Newspace parameters
Level: | \( N \) | \(=\) | \( 74 = 2 \cdot 37 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 74.a (trivial) |
Newform invariants
Self dual: | yes |
Analytic conductor: | \(0.590892974957\) |
Analytic rank: | \(0\) |
Dimension: | \(2\) |
Coefficient field: | \(\Q(\sqrt{13}) \) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{2} - x - 3 \)
|
Coefficient ring: | \(\Z[a_1, a_2, a_3]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | yes |
Fricke sign: | \(-1\) |
Sato-Tate group: | $\mathrm{SU}(2)$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{13})\). We also show the integral \(q\)-expansion of the trace form.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1 |
|
−1.00000 | −0.302776 | 1.00000 | 1.30278 | 0.302776 | 4.60555 | −1.00000 | −2.90833 | −1.30278 | ||||||||||||||||||||||||
1.2 | −1.00000 | 3.30278 | 1.00000 | −2.30278 | −3.30278 | −2.60555 | −1.00000 | 7.90833 | 2.30278 | |||||||||||||||||||||||||
Atkin-Lehner signs
\( p \) | Sign |
---|---|
\(2\) | \(1\) |
\(37\) | \(-1\) |
Inner twists
This newform does not admit any (nontrivial) inner twists.
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 74.2.a.a | ✓ | 2 |
3.b | odd | 2 | 1 | 666.2.a.j | 2 | ||
4.b | odd | 2 | 1 | 592.2.a.f | 2 | ||
5.b | even | 2 | 1 | 1850.2.a.u | 2 | ||
5.c | odd | 4 | 2 | 1850.2.b.i | 4 | ||
7.b | odd | 2 | 1 | 3626.2.a.a | 2 | ||
8.b | even | 2 | 1 | 2368.2.a.s | 2 | ||
8.d | odd | 2 | 1 | 2368.2.a.ba | 2 | ||
11.b | odd | 2 | 1 | 8954.2.a.p | 2 | ||
12.b | even | 2 | 1 | 5328.2.a.bf | 2 | ||
37.b | even | 2 | 1 | 2738.2.a.l | 2 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
74.2.a.a | ✓ | 2 | 1.a | even | 1 | 1 | trivial |
592.2.a.f | 2 | 4.b | odd | 2 | 1 | ||
666.2.a.j | 2 | 3.b | odd | 2 | 1 | ||
1850.2.a.u | 2 | 5.b | even | 2 | 1 | ||
1850.2.b.i | 4 | 5.c | odd | 4 | 2 | ||
2368.2.a.s | 2 | 8.b | even | 2 | 1 | ||
2368.2.a.ba | 2 | 8.d | odd | 2 | 1 | ||
2738.2.a.l | 2 | 37.b | even | 2 | 1 | ||
3626.2.a.a | 2 | 7.b | odd | 2 | 1 | ||
5328.2.a.bf | 2 | 12.b | even | 2 | 1 | ||
8954.2.a.p | 2 | 11.b | odd | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{3}^{2} - 3T_{3} - 1 \)
acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(74))\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( (T + 1)^{2} \)
$3$
\( T^{2} - 3T - 1 \)
$5$
\( T^{2} + T - 3 \)
$7$
\( T^{2} - 2T - 12 \)
$11$
\( T^{2} + T - 3 \)
$13$
\( T^{2} + T - 3 \)
$17$
\( (T + 6)^{2} \)
$19$
\( (T - 2)^{2} \)
$23$
\( T^{2} + 3T - 27 \)
$29$
\( T^{2} - 3T - 27 \)
$31$
\( T^{2} - 3T - 1 \)
$37$
\( (T - 1)^{2} \)
$41$
\( T^{2} - 9T - 9 \)
$43$
\( T^{2} + 6T - 4 \)
$47$
\( T^{2} - 2T - 12 \)
$53$
\( (T + 6)^{2} \)
$59$
\( T^{2} - 14T + 36 \)
$61$
\( T^{2} + 3T - 79 \)
$67$
\( T^{2} - 11T - 51 \)
$71$
\( (T - 6)^{2} \)
$73$
\( T^{2} + 21T + 107 \)
$79$
\( T^{2} + 7T - 147 \)
$83$
\( T^{2} - 20T + 48 \)
$89$
\( T^{2} + 4T - 48 \)
$97$
\( T^{2} + 4T - 204 \)
show more
show less