$445$$ 4.12218 0.195410
$$446$$ −0.972993 + 1.68527i −0.0460726 + 0.0798000i
$$447$$ 20.6461 + 35.7602i 0.976529 + 1.69140i
$$448$$ −1.52569 2.64257i −0.0720819 0.124850i
$$449$$ 13.0691 + 22.6363i 0.616768 + 1.06827i 0.990072 + 0.140564i $$0.0448916\pi$$
−0.373304 + 0.927709i $$0.621775\pi$$
$$450$$ −21.5430 −1.01555
$$451$$ 0.552694 + 0.957294i 0.0260253 + 0.0450772i
$$452$$ −0.689115 −0.0324133
$$453$$ 1.86358 3.22781i 0.0875586 0.151656i
$$454$$ 4.58637 0.215249
$$455$$ 7.68648 0.360348
$$456$$ 7.31088 12.6628i 0.342364 0.592991i
$$457$$ 10.3432 + 17.9150i 0.483836 + 0.838029i 0.999828 0.0185648i $$-0.00590969\pi$$
−0.515991 + 0.856594i $$0.672576\pi$$
$$458$$ −1.63510 −0.0764033
$$459$$ 25.7759 44.6452i 1.20312 2.08386i
$$460$$ −1.09608 + 1.89847i −0.0511051 + 0.0885166i
$$461$$ −11.1027 + 19.2305i −0.517107 + 0.895655i 0.482696 + 0.875788i $$0.339658\pi$$
−0.999803 + 0.0198669i $$0.993676\pi$$
$$462$$ 24.7245 + 42.8241i 1.15029 + 1.99236i
$$463$$ −11.0961 19.2190i −0.515679 0.893182i −0.999834 0.0181998i $$-0.994207\pi$$
0.484156 0.874982i $$-0.339127\pi$$
$$464$$ 2.02569 3.50859i 0.0940402 0.162882i
$$465$$ −1.52166 + 2.63559i −0.0705653 + 0.122223i
$$466$$ −4.01902 + 6.96115i −0.186178 + 0.322469i
$$467$$ −11.8920 −0.550295 −0.275147 0.961402i $$-0.588727\pi$$
−0.275147 + 0.961402i $$0.588727\pi$$
$$468$$ −6.31088 10.9308i −0.291721 0.505275i
$$469$$ 14.2055 24.6046i 0.655949 1.13614i
$$470$$ −4.04068 −0.186383
$$471$$ −57.2923 −2.63989
$$472$$ 6.36226 11.0198i 0.292847 0.507225i
$$473$$ −23.1675 −1.06524
$$474$$ −17.4136 30.1613i −0.799835 1.38535i
$$475$$ −16.3577 −0.750541
$$476$$ −7.78520 13.4844i −0.356834 0.618055i
$$477$$ −35.6908 61.8184i −1.63417 2.83047i
$$478$$ −0.317551 0.550014i −0.0145244 0.0251571i
$$479$$ −16.5678 + 28.6962i −0.757000 + 1.31116i 0.187374 + 0.982289i $$0.440002\pi$$
−0.944374 + 0.328874i $$0.893331\pi$$
$$480$$ −3.84324 −0.175419
$$481$$ 11.6351 3.55308i 0.530515 0.162007i
$$482$$ −7.51638 −0.342362
$$483$$ 8.10275 14.0344i 0.368688 0.638586i
$$484$$ −8.60275 14.9004i −0.391034 0.677291i
$$485$$ −1.39059 2.40856i −0.0631432 0.109367i
$$486$$ 2.99333 + 5.18461i 0.135780 + 0.235179i
$$487$$ 19.6377 0.889871 0.444935 0.895563i $$-0.353227\pi$$
0.444935 + 0.895563i $$0.353227\pi$$
$$488$$ −3.02569 5.24064i −0.136966 0.237233i
$$489$$ 23.9327 1.08227
$$490$$ −1.45529 + 2.52064i −0.0657434 + 0.113871i
$$491$$ −5.31088 −0.239677 −0.119838 0.992793i $$-0.538238\pi$$
