Properties

Label 7360.2.a.z.1.1
Level $7360$
Weight $2$
Character 7360.1
Self dual yes
Analytic conductor $58.770$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7360,2,Mod(1,7360)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7360, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7360.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 7360 = 2^{6} \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7360.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(58.7698958877\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 3680)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 7360.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.00000 q^{3} +1.00000 q^{5} +3.00000 q^{7} +1.00000 q^{9} +O(q^{10})\) \(q+2.00000 q^{3} +1.00000 q^{5} +3.00000 q^{7} +1.00000 q^{9} -6.00000 q^{11} -4.00000 q^{13} +2.00000 q^{15} +7.00000 q^{17} -8.00000 q^{19} +6.00000 q^{21} +1.00000 q^{23} +1.00000 q^{25} -4.00000 q^{27} -3.00000 q^{29} -11.0000 q^{31} -12.0000 q^{33} +3.00000 q^{35} -7.00000 q^{37} -8.00000 q^{39} +5.00000 q^{41} +12.0000 q^{43} +1.00000 q^{45} -12.0000 q^{47} +2.00000 q^{49} +14.0000 q^{51} -7.00000 q^{53} -6.00000 q^{55} -16.0000 q^{57} -5.00000 q^{59} -2.00000 q^{61} +3.00000 q^{63} -4.00000 q^{65} +1.00000 q^{67} +2.00000 q^{69} +3.00000 q^{71} +2.00000 q^{75} -18.0000 q^{77} +12.0000 q^{79} -11.0000 q^{81} +5.00000 q^{83} +7.00000 q^{85} -6.00000 q^{87} -6.00000 q^{89} -12.0000 q^{91} -22.0000 q^{93} -8.00000 q^{95} +10.0000 q^{97} -6.00000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.00000 1.15470 0.577350 0.816497i \(-0.304087\pi\)
0.577350 + 0.816497i \(0.304087\pi\)
\(4\) 0 0
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) 3.00000 1.13389 0.566947 0.823754i \(-0.308125\pi\)
0.566947 + 0.823754i \(0.308125\pi\)
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) −6.00000 −1.80907 −0.904534 0.426401i \(-0.859781\pi\)
−0.904534 + 0.426401i \(0.859781\pi\)
\(12\) 0 0
\(13\) −4.00000 −1.10940 −0.554700 0.832050i \(-0.687167\pi\)
−0.554700 + 0.832050i \(0.687167\pi\)
\(14\) 0 0
\(15\) 2.00000 0.516398
\(16\) 0 0
\(17\) 7.00000 1.69775 0.848875 0.528594i \(-0.177281\pi\)
0.848875 + 0.528594i \(0.177281\pi\)
\(18\) 0 0
\(19\) −8.00000 −1.83533 −0.917663 0.397360i \(-0.869927\pi\)
−0.917663 + 0.397360i \(0.869927\pi\)
\(20\) 0 0
\(21\) 6.00000 1.30931
\(22\) 0 0
\(23\) 1.00000 0.208514
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) −4.00000 −0.769800
\(28\) 0 0
\(29\) −3.00000 −0.557086 −0.278543 0.960424i \(-0.589851\pi\)
−0.278543 + 0.960424i \(0.589851\pi\)
\(30\) 0 0
\(31\) −11.0000 −1.97566 −0.987829 0.155543i \(-0.950287\pi\)
−0.987829 + 0.155543i \(0.950287\pi\)
\(32\) 0 0
\(33\) −12.0000 −2.08893
\(34\) 0 0
\(35\) 3.00000 0.507093
\(36\) 0 0
\(37\) −7.00000 −1.15079 −0.575396 0.817875i \(-0.695152\pi\)
−0.575396 + 0.817875i \(0.695152\pi\)
\(38\) 0 0
\(39\) −8.00000 −1.28103
\(40\) 0 0
\(41\) 5.00000 0.780869 0.390434 0.920631i \(-0.372325\pi\)
0.390434 + 0.920631i \(0.372325\pi\)
\(42\) 0 0
\(43\) 12.0000 1.82998 0.914991 0.403473i \(-0.132197\pi\)
0.914991 + 0.403473i \(0.132197\pi\)
\(44\) 0 0
\(45\) 1.00000 0.149071
\(46\) 0 0
\(47\) −12.0000 −1.75038 −0.875190 0.483779i \(-0.839264\pi\)
−0.875190 + 0.483779i \(0.839264\pi\)
\(48\) 0 0
\(49\) 2.00000 0.285714
\(50\) 0 0
\(51\) 14.0000 1.96039
\(52\) 0 0
\(53\) −7.00000 −0.961524 −0.480762 0.876851i \(-0.659640\pi\)
−0.480762 + 0.876851i \(0.659640\pi\)
\(54\) 0 0
