Properties

Label 74.2.a
Level $74$
Weight $2$
Character orbit 74.a
Rep. character $\chi_{74}(1,\cdot)$
Character field $\Q$
Dimension $4$
Newform subspaces $2$
Sturm bound $19$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 74 = 2 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 74.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 2 \)
Sturm bound: \(19\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(74))\).

Total New Old
Modular forms 11 4 7
Cusp forms 8 4 4
Eisenstein series 3 0 3

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(37\)FrickeDim
\(+\)\(-\)\(-\)\(2\)
\(-\)\(+\)\(-\)\(2\)
Plus space\(+\)\(0\)
Minus space\(-\)\(4\)

Trace form

\( 4 q + 2 q^{3} + 4 q^{4} - 4 q^{6} + 2 q^{9} + 2 q^{10} - 6 q^{11} + 2 q^{12} - 4 q^{14} - 16 q^{15} + 4 q^{16} - 12 q^{17} - 8 q^{18} + 4 q^{19} - 4 q^{21} - 4 q^{22} - 4 q^{23} - 4 q^{24} + 10 q^{25} + 2 q^{26}+ \cdots - 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(74))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 37
74.2.a.a 74.a 1.a $2$ $0.591$ \(\Q(\sqrt{13}) \) None 74.2.a.a \(-2\) \(3\) \(-1\) \(2\) $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+(1+\beta )q^{3}+q^{4}-\beta q^{5}+(-1+\cdots)q^{6}+\cdots\)
74.2.a.b 74.a 1.a $2$ $0.591$ \(\Q(\sqrt{5}) \) None 74.2.a.b \(2\) \(-1\) \(1\) \(-2\) $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}-\beta q^{3}+q^{4}+(-1+3\beta )q^{5}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(74))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(74)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(37))\)\(^{\oplus 2}\)