−0.119838 + 0.992793i $$0.538238\pi$$
$$492$$ 0.635102 0.0286326
$$493$$ 10.3366 17.9035i 0.465536 0.806332i
$$494$$ −4.79186 8.29975i −0.215596 0.373423i
$$495$$ 42.2142 1.89739
$$496$$ 0.395932 0.685774i 0.0177779 0.0307922i
$$497$$ 10.7582 18.6337i 0.482571 0.835837i
$$498$$ −5.44731 + 9.43501i −0.244100 + 0.422793i
$$499$$ −11.1878 19.3778i −0.500835 0.867471i −1.00000 0.000963882i $$-0.999693\pi$$
0.499165 0.866507i $$-0.333640\pi$$
$$500$$ 5.29853 + 9.17732i 0.236957 + 0.410422i
$$501$$ −18.3082 + 31.7108i −0.817952 + 1.41673i
$$502$$ 4.44064 7.69141i 0.198195 0.343285i
$$503$$ −11.8636 + 20.5483i −0.528971 + 0.916204i 0.470458 + 0.882422i $$0.344089\pi$$
−0.999429 + 0.0337822i $$0.989245\pi$$
$$504$$ 19.2569 0.857769
$$505$$ −2.11740 3.66744i −0.0942231 0.163199i
$$506$$ −4.62177 + 8.00514i −0.205463 + 0.355872i
$$507$$ 27.4624 1.21965
$$508$$ −14.9840 −0.664809
$$509$$ 3.62976 6.28692i 0.160886 0.278663i −0.774301 0.632818i $$-0.781898\pi$$
0.935187 + 0.354155i $$0.115231\pi$$
$$510$$ −19.6111 −0.868393
$$511$$ 5.05137 + 8.74924i 0.223460 + 0.387043i
$$512$$ 1.00000 0.0441942
$$513$$ 24.2055 + 41.9252i 1.06870 + 1.85104i
$$514$$ 6.05005 + 10.4790i 0.266856 + 0.462209i
$$515$$ −10.8029 18.7112i −0.476033 0.824513i
$$516$$ −6.65544 + 11.5276i −0.292990 + 0.507473i
$$517$$ −17.0380 −0.749332
$$518$$ −4.18113 + 18.0837i −0.183708 + 0.794553i
$$519$$ −13.6325 −0.598399
$$520$$ −1.25951 + 2.18154i −0.0552332 + 0.0956667i
$$521$$ −1.03367 1.79037i −0.0452860 0.0784377i 0.842494 0.538706i $$-0.181087\pi$$
−0.887780 + 0.460268i $$0.847753\pi$$
$$522$$ 12.7839 + 22.1423i 0.559535 + 0.969143i
$$523$$ 18.6125 + 32.2377i 0.813866 + 1.40966i 0.910139 + 0.414303i $$0.135975\pi$$
−0.0962729 + 0.995355i $$0.530692\pi$$
$$524$$ 12.0894 0.528129
$$525$$ −15.8920 27.5257i −0.693583 1.20132i
$$526$$ −19.1408 −0.834578
$$527$$ 2.02034 3.49933i 0.0880074 0.152433i
$$528$$ −16.2055 −0.705254
$$529$$ −19.9707 −0.868291
$$530$$ −7.12309 + 12.3376i −0.309407 + 0.535909i
$$531$$ 40.1515 + 69.5444i 1.74243 + 3.01797i
$$532$$ 14.6218 0.633934
$$533$$ 0.208136 0.360503i 0.00901538 0.0156151i
$$534$$ 4.99333 8.64871i 0.216083 0.374266i
$$535$$ −0.228135 + 0.395141i −0.00986312 + 0.0170834i
$$536$$ 4.65544 + 8.06346i 0.201084 + 0.348289i
$$537$$ −21.5164 37.2675i −0.928500 1.60821i
$$538$$ 7.89461 13.6739i 0.340361 0.589522i
$$539$$ −6.13642 + 10.6286i −0.264314 + 0.457806i
$$540$$ 6.36226 11.0198i 0.273788 0.474215i
$$541$$ −1.74313 −0.0749430 −0.0374715 0.999298i $$-0.511930\pi$$