\(55\) −6.00000 −0.809040
\(56\) 0 0
\(57\) −16.0000 −2.11925
\(58\) 0 0
\(59\) −5.00000 −0.650945 −0.325472 0.945552i \(-0.605523\pi\)
−0.325472 + 0.945552i \(0.605523\pi\)
\(60\) 0 0
\(61\) −2.00000 −0.256074 −0.128037 0.991769i \(-0.540868\pi\)
−0.128037 + 0.991769i \(0.540868\pi\)
\(62\) 0 0
\(63\) 3.00000 0.377964
\(64\) 0 0
\(65\) −4.00000 −0.496139
\(66\) 0 0
\(67\) 1.00000 0.122169 0.0610847 0.998133i \(-0.480544\pi\)
0.0610847 + 0.998133i \(0.480544\pi\)
\(68\) 0 0
\(69\) 2.00000 0.240772
\(70\) 0 0
\(71\) 3.00000 0.356034 0.178017 0.984027i \(-0.443032\pi\)
0.178017 + 0.984027i \(0.443032\pi\)
\(72\) 0 0
\(73\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(74\) 0 0
\(75\) 2.00000 0.230940
\(76\) 0 0
\(77\) −18.0000 −2.05129
\(78\) 0 0
\(79\) 12.0000 1.35011 0.675053 0.737769i \(-0.264121\pi\)
0.675053 + 0.737769i \(0.264121\pi\)
\(80\) 0 0
\(81\) −11.0000 −1.22222
\(82\) 0 0
\(83\) 5.00000 0.548821 0.274411 0.961613i \(-0.411517\pi\)
0.274411 + 0.961613i \(0.411517\pi\)
\(84\) 0 0
\(85\) 7.00000 0.759257
\(86\) 0 0
\(87\) −6.00000 −0.643268
\(88\) 0 0
\(89\) −6.00000 −0.635999 −0.317999 0.948091i \(-0.603011\pi\)
−0.317999 + 0.948091i \(0.603011\pi\)
\(90\) 0 0
\(91\) −12.0000 −1.25794
\(92\) 0 0
\(93\) −22.0000 −2.28129
\(94\) 0 0
\(95\) −8.00000 −0.820783
\(96\) 0 0
\(97\) 10.0000 1.01535 0.507673 0.861550i \(-0.330506\pi\)
0.507673 + 0.861550i \(0.330506\pi\)
\(98\) 0 0
\(99\) −6.00000 −0.603023
\(100\) 0 0
\(101\) 1.00000 0.0995037 0.0497519 0.998762i \(-0.484157\pi\)
0.0497519 + 0.998762i \(0.484157\pi\)
\(102\) 0 0
\(103\) −8.00000 −0.788263 −0.394132 0.919054i \(-0.628955\pi\)
−0.394132 + 0.919054i \(0.628955\pi\)
\(104\) 0 0
\(105\) 6.00000 0.585540
\(106\) 0 0
\(107\) 1.00000 0.0966736 0.0483368 0.998831i \(-0.484608\pi\)
0.0483368 + 0.998831i \(0.484608\pi\)
\(108\) 0 0
\(109\) 4.00000 0.383131 0.191565 0.981480i \(-0.438644\pi\)
0.191565 + 0.981480i \(0.438644\pi\)
\(110\) 0 0
\(111\) −14.0000 −1.32882
\(112\) 0 0
\(113\) −1.00000 −0.0940721 −0.0470360 0.998893i \(-0.514978\pi\)
−0.0470360 + 0.998893i \(0.514978\pi\)
\(114\) 0 0
\(115\) 1.00000 0.0932505
\(116\) 0 0
\(117\) −4.00000 −0.369800
\(118\) 0 0
\(119\) 21.0000 1.92507
\(120\) 0 0
\(121\) 25.0000 2.27273
\(122\) 0 0
\(123\) 10.0000 0.901670
\(124\) 0 0
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) −14.0000 −1.24230 −0.621150 0.783692i \(-0.713334\pi\)
−0.621150 + 0.783692i \(0.713334\pi\)
\(128\) 0 0
\(129\) 24.0000 2.11308
\(130\) 0 0
\(131\) 16.0000 1.39793 0.698963 0.715158i \(-0.253645\pi\)
0.698963 + 0.715158i \(0.253645\pi\)
\(132\) 0 0
\(133\) −24.0000 −2.08106
\(134\) 0 0
\(135\) −4.00000 −0.344265
\(136\) 0 0
\(137\) −18.0000 −1.53784 −0.768922 0.639343i \(-0.779207\pi\)
−0.768922 + 0.639343i \(0.779207\pi\)
\(138\) 0 0
\(139\) −19.0000 −1.61156 −0.805779 0.592216i \(-0.798253\pi\)
−0.805779 + 0.592216i \(0.798253\pi\)
\(140\) 0 0
\(141\) −24.0000 −2.02116
\(142\) 0 0
\(143\) 24.0000 2.00698
\(144\) 0 0
\(145\) −3.00000 −0.249136
\(146\) 0 0
\(147\) 4.00000 0.329914
\(148\) 0 0
\(149\) 10.0000 0.819232 0.409616 0.912258i \(-0.365663\pi\)
0.409616 + 0.912258i \(0.365663\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(152\) 0 0
\(153\) 7.00000 0.565916
\(154\) 0 0
\(155\) −11.0000 −0.883541
\(156\) 0 0
\(157\) −5.00000 −0.399043 −0.199522 0.979893i \(-0.563939\pi\)
−0.199522 + 0.979893i \(0.563939\pi\)
\(158\) 0 0
\(159\) −14.0000 −1.11027
\(160\) 0 0
\(161\) 3.00000 0.236433
