Defining parameters
Level: | \( N \) | \(=\) | \( 74 = 2 \cdot 37 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 74.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(19\) | ||
Trace bound: | \(2\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(74))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 11 | 4 | 7 |
Cusp forms | 8 | 4 | 4 |
Eisenstein series | 3 | 0 | 3 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(37\) | Fricke | Dim |
---|---|---|---|
\(+\) | \(-\) | \(-\) | \(2\) |
\(-\) | \(+\) | \(-\) | \(2\) |
Plus space | \(+\) | \(0\) | |
Minus space | \(-\) | \(4\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(74))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 2 | 37 | |||||||
74.2.a.a | $2$ | $0.591$ | \(\Q(\sqrt{13}) \) | None | \(-2\) | \(3\) | \(-1\) | \(2\) | $+$ | $-$ | \(q-q^{2}+(1+\beta )q^{3}+q^{4}-\beta q^{5}+(-1+\cdots)q^{6}+\cdots\) | |
74.2.a.b | $2$ | $0.591$ | \(\Q(\sqrt{5}) \) | None | \(2\) | \(-1\) | \(1\) | \(-2\) | $-$ | $+$ | \(q+q^{2}-\beta q^{3}+q^{4}+(-1+3\beta )q^{5}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(74))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(74)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(37))\)\(^{\oplus 2}\)