−0.0374715 + 0.999298i $$0.511930\pi$$
$$542$$ 9.55005 + 16.5412i 0.410210 + 0.710505i
$$543$$ 20.5434 35.5822i 0.881601 1.52698i
$$544$$ 5.10275 0.218779
$$545$$ 0.589006 0.0252302
$$546$$ 9.31088 16.1269i 0.398469 0.690169i
$$547$$ 31.6191 1.35194 0.675968 0.736931i $$-0.263726\pi$$
0.675968 + 0.736931i $$0.263726\pi$$
$$548$$ 8.34324 + 14.4509i 0.356405 + 0.617312i
$$549$$ 38.1895 1.62989
$$550$$ 9.06471 + 15.7005i 0.386520 + 0.669473i
$$551$$ 9.70682 + 16.8127i 0.413524 + 0.716245i
$$552$$ 2.65544 + 4.59936i 0.113023 + 0.195762i
$$553$$ 17.4136 30.1613i 0.740503 1.28259i
$$554$$ 16.4003 0.696782
$$555$$ 17.0921 + 15.9490i 0.725517 + 0.676996i
$$556$$ −18.1922 −0.771520
$$557$$ 11.3702 19.6938i 0.481773 0.834455i −0.518008 0.855376i $$-0.673326\pi$$
0.999781 + 0.0209207i $$0.00665974\pi$$
$$558$$ 2.49868 + 4.32784i 0.105778 + 0.183212i
$$559$$ 4.36226 + 7.55565i 0.184504 + 0.319570i
$$560$$ −1.92162 3.32834i −0.0812032 0.140648i
$$561$$ −82.6926 −3.49128
$$562$$ 2.39725 + 4.15216i 0.101122 + 0.175148i
$$563$$ −13.4676 −0.567594 −0.283797 0.958884i $$-0.591594\pi$$
−0.283797 + 0.958884i $$0.591594\pi$$
$$564$$ −4.89461 + 8.47772i −0.206100 + 0.356976i
$$565$$ −0.867948 −0.0365148
$$566$$ 25.9460 1.09059
$$567$$ −18.1475 + 31.4323i −0.762122 + 1.32003i
$$568$$ 3.52569 + 6.10667i 0.147935 + 0.256230i
$$569$$ −41.8627 −1.75497 −0.877487 0.479600i $$-0.840782\pi$$
−0.877487 + 0.479600i $$0.840782\pi$$
$$570$$ 9.20814 15.9490i 0.385686 0.668028i
$$571$$ −14.2502 + 24.6821i −0.596353 + 1.03291i 0.397002 + 0.917818i $$0.370051\pi$$
−0.993354 + 0.115095i $$0.963283\pi$$
$$572$$ −5.31088 + 9.19872i −0.222059 + 0.384618i
$$573$$ 14.3826 + 24.9114i 0.600842 + 1.04069i
$$574$$ 0.317551 + 0.550014i 0.0132543 + 0.0229571i
$$575$$ 2.97070 5.14540i 0.123887 0.214578i
$$576$$ −3.15544 + 5.46539i −0.131477 + 0.227724i
$$577$$ −12.1675 + 21.0747i −0.506538 + 0.877349i 0.493434 + 0.869783i $$0.335742\pi$$
−0.999971 + 0.00756570i $$0.997592\pi$$
$$578$$ 9.03804 0.375933
$$579$$ 3.78520 + 6.55615i 0.157307 + 0.272464i
$$580$$ 2.55137 4.41911i 0.105940 0.183494i
$$581$$ −10.8946 −0.451985
$$582$$ −6.73785 −0.279293
$$583$$ −30.0354 + 52.0228i −1.24394 + 2.15457i
$$584$$ −3.31088 −0.137005
$$585$$ −7.94863 13.7674i −0.328635 0.569213i
$$586$$ 22.0514 0.910934
$$587$$ −22.5230 39.0111i −0.929626 1.61016i −0.783948 0.620827i $$-0.786797\pi$$
−0.145678 0.989332i $$-0.546536\pi$$
$$588$$ 3.52569 + 6.10667i 0.145397 + 0.251835i