\(162\) 0 0
\(163\) −6.00000 −0.469956 −0.234978 0.972001i \(-0.575502\pi\)
−0.234978 + 0.972001i \(0.575502\pi\)
\(164\) 0 0
\(165\) −12.0000 −0.934199
\(166\) 0 0
\(167\) −16.0000 −1.23812 −0.619059 0.785345i \(-0.712486\pi\)
−0.619059 + 0.785345i \(0.712486\pi\)
\(168\) 0 0
\(169\) 3.00000 0.230769
\(170\) 0 0
\(171\) −8.00000 −0.611775
\(172\) 0 0
\(173\) 6.00000 0.456172 0.228086 0.973641i \(-0.426753\pi\)
0.228086 + 0.973641i \(0.426753\pi\)
\(174\) 0 0
\(175\) 3.00000 0.226779
\(176\) 0 0
\(177\) −10.0000 −0.751646
\(178\) 0 0
\(179\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(180\) 0 0
\(181\) −2.00000 −0.148659 −0.0743294 0.997234i \(-0.523682\pi\)
−0.0743294 + 0.997234i \(0.523682\pi\)
\(182\) 0 0
\(183\) −4.00000 −0.295689
\(184\) 0 0
\(185\) −7.00000 −0.514650
\(186\) 0 0
\(187\) −42.0000 −3.07134
\(188\) 0 0
\(189\) −12.0000 −0.872872
\(190\) 0 0
\(191\) −4.00000 −0.289430 −0.144715 0.989473i \(-0.546227\pi\)
−0.144715 + 0.989473i \(0.546227\pi\)
\(192\) 0 0
\(193\) 2.00000 0.143963 0.0719816 0.997406i \(-0.477068\pi\)
0.0719816 + 0.997406i \(0.477068\pi\)
\(194\) 0 0
\(195\) −8.00000 −0.572892
\(196\) 0 0
\(197\) 22.0000 1.56744 0.783718 0.621117i \(-0.213321\pi\)
0.783718 + 0.621117i \(0.213321\pi\)
\(198\) 0 0
\(199\) 4.00000 0.283552 0.141776 0.989899i \(-0.454719\pi\)
0.141776 + 0.989899i \(0.454719\pi\)
\(200\) 0 0
\(201\) 2.00000 0.141069
\(202\) 0 0
\(203\) −9.00000 −0.631676
\(204\) 0 0
\(205\) 5.00000 0.349215
\(206\) 0 0
\(207\) 1.00000 0.0695048
\(208\) 0 0
\(209\) 48.0000 3.32023
\(210\) 0 0
\(211\) −9.00000 −0.619586 −0.309793 0.950804i \(-0.600260\pi\)
−0.309793 + 0.950804i \(0.600260\pi\)
\(212\) 0 0
\(213\) 6.00000 0.411113
\(214\) 0 0
\(215\) 12.0000 0.818393
\(216\) 0 0
\(217\) −33.0000 −2.24019
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −28.0000 −1.88348
\(222\) 0 0
\(223\) −28.0000 −1.87502 −0.937509 0.347960i \(-0.886874\pi\)
−0.937509 + 0.347960i \(0.886874\pi\)
\(224\) 0 0
\(225\) 1.00000 0.0666667
\(226\) 0 0
\(227\) 12.0000 0.796468 0.398234 0.917284i \(-0.369623\pi\)
0.398234 + 0.917284i \(0.369623\pi\)
\(228\) 0 0
\(229\) 10.0000 0.660819 0.330409 0.943838i \(-0.392813\pi\)
0.330409 + 0.943838i \(0.392813\pi\)
\(230\) 0 0
\(231\) −36.0000 −2.36863
\(232\) 0 0
\(233\) 12.0000 0.786146 0.393073 0.919507i \(-0.371412\pi\)
0.393073 + 0.919507i \(0.371412\pi\)
\(234\) 0 0
\(235\) −12.0000 −0.782794
\(236\) 0 0
\(237\) 24.0000 1.55897
\(238\) 0 0
\(239\) 17.0000 1.09964 0.549819 0.835284i \(-0.314697\pi\)
0.549819 + 0.835284i \(0.314697\pi\)
\(240\) 0 0
\(241\) 12.0000 0.772988 0.386494 0.922292i \(-0.373686\pi\)
0.386494 + 0.922292i \(0.373686\pi\)
\(242\) 0 0
\(243\) −10.0000 −0.641500
\(244\) 0 0
\(245\) 2.00000 0.127775
\(246\) 0 0
\(247\) 32.0000 2.03611
\(248\) 0 0
\(249\) 10.0000 0.633724
\(250\) 0 0
\(251\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(252\) 0 0
\(253\) −6.00000 −0.377217
\(254\) 0 0
\(255\) 14.0000 0.876714
\(256\) 0 0
\(257\) −4.00000 −0.249513 −0.124757 0.992187i \(-0.539815\pi\)
−0.124757 + 0.992187i \(0.539815\pi\)
\(258\) 0 0
\(259\) −21.0000 −1.30488
\(260\) 0 0
\(261\) −3.00000 −0.185695
\(262\) 0 0
\(263\) −3.00000 −0.184988 −0.0924940 0.995713i \(-0.529484\pi\)
−0.0924940 + 0.995713i \(0.529484\pi\)
\(264\) 0 0
\(265\) −7.00000 −0.430007
\(266\) 0 0
\(267\) −12.0000 −0.734388
\(268\) 0 0
\(269\) −13.0000 −0.792624 −0.396312 0.918116i \(-0.629710\pi\)
−0.396312 + 0.918116i \(0.629710\pi\)
