Defining parameters
Level: | \( N \) | \(=\) | \( 74 = 2 \cdot 37 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 74.c (of order \(3\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 37 \) |
Character field: | \(\Q(\zeta_{3})\) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(19\) | ||
Trace bound: | \(3\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(74, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 22 | 10 | 12 |
Cusp forms | 14 | 10 | 4 |
Eisenstein series | 8 | 0 | 8 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(74, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
74.2.c.a | $2$ | $0.591$ | \(\Q(\sqrt{-3}) \) | None | \(1\) | \(-2\) | \(1\) | \(0\) | \(q+(1-\zeta_{6})q^{2}-2\zeta_{6}q^{3}-\zeta_{6}q^{4}+\zeta_{6}q^{5}+\cdots\) |
74.2.c.b | $2$ | $0.591$ | \(\Q(\sqrt{-3}) \) | None | \(1\) | \(2\) | \(-3\) | \(4\) | \(q+(1-\zeta_{6})q^{2}+2\zeta_{6}q^{3}-\zeta_{6}q^{4}-3\zeta_{6}q^{5}+\cdots\) |
74.2.c.c | $6$ | $0.591$ | 6.0.4406832.1 | None | \(-3\) | \(0\) | \(-1\) | \(0\) | \(q+(-1-\beta _{3})q^{2}+(\beta _{2}+\beta _{4})q^{3}+\beta _{3}q^{4}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(74, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(74, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(37, [\chi])\)\(^{\oplus 2}\)