$$589$$ 1.89725 + 3.28614i 0.0781749 + 0.135403i
$$590$$ 8.01333 13.8795i 0.329904 0.571410i
$$591$$ 5.94599 0.244585
$$592$$ −4.44731 4.14988i −0.182783 0.170559i
$$593$$ 6.93265 0.284690 0.142345 0.989817i $$-0.454536\pi$$
0.142345 + 0.989817i $$0.454536\pi$$
$$594$$ 26.8273 46.4662i 1.10074 1.90653i
$$595$$ −9.80554 16.9837i −0.401988 0.696263i
$$596$$ −6.76618 11.7194i −0.277153 0.480044i
$$597$$ −3.03103 5.24990i −0.124052 0.214864i
$$598$$ 3.48098 0.142348
$$599$$ 16.7582 + 29.0260i 0.684721 + 1.18597i 0.973524 + 0.228583i $$0.0734093\pi$$
−0.288803 + 0.957388i $$0.593257\pi$$
$$600$$ 10.4163 0.425243
$$601$$ −4.08637 + 7.07779i −0.166686 + 0.288709i −0.937253 0.348650i $$-0.886640\pi$$
0.770566 + 0.637360i $$0.219973\pi$$
$$602$$ −13.3109 −0.542511
$$603$$ −58.7599 −2.39289
$$604$$ −0.610734 + 1.05782i −0.0248504 + 0.0430422i
$$605$$ −10.8353 18.7672i −0.440516 0.762995i
$$606$$ −10.2595 −0.416764
$$607$$ 21.2772 36.8532i 0.863615 1.49583i −0.00480007 0.999988i $$-0.501528\pi$$
0.868415 0.495837i $$-0.165139\pi$$
$$608$$ −2.39593 + 4.14988i −0.0971679 + 0.168300i
$$609$$ −18.8609 + 32.6681i −0.764284 + 1.32378i
$$610$$ −3.81088 6.60065i −0.154298 0.267252i
$$611$$ 3.20814 + 5.55666i 0.129787 + 0.224798i
$$612$$ −16.1014 + 27.8885i −0.650862 + 1.12733i
$$613$$ −20.1461 + 34.8941i −0.813695 + 1.40936i 0.0965665 + 0.995327i $$0.469214\pi$$
−0.910261 + 0.414034i $$0.864119\pi$$
$$614$$ 2.87024 4.97141i 0.115834 0.200630i
$$615$$ 0.799917 0.0322558
$$616$$ −8.10275 14.0344i −0.326469 0.565461i
$$617$$ 10.5501 18.2732i 0.424729 0.735653i −0.571666 0.820487i $$-0.693703\pi$$
0.996395 + 0.0848339i $$0.0270360\pi$$
$$618$$ −52.3436 −2.10557
$$619$$ 47.9140 1.92583 0.962914 0.269808i $$-0.0869604\pi$$
0.962914 + 0.269808i $$0.0869604\pi$$
$$620$$ 0.498680 0.863740i 0.0200275 0.0346886i
$$621$$ −17.5837 −0.705611
$$622$$ 5.26618 + 9.12129i 0.211154 + 0.365730i
$$623$$ 9.98667 0.400107
$$624$$ 3.05137 + 5.28514i 0.122153 + 0.211575i
$$625$$ −1.86053 3.22253i −0.0744212 0.128901i
$$626$$ −12.4150 21.5033i −0.496201 0.859446i
$$627$$ 38.8273 67.2508i 1.55061 2.68574i
$$628$$ 18.7759 0.749240
$$629$$ −22.6935 21.1758i −0.904848 0.844333i
$$630$$ 24.2542 0.966312
$$631$$ 15.5053 26.8560i 0.617258 1.06912i −0.372726 0.927942i $$-0.621577\pi$$
0.989984 0.141181i $$-0.0450899\pi$$
$$632$$ 5.70682 + 9.88450i 0.227005 + 0.393184i
$$633$$ −26.0691 45.1530i −1.03615 1.79467i
$$634$$ 13.1461 + 22.7698i 0.522100 + 0.904303i