\(270\) 0 0
\(271\) 23.0000 1.39715 0.698575 0.715537i \(-0.253818\pi\)
0.698575 + 0.715537i \(0.253818\pi\)
\(272\) 0 0
\(273\) −24.0000 −1.45255
\(274\) 0 0
\(275\) −6.00000 −0.361814
\(276\) 0 0
\(277\) −18.0000 −1.08152 −0.540758 0.841178i \(-0.681862\pi\)
−0.540758 + 0.841178i \(0.681862\pi\)
\(278\) 0 0
\(279\) −11.0000 −0.658553
\(280\) 0 0
\(281\) −30.0000 −1.78965 −0.894825 0.446417i \(-0.852700\pi\)
−0.894825 + 0.446417i \(0.852700\pi\)
\(282\) 0 0
\(283\) 11.0000 0.653882 0.326941 0.945045i \(-0.393982\pi\)
0.326941 + 0.945045i \(0.393982\pi\)
\(284\) 0 0
\(285\) −16.0000 −0.947758
\(286\) 0 0
\(287\) 15.0000 0.885422
\(288\) 0 0
\(289\) 32.0000 1.88235
\(290\) 0 0
\(291\) 20.0000 1.17242
\(292\) 0 0
\(293\) 27.0000 1.57736 0.788678 0.614806i \(-0.210766\pi\)
0.788678 + 0.614806i \(0.210766\pi\)
\(294\) 0 0
\(295\) −5.00000 −0.291111
\(296\) 0 0
\(297\) 24.0000 1.39262
\(298\) 0 0
\(299\) −4.00000 −0.231326
\(300\) 0 0
\(301\) 36.0000 2.07501
\(302\) 0 0
\(303\) 2.00000 0.114897
\(304\) 0 0
\(305\) −2.00000 −0.114520
\(306\) 0 0
\(307\) 2.00000 0.114146 0.0570730 0.998370i \(-0.481823\pi\)
0.0570730 + 0.998370i \(0.481823\pi\)
\(308\) 0 0
\(309\) −16.0000 −0.910208
\(310\) 0 0
\(311\) −12.0000 −0.680458 −0.340229 0.940343i \(-0.610505\pi\)
−0.340229 + 0.940343i \(0.610505\pi\)
\(312\) 0 0
\(313\) 9.00000 0.508710 0.254355 0.967111i \(-0.418137\pi\)
0.254355 + 0.967111i \(0.418137\pi\)
\(314\) 0 0
\(315\) 3.00000 0.169031
\(316\) 0 0
\(317\) −2.00000 −0.112331 −0.0561656 0.998421i \(-0.517887\pi\)
−0.0561656 + 0.998421i \(0.517887\pi\)
\(318\) 0 0
\(319\) 18.0000 1.00781
\(320\) 0 0
\(321\) 2.00000 0.111629
\(322\) 0 0
\(323\) −56.0000 −3.11592
\(324\) 0 0
\(325\) −4.00000 −0.221880
\(326\) 0 0
\(327\) 8.00000 0.442401
\(328\) 0 0
\(329\) −36.0000 −1.98474
\(330\) 0 0
\(331\) 31.0000 1.70391 0.851957 0.523612i \(-0.175416\pi\)
0.851957 + 0.523612i \(0.175416\pi\)
\(332\) 0 0
\(333\) −7.00000 −0.383598
\(334\) 0 0
\(335\) 1.00000 0.0546358
\(336\) 0 0
\(337\) 26.0000 1.41631 0.708155 0.706057i \(-0.249528\pi\)
0.708155 + 0.706057i \(0.249528\pi\)
\(338\) 0 0
\(339\) −2.00000 −0.108625
\(340\) 0 0
\(341\) 66.0000 3.57410
\(342\) 0 0
\(343\) −15.0000 −0.809924
\(344\) 0 0
\(345\) 2.00000 0.107676
\(346\) 0 0
\(347\) 22.0000 1.18102 0.590511 0.807030i \(-0.298926\pi\)
0.590511 + 0.807030i \(0.298926\pi\)
\(348\) 0 0
\(349\) −23.0000 −1.23116 −0.615581 0.788074i \(-0.711079\pi\)
−0.615581 + 0.788074i \(0.711079\pi\)
\(350\) 0 0
\(351\) 16.0000 0.854017
\(352\) 0 0
\(353\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(354\) 0 0
\(355\) 3.00000 0.159223
\(356\) 0 0
\(357\) 42.0000 2.22288
\(358\) 0 0
\(359\) −14.0000 −0.738892 −0.369446 0.929252i \(-0.620452\pi\)
−0.369446 + 0.929252i \(0.620452\pi\)
\(360\) 0 0
\(361\) 45.0000 2.36842
\(362\) 0 0
\(363\) 50.0000 2.62432
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 17.0000 0.887393 0.443696 0.896177i \(-0.353667\pi\)
0.443696 + 0.896177i \(0.353667\pi\)
\(368\) 0 0
\(369\) 5.00000 0.260290
\(370\) 0 0
\(371\) −21.0000 −1.09027
\(372\) 0 0
\(373\) 10.0000 0.517780 0.258890 0.965907i \(-0.416643\pi\)
0.258890 + 0.965907i \(0.416643\pi\)
\(374\) 0 0
\(375\) 2.00000 0.103280
\(376\) 0 0
\(377\) 12.0000 0.618031
\(378\) 0 0
\(379\) 6.00000 0.308199 0.154100 0.988055i \(-0.450752\pi\)
0.154100 + 0.988055i \(0.450752\pi\)
\(380\) 0 0
\(381\) −28.0000 −1.43448
\(382\) 0 0
\(383\) 1.00000 0.0510976 0.0255488 0.999674i \(-0.491867\pi\)
0.0255488 + 0.999674i \(0.491867\pi\)
\(384\) 0 0
\(385\) −18.0000 −0.917365
\(386\) 0 0
\(387\) 12.0000 0.609994
\(388\) 0 0
\(389\) −26.0000 −1.31825 −0.659126 0.752032i \(-0.729074\pi\)
−0.659126 + 0.752032i \(0.729074\pi\)
\(390\) 0 0
\(391\) 7.00000 0.354005
\(392\) 0 0
\(393\) 32.0000 1.61419
\(394\) 0 0
\(395\) 12.0000 0.603786
\(396\) 0 0
\(397\) 14.0000 0.702640 0.351320 0.936255i \(-0.385733\pi\)
0.351320 + 0.936255i \(0.385733\pi\)
\(398\) 0 0
\(399\) −48.0000 −2.40301
\(400\) 0 0
\(401\) 18.0000 0.898877 0.449439 0.893311i \(-0.351624\pi\)
0.449439 + 0.893311i \(0.351624\pi\)
\(402\) 0 0
\(403\) 44.0000 2.19180
\(404\) 0 0
\(405\) −11.0000 −0.546594
\(406\) 0 0
\(407\) 42.0000 2.08186
\(408\) 0 0
\(409\) 29.0000 1.43396 0.716979 0.697095i \(-0.245524\pi\)
0.716979 + 0.697095i \(0.245524\pi\)
\(410\) 0 0
\(411\) −36.0000 −1.77575
\(412\) 0 0
\(413\) −15.0000 −0.738102
\(414\) 0 0
\(415\) 5.00000 0.245440
\(416\) 0 0
\(417\) −38.0000 −1.86087
\(418\) 0 0
\(419\) 10.0000 0.488532 0.244266 0.969708i \(-0.421453\pi\)
0.244266 + 0.969708i \(0.421453\pi\)
\(420\) 0 0
\(421\) 10.0000 0.487370 0.243685 0.969854i \(-0.421644\pi\)
0.243685 + 0.969854i \(0.421644\pi\)
\(422\) 0 0
\(423\) −12.0000 −0.583460
\(424\) 0 0
\(425\) 7.00000 0.339550
\(426\) 0 0
\(427\) −6.00000 −0.290360
\(428\) 0 0
\(429\) 48.0000 2.31746
\(430\) 0 0
\(431\) −10.0000 −0.481683 −0.240842 0.970564i \(-0.577423\pi\)
−0.240842 + 0.970564i \(0.577423\pi\)
\(432\) 0 0
\(433\) −17.0000 −0.816968 −0.408484 0.912766i \(-0.633942\pi\)
−0.408484 + 0.912766i \(0.633942\pi\)
\(434\) 0 0
\(435\) −6.00000 −0.287678
\(436\) 0 0
\(437\) −8.00000 −0.382692
\(438\) 0 0
\(439\) −16.0000 −0.763638 −0.381819 0.924237i \(-0.624702\pi\)
−0.381819 + 0.924237i \(0.624702\pi\)
\(440\) 0 0
\(441\) 2.00000 0.0952381
\(442\) 0 0
\(443\) −22.0000 −1.04525 −0.522626 0.852562i \(-0.675047\pi\)
−0.522626 + 0.852562i \(0.675047\pi\)
\(444\) 0 0
\(445\) −6.00000 −0.284427
\(446\) 0 0
\(447\) 20.0000 0.945968
\(448\) 0 0
\(449\) −13.0000 −0.613508 −0.306754 0.951789i \(-0.599243\pi\)
−0.306754 + 0.951789i \(0.599243\pi\)
\(450\) 0 0
\(451\) −30.0000 −1.41264
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −12.0000 −0.562569
\(456\) 0 0
\(457\) −11.0000 −0.514558 −0.257279 0.966337i \(-0.582826\pi\)
−0.257279 + 0.966337i \(0.582826\pi\)
\(458\) 0 0
\(459\) −28.0000 −1.30693
\(460\) 0 0
\(461\) 14.0000 0.652045 0.326023 0.945362i \(-0.394291\pi\)
0.326023 + 0.945362i \(0.394291\pi\)
\(462\) 0 0
\(463\) −28.0000 −1.30127 −0.650635 0.759390i \(-0.725497\pi\)
−0.650635 + 0.759390i \(0.725497\pi\)
\(464\) 0 0
\(465\) −22.0000 −1.02023
\(466\) 0 0
\(467\) −19.0000 −0.879215 −0.439608 0.898190i \(-0.644882\pi\)
−0.439608 + 0.898190i \(0.644882\pi\)
\(468\) 0 0
\(469\) 3.00000 0.138527
\(470\) 0 0
\(471\) −10.0000 −0.460776
\(472\) 0 0
\(473\) −72.0000 −3.31056
\(474\) 0 0
\(475\) −8.00000 −0.367065
\(476\) 0 0
\(477\) −7.00000 −0.320508
\(478\) 0 0
\(479\) −16.0000 −0.731059 −0.365529 0.930800i \(-0.619112\pi\)
−0.365529 + 0.930800i \(0.619112\pi\)
\(480\) 0 0
\(481\) 28.0000 1.27669
\(482\) 0 0
\(483\) 6.00000 0.273009
\(484\) 0 0
\(485\) 10.0000 0.454077
\(486\) 0 0
\(487\) −22.0000 −0.996915 −0.498458 0.866914i \(-0.666100\pi\)
−0.498458 + 0.866914i \(0.666100\pi\)
\(488\) 0 0
\(489\) −12.0000 −0.542659
\(490\) 0 0
\(491\) 5.00000 0.225647 0.112823 0.993615i \(-0.464011\pi\)
0.112823 + 0.993615i \(0.464011\pi\)
\(492\) 0 0