$$635$$ −18.8725 −0.748934
$$636$$ 17.2569 + 29.8898i 0.684279 + 1.18521i
$$637$$ 4.62177 0.183121
$$638$$ 10.7582 18.6337i 0.425921 0.737717i
$$639$$ −44.5004 −1.76041
$$640$$ 1.25951 0.0497865
$$641$$ 16.3096 28.2490i 0.644189 1.11577i −0.340299 0.940317i $$-0.610528\pi$$
0.984488 0.175451i $$-0.0561384\pi$$
$$642$$ 0.552694 + 0.957294i 0.0218131 + 0.0377814i
$$643$$ 18.1701 0.716559 0.358279 0.933614i $$-0.383364\pi$$
0.358279 + 0.933614i $$0.383364\pi$$
$$644$$ −2.65544 + 4.59936i −0.104639 + 0.181240i
$$645$$ −8.38260 + 14.5191i −0.330065 + 0.571689i
$$646$$ −12.2258 + 21.1758i −0.481019 + 0.833150i
$$647$$ 13.0067 + 22.5282i 0.511345 + 0.885675i 0.999914 + 0.0131498i $$0.00418582\pi$$
−0.488569 + 0.872525i $$0.662481\pi$$
$$648$$ −5.94731 10.3010i −0.233632 0.404663i
$$649$$ 33.7892 58.5247i 1.32634 2.29729i
$$650$$ 3.41363 5.91259i 0.133894 0.231911i
$$651$$ −3.68648 + 6.38516i −0.144484 + 0.250254i
$$652$$ −7.84324 −0.307165
$$653$$ 3.62976 + 6.28692i 0.142043 + 0.246026i 0.928266 0.371917i $$-0.121299\pi$$
−0.786223 + 0.617943i $$0.787966\pi$$
$$654$$ 0.713483 1.23579i 0.0278994 0.0483231i
$$655$$ 15.2267 0.594958
$$656$$ −0.208136 −0.00812636
$$657$$ 10.4473 18.0953i 0.407588 0.705964i
$$658$$ −9.78922 −0.381624
$$659$$ −3.06471 5.30823i −0.119384 0.206779i 0.800140 0.599814i $$-0.204759\pi$$
−0.919524 + 0.393034i $$0.871425\pi$$
$$660$$ −20.4110 −0.794497
$$661$$ 16.9406 + 29.3420i 0.658915 + 1.14127i 0.980897 + 0.194528i $$0.0623175\pi$$
−0.321982 + 0.946746i $$0.604349\pi$$
$$662$$ −14.8946 25.7982i −0.578896 1.00268i
$$663$$ 15.5704 + 26.9687i 0.604704 + 1.04738i
$$664$$ 1.78520 3.09205i 0.0692791 0.119995i
$$665$$ 18.4163 0.714152
$$666$$ 36.7139 11.2116i 1.42263 0.434439i
$$667$$ −7.05137 −0.273030
$$668$$ 6.00000 10.3923i 0.232147 0.402090i
$$669$$ 2.96897 + 5.14240i 0.114787 + 0.198817i
$$670$$ 5.86358 + 10.1560i 0.226530 + 0.392361i
$$671$$ −16.0691 27.8325i −0.620340 1.07446i
$$672$$ −9.31088 −0.359175
$$673$$ 12.8229 + 22.2099i 0.494286 + 0.856129i 0.999978 0.00658502i $$-0.00209609\pi$$
−0.505692 + 0.862714i $$0.668763\pi$$
$$674$$ −12.7272 −0.490232
$$675$$ −17.2435 + 29.8667i −0.663704 + 1.14957i
$$676$$ −9.00000 −0.346154
$$677$$ 10.7759 0.414151 0.207076 0.978325i $$-0.433605\pi$$
0.207076 + 0.978325i $$0.433605\pi$$
$$678$$ −1.05137 + 1.82103i −0.0403778 + 0.0699364i
$$679$$ −3.36893 5.83515i −0.129287 0.223932i
$$680$$ 6.42697 0.246463
$$681$$ 6.99736 12.1198i 0.268139 0.464431i