\(493\) −21.0000 −0.945792
\(494\) 0 0
\(495\) −6.00000 −0.269680
\(496\) 0 0
\(497\) 9.00000 0.403705
\(498\) 0 0
\(499\) −35.0000 −1.56682 −0.783408 0.621508i \(-0.786520\pi\)
−0.783408 + 0.621508i \(0.786520\pi\)
\(500\) 0 0
\(501\) −32.0000 −1.42965
\(502\) 0 0
\(503\) −19.0000 −0.847168 −0.423584 0.905857i \(-0.639228\pi\)
−0.423584 + 0.905857i \(0.639228\pi\)
\(504\) 0 0
\(505\) 1.00000 0.0444994
\(506\) 0 0
\(507\) 6.00000 0.266469
\(508\) 0 0
\(509\) −2.00000 −0.0886484 −0.0443242 0.999017i \(-0.514113\pi\)
−0.0443242 + 0.999017i \(0.514113\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 32.0000 1.41283
\(514\) 0 0
\(515\) −8.00000 −0.352522
\(516\) 0 0
\(517\) 72.0000 3.16656
\(518\) 0 0
\(519\) 12.0000 0.526742
\(520\) 0 0
\(521\) −36.0000 −1.57719 −0.788594 0.614914i \(-0.789191\pi\)
−0.788594 + 0.614914i \(0.789191\pi\)
\(522\) 0 0
\(523\) 28.0000 1.22435 0.612177 0.790721i \(-0.290294\pi\)
0.612177 + 0.790721i \(0.290294\pi\)
\(524\) 0 0
\(525\) 6.00000 0.261861
\(526\) 0 0
\(527\) −77.0000 −3.35417
\(528\) 0 0
\(529\) 1.00000 0.0434783
\(530\) 0 0
\(531\) −5.00000 −0.216982
\(532\) 0 0
\(533\) −20.0000 −0.866296
\(534\) 0 0
\(535\) 1.00000 0.0432338
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −12.0000 −0.516877
\(540\) 0 0
\(541\) 10.0000 0.429934 0.214967 0.976621i \(-0.431036\pi\)
0.214967 + 0.976621i \(0.431036\pi\)
\(542\) 0 0
\(543\) −4.00000 −0.171656
\(544\) 0 0
\(545\) 4.00000 0.171341
\(546\) 0 0
\(547\) −36.0000 −1.53925 −0.769624 0.638497i \(-0.779557\pi\)
−0.769624 + 0.638497i \(0.779557\pi\)
\(548\) 0 0
\(549\) −2.00000 −0.0853579
\(550\) 0 0
\(551\) 24.0000 1.02243
\(552\) 0 0
\(553\) 36.0000 1.53088
\(554\) 0 0
\(555\) −14.0000 −0.594267
\(556\) 0 0
\(557\) 1.00000 0.0423714 0.0211857 0.999776i \(-0.493256\pi\)
0.0211857 + 0.999776i \(0.493256\pi\)
\(558\) 0 0
\(559\) −48.0000 −2.03018
\(560\) 0 0
\(561\) −84.0000 −3.54648
\(562\) 0 0
\(563\) 15.0000 0.632175 0.316087 0.948730i \(-0.397631\pi\)
0.316087 + 0.948730i \(0.397631\pi\)
\(564\) 0 0
\(565\) −1.00000 −0.0420703
\(566\) 0 0
\(567\) −33.0000 −1.38587
\(568\) 0 0
\(569\) −18.0000 −0.754599 −0.377300 0.926091i \(-0.623147\pi\)
−0.377300 + 0.926091i \(0.623147\pi\)
\(570\) 0 0
\(571\) −14.0000 −0.585882 −0.292941 0.956131i \(-0.594634\pi\)
−0.292941 + 0.956131i \(0.594634\pi\)
\(572\) 0 0
\(573\) −8.00000 −0.334205
\(574\) 0 0
\(575\) 1.00000 0.0417029
\(576\) 0 0
\(577\) 22.0000 0.915872 0.457936 0.888985i \(-0.348589\pi\)
0.457936 + 0.888985i \(0.348589\pi\)
\(578\) 0 0
\(579\) 4.00000 0.166234
\(580\) 0 0
\(581\) 15.0000 0.622305
\(582\) 0 0
\(583\) 42.0000 1.73946
\(584\) 0 0
\(585\) −4.00000 −0.165380
\(586\) 0 0
\(587\) 10.0000 0.412744 0.206372 0.978474i \(-0.433834\pi\)
0.206372 + 0.978474i \(0.433834\pi\)
\(588\) 0 0
\(589\) 88.0000 3.62598
\(590\) 0 0
\(591\) 44.0000 1.80992
\(592\) 0 0
\(593\) 18.0000 0.739171 0.369586 0.929197i \(-0.379500\pi\)
0.369586 + 0.929197i \(0.379500\pi\)
\(594\) 0 0
\(595\) 21.0000 0.860916
\(596\) 0 0
\(597\) 8.00000 0.327418
\(598\) 0 0
\(599\) −24.0000 −0.980613 −0.490307 0.871550i \(-0.663115\pi\)
−0.490307 + 0.871550i \(0.663115\pi\)
\(600\) 0 0
\(601\) 19.0000 0.775026 0.387513 0.921864i \(-0.373334\pi\)
0.387513 + 0.921864i \(0.373334\pi\)
\(602\) 0 0
\(603\) 1.00000 0.0407231
\(604\) 0 0
\(605\) 25.0000 1.01639
\(606\) 0 0
\(607\) −2.00000 −0.0811775 −0.0405887 0.999176i \(-0.512923\pi\)
−0.0405887 + 0.999176i \(0.512923\pi\)
\(608\) 0 0
\(609\) −18.0000 −0.729397
\(610\) 0 0
\(611\) 48.0000 1.94187
\(612\) 0 0
\(613\) −38.0000 −1.53481 −0.767403 0.641165i \(-0.778451\pi\)
−0.767403 + 0.641165i \(0.778451\pi\)
\(614\) 0 0
\(615\) 10.0000 0.403239
\(616\) 0 0
\(617\) −35.0000 −1.40905 −0.704523 0.709681i \(-0.748839\pi\)
−0.704523 + 0.709681i \(0.748839\pi\)
\(618\) 0 0
\(619\) −18.0000 −0.723481 −0.361741 0.932279i \(-0.617817\pi\)
−0.361741 + 0.932279i \(0.617817\pi\)
\(620\) 0 0
\(621\) −4.00000 −0.160514
\(622\) 0 0
\(623\) −18.0000 −0.721155
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 96.0000 3.83387
\(628\) 0 0
\(629\) −49.0000 −1.95376
\(630\) 0 0
\(631\) −14.0000 −0.557331 −0.278666 0.960388i \(-0.589892\pi\)
−0.278666 + 0.960388i \(0.589892\pi\)
\(632\) 0 0
\(633\) −18.0000 −0.715436
\(634\) 0 0
\(635\) −14.0000 −0.555573
\(636\) 0 0
\(637\) −8.00000 −0.316972
\(638\) 0 0
\(639\) 3.00000 0.118678
\(640\) 0 0
\(641\) 42.0000 1.65890 0.829450 0.558581i \(-0.188654\pi\)
0.829450 + 0.558581i \(0.188654\pi\)
\(642\) 0 0
\(643\) 5.00000 0.197181 0.0985904 0.995128i \(-0.468567\pi\)
0.0985904 + 0.995128i \(0.468567\pi\)
\(644\) 0 0
\(645\) 24.0000 0.944999
\(646\) 0 0
\(647\) −32.0000 −1.25805 −0.629025 0.777385i \(-0.716546\pi\)
−0.629025 + 0.777385i \(0.716546\pi\)
\(648\) 0 0
\(649\) 30.0000 1.17760
\(650\) 0 0
\(651\) −66.0000 −2.58674
\(652\) 0 0
\(653\) −10.0000 −0.391330 −0.195665 0.980671i \(-0.562687\pi\)
−0.195665 + 0.980671i \(0.562687\pi\)
\(654\) 0 0
\(655\) 16.0000 0.625172
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −24.0000 −0.934907 −0.467454 0.884018i \(-0.654829\pi\)
−0.467454 + 0.884018i \(0.654829\pi\)
\(660\) 0 0
\(661\) 30.0000 1.16686 0.583432 0.812162i \(-0.301709\pi\)
0.583432 + 0.812162i \(0.301709\pi\)
\(662\) 0 0
\(663\) −56.0000 −2.17486
\(664\) 0 0
\(665\) −24.0000 −0.930680
\(666\) 0 0
\(667\) −3.00000 −0.116160
\(668\) 0 0
\(669\) −56.0000 −2.16509
\(670\) 0 0
\(671\) 12.0000 0.463255
\(672\) 0 0
\(673\) −20.0000 −0.770943 −0.385472 0.922720i \(-0.625961\pi\)
−0.385472 + 0.922720i \(0.625961\pi\)
\(674\) 0 0
\(675\) −4.00000 −0.153960
\(676\) 0 0
\(677\) −21.0000 −0.807096 −0.403548 0.914959i \(-0.632223\pi\)
−0.403548 + 0.914959i \(0.632223\pi\)
\(678\) 0 0
\(679\) 30.0000 1.15129
\(680\) 0 0
\(681\) 24.0000 0.919682
\(682\) 0 0
\(683\) −46.0000 −1.76014 −0.880071 0.474843i \(-0.842505\pi\)
−0.880071 + 0.474843i \(0.842505\pi\)
\(684\) 0 0
\(685\) −18.0000 −0.687745
\(686\) 0 0
\(687\) 20.0000 0.763048
\(688\) 0 0
\(689\) 28.0000 1.06672
\(690\) 0 0
\(691\) 28.0000 1.06517 0.532585 0.846376i \(-0.321221\pi\)
0.532585 + 0.846376i \(0.321221\pi\)
\(692\) 0 0
\(693\) −18.0000 −0.683763
\(694\) 0 0
\(695\) −19.0000 −0.720711
\(696\) 0 0
\(697\) 35.0000 1.32572
\(698\) 0 0
\(699\) 24.0000 0.907763
\(700\) 0 0
\(701\) −8.00000 −0.302156 −0.151078 0.988522i \(-0.548274\pi\)
−0.151078 + 0.988522i \(0.548274\pi\)
\(702\) 0 0
\(703\) 56.0000 2.11208
\(704\) 0 0
\(705\) −24.0000 −0.903892
\(706\) 0 0
\(707\) 3.00000 0.112827
\(708\) 0 0
\(709\) −30.0000 −1.12667 −0.563337 0.826227i \(-0.690483\pi\)
−0.563337 + 0.826227i \(0.690483\pi\)
\(710\) 0 0
\(711\) 12.0000 0.450035
\(712\) 0 0
\(713\) −11.0000 −0.411953
\(714\) 0 0
\(715\) 24.0000 0.897549
\(716\) 0 0
\(717\) 34.0000 1.26975
\(718\) 0 0
\(719\) 45.0000 1.67822 0.839108 0.543964i \(-0.183077\pi\)
0.839108 + 0.543964i \(0.183077\pi\)
\(720\) 0 0
\(721\) −24.0000 −0.893807
\(722\) 0 0
\(723\) 24.0000 0.892570