$$682$$ 2.10275 3.64207i 0.0805184 0.139462i
$$683$$ 15.2458 26.4066i 0.583366 1.01042i −0.411711 0.911314i $$-0.635069\pi$$
0.995077 0.0991047i $$-0.0315979\pi$$
$$684$$ −15.1204 26.1894i −0.578145 1.00138i
$$685$$ 10.5084 + 18.2011i 0.401505 + 0.695427i
$$686$$ 7.15412 12.3913i 0.273146 0.473102i
$$687$$ −2.49465 + 4.32087i −0.0951770 + 0.164851i
$$688$$ 2.18113 3.77783i 0.0831548 0.144028i
$$689$$ 22.6218 0.861821
$$690$$ 3.34456 + 5.79294i 0.127325 + 0.220534i
$$691$$ −4.49868 + 7.79194i −0.171138 + 0.296419i −0.938818 0.344414i $$-0.888078\pi$$
0.767680 + 0.640833i $$0.221411\pi$$
$$692$$ 4.46765 0.169834
$$693$$ 102.271 3.88495
$$694$$ −14.7826 + 25.6041i −0.561138 + 0.971920i
$$695$$ −22.9132 −0.869148
$$696$$ −6.18113 10.7060i −0.234295 0.405811i
$$697$$ −1.06207 −0.0402287
$$698$$ 16.2515 + 28.1485i 0.615129 + 1.06544i
$$699$$ 12.2635 + 21.2411i 0.463850 + 0.803411i
$$700$$ 5.20814 + 9.02076i 0.196849 + 0.340953i
$$701$$ −17.3756 + 30.0954i −0.656267 + 1.13669i 0.325308 + 0.945608i $$0.394532\pi$$
−0.981575 + 0.191080i $$0.938801\pi$$
$$702$$ −20.2055 −0.762607
$$703$$ 27.8769 8.51295i 1.05140 0.321072i
$$704$$ 5.31088 0.200162
$$705$$ −6.16482 + 10.6778i −0.232180 + 0.402148i
$$706$$ −2.05269 3.55537i −0.0772542 0.133808i
$$707$$ −5.12976 8.88500i −0.192924 0.334155i
$$708$$ −19.4136 33.6254i −0.729609 1.26372i
$$709$$ 39.9947 1.50203 0.751017 0.660283i $$-0.229564\pi$$
0.751017 + 0.660283i $$0.229564\pi$$
$$710$$ 4.44064 + 7.69141i 0.166654 + 0.288654i
$$711$$ −72.0301 −2.70134
$$712$$ −1.63642 + 2.83436i −0.0613275 + 0.106222i
$$713$$ −1.37823 −0.0516151
$$714$$ −47.5111 −1.77806
$$715$$ −6.68912 + 11.5859i −0.250159 + 0.433288i
$$716$$ 7.05137 + 12.2133i 0.263522 + 0.456434i
$$717$$ −1.93793 −0.0723734
$$718$$ 14.1027 24.4267i 0.526310 0.911595i
$$719$$ −1.50535 + 2.60734i −0.0561399 + 0.0972372i −0.892730 0.450593i $$-0.851213\pi$$
0.836590 + 0.547830i $$0.184546\pi$$
$$720$$ −3.97431 + 6.88371i −0.148114 + 0.256541i
$$721$$ −26.1718 45.3309i −0.974690 1.68821i
$$722$$ −1.98098 3.43116i −0.0737244 0.127694i
$$723$$ −11.4676 + 19.8625i −0.426486 + 0.738696i
$$724$$ −6.73250 + 11.6610i −0.250212 + 0.433379i
$$725$$ −6.91495 + 11.9770i −0.256815 + 0.444816i
$$726$$ −52.5004 −1.94847
$$727$$ −26.7112 46.2651i −0.990663 1.71588i −0.613399 0.789773i $$-0.710198\pi$$
−0.377264 0.926106i $$-0.623135\pi$$
$$728$$ −3.05137 + 5.28514i −0.113091 + 0.195880i
$$729$$ −17.4163 −0.645047
$$730$$ −4.17009 −0.154342
$$731$$ 11.1298 19.2773i 0.411649 0.712997i
$$732$$ −18.4650 −0.682486
$$733$$ −2.82991 4.90154i −0.104525 0.181043i 0.809019 0.587782i $$-0.199999\pi$$
−0.913544 + 0.406740i $$0.866666\pi$$
$$734$$ −4.00000 −0.147643
$$735$$ 4.44064 + 7.69141i 0.163795 + 0.283702i
$$736$$ −0.870245 1.50731i −0.0320776 0.0555601i
$$737$$ 24.7245 + 42.8241i 0.910739 + 1.57745i
$$738$$ 0.656762 1.13755i 0.0241757 0.0418736i
$$739$$ 2.21883 0.0816209 0.0408105 0.999167i $$-0.487006\pi$$
0.0408105 + 0.999167i $$0.487006\pi$$
$$740$$ −5.60143 5.22681i −0.205913 0.192141i
$$741$$ −29.2435 −1.07429
$$742$$ −17.2569 + 29.8898i −0.633520 + 1.09729i
$$743$$ −3.43397 5.94782i −0.125980 0.218204i 0.796135 0.605119i $$-0.206874\pi$$
−0.922116 + 0.386914i $$0.873541\pi$$
$$744$$ −1.20814 2.09255i −0.0442924 0.0767167i
$$745$$ −8.52207 14.7607i −0.312225 0.540789i
$$746$$ 37.3570 1.36774
$$747$$ 11.2662 + 19.5136i 0.412208 + 0.713965i
$$748$$ 27.1001 0.990878
$$749$$ −0.552694 + 0.957294i −0.0201950 + 0.0349788i
$$750$$ 32.3356 1.18073
$$751$$ −3.80256 −0.138757 −0.0693786 0.997590i $$-0.522102\pi$$
−0.0693786 + 0.997590i $$0.522102\pi$$
$$752$$ 1.60407 2.77833i 0.0584943 0.101315i
$$753$$ −13.5501 23.4694i −0.493791 0.855272i
$$754$$ −8.10275 −0.295085
$$755$$ −0.769226 + 1.33234i −0.0279950 + 0.0484888i
$$756$$ 15.4136 26.6972i 0.560588 0.970968i
$$757$$ 1.59608 2.76450i 0.0580106 0.100477i −0.835562 0.549397i $$-0.814858\pi$$
0.893572 + 0.448919i $$0.148191\pi$$
$$758$$ 2.45397 + 4.25040i 0.0891323 + 0.154382i
$$759$$ 14.1027 + 24.4267i 0.511897 + 0.886632i
$$760$$ −3.01770 + 5.22681i −0.109464 + 0.189596i
$$761$$ −19.0297 + 32.9604i −0.689827 + 1.19481i 0.282067 + 0.959395i $$0.408980\pi$$
−0.971894 + 0.235420i $$0.924353\pi$$
$$762$$ −22.8609 + 39.5963i −0.828164 + 1.43442i
$$763$$ 1.42697 0.0516596
$$764$$ −4.71348 8.16399i −0.170528 0.295363i
$$765$$ −20.2799 + 35.1259i −0.733222 + 1.26998i
$$766$$ 20.6084 0.744613
$$767$$ −25.4490 −0.918911
$$768$$ 1.52569 2.64257i 0.0550535 0.0953554i
$$769$$ −2.76520 −0.0997156 −0.0498578 0.998756i $$-0.515877\pi$$
−0.0498578 + 0.998756i $$0.515877\pi$$
$$770$$ −10.2055 17.6764i −0.367781 0.637015i
$$771$$ 36.9220 1.32971
$$772$$ −1.24049 2.14859i −0.0446462 0.0773295i
$$773$$ −14.4527 25.0327i −0.519826 0.900365i −0.999734 0.0230462i $$-0.992664\pi$$
0.479909 0.877318i $$-0.340670\pi$$
$$774$$ 13.7649 + 23.8414i 0.494768 + 0.856963i
$$775$$ −1.35157 + 2.34098i −0.0485497 + 0.0840905i
$$776$$ 2.20814