\(724\) 0 0
\(725\) −3.00000 −0.111417
\(726\) 0 0
\(727\) −47.0000 −1.74313 −0.871567 0.490277i \(-0.836896\pi\)
−0.871567 + 0.490277i \(0.836896\pi\)
\(728\) 0 0
\(729\) 13.0000 0.481481
\(730\) 0 0
\(731\) 84.0000 3.10685
\(732\) 0 0
\(733\) 1.00000 0.0369358 0.0184679 0.999829i \(-0.494121\pi\)
0.0184679 + 0.999829i \(0.494121\pi\)
\(734\) 0 0
\(735\) 4.00000 0.147542
\(736\) 0 0
\(737\) −6.00000 −0.221013
\(738\) 0 0
\(739\) 19.0000 0.698926 0.349463 0.936950i \(-0.386364\pi\)
0.349463 + 0.936950i \(0.386364\pi\)
\(740\) 0 0
\(741\) 64.0000 2.35110
\(742\) 0 0
\(743\) −8.00000 −0.293492 −0.146746 0.989174i \(-0.546880\pi\)
−0.146746 + 0.989174i \(0.546880\pi\)
\(744\) 0 0
\(745\) 10.0000 0.366372
\(746\) 0 0
\(747\) 5.00000 0.182940
\(748\) 0 0
\(749\) 3.00000 0.109618
\(750\) 0 0
\(751\) 4.00000 0.145962 0.0729810 0.997333i \(-0.476749\pi\)
0.0729810 + 0.997333i \(0.476749\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −5.00000 −0.181728 −0.0908640 0.995863i \(-0.528963\pi\)
−0.0908640 + 0.995863i \(0.528963\pi\)
\(758\) 0 0
\(759\) −12.0000 −0.435572
\(760\) 0 0
\(761\) −15.0000 −0.543750 −0.271875 0.962333i \(-0.587644\pi\)
−0.271875 + 0.962333i \(0.587644\pi\)
\(762\) 0 0
\(763\) 12.0000 0.434429
\(764\) 0 0
\(765\) 7.00000 0.253086
\(766\) 0 0
\(767\) 20.0000 0.722158
\(768\) 0 0
\(769\) 20.0000 0.721218 0.360609 0.932717i \(-0.382569\pi\)
0.360609 + 0.932717i \(0.382569\pi\)
\(770\) 0 0
\(771\) −8.00000 −0.288113
\(772\) 0 0
\(773\) 18.0000 0.647415 0.323708 0.946157i \(-0.395071\pi\)
0.323708 + 0.946157i \(0.395071\pi\)
\(774\) 0 0
\(775\) −11.0000 −0.395132
\(776\) 0 0
\(777\) −42.0000 −1.50674
\(778\) 0 0
\(779\) −40.0000 −1.43315
\(780\) 0 0
\(781\) −18.0000 −0.644091
\(782\) 0 0
\(783\) 12.0000 0.428845
\(784\) 0 0
\(785\) −5.00000 −0.178458
\(786\) 0 0
\(787\) 29.0000 1.03374 0.516869 0.856064i \(-0.327097\pi\)
0.516869 + 0.856064i \(0.327097\pi\)
\(788\) 0 0
\(789\) −6.00000 −0.213606
\(790\) 0 0
\(791\) −3.00000 −0.106668
\(792\) 0 0
\(793\) 8.00000 0.284088
\(794\) 0 0
\(795\) −14.0000 −0.496529
\(796\) 0 0
\(797\) 15.0000 0.531327 0.265664 0.964066i \(-0.414409\pi\)
0.265664 + 0.964066i \(0.414409\pi\)
\(798\) 0 0
\(799\) −84.0000 −2.97171
\(800\) 0 0
\(801\) −6.00000 −0.212000
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 3.00000 0.105736
\(806\) 0 0
\(807\) −26.0000 −0.915243
\(808\) 0 0
\(809\) −21.0000 −0.738321 −0.369160 0.929366i \(-0.620355\pi\)
−0.369160 + 0.929366i \(0.620355\pi\)
\(810\) 0 0
\(811\) −25.0000 −0.877869 −0.438934 0.898519i \(-0.644644\pi\)
−0.438934 + 0.898519i \(0.644644\pi\)
\(812\) 0 0
\(813\) 46.0000 1.61329
\(814\) 0 0
\(815\) −6.00000 −0.210171
\(816\) 0 0
\(817\) −96.0000 −3.35861
\(818\) 0 0
\(819\) −12.0000 −0.419314
\(820\) 0 0
\(821\) 18.0000 0.628204 0.314102 0.949389i \(-0.398297\pi\)
0.314102 + 0.949389i \(0.398297\pi\)
\(822\) 0 0
\(823\) 14.0000 0.488009 0.244005 0.969774i \(-0.421539\pi\)
0.244005 + 0.969774i \(0.421539\pi\)
\(824\) 0 0
\(825\) −12.0000 −0.417786
\(826\) 0 0
\(827\) −45.0000 −1.56480 −0.782402 0.622774i \(-0.786006\pi\)
−0.782402 + 0.622774i \(0.786006\pi\)
\(828\) 0 0
\(829\) 3.00000 0.104194 0.0520972 0.998642i \(-0.483409\pi\)
0.0520972 + 0.998642i \(0.483409\pi\)
\(830\) 0 0
\(831\) −36.0000 −1.24883
\(832\) 0 0
\(833\) 14.0000 0.485071
\(834\) 0 0
\(835\) −16.0000 −0.553703
\(836\) 0 0
\(837\) 44.0000 1.52086
\(838\) 0 0
\(839\) −56.0000 −1.93333 −0.966667 0.256036i \(-0.917584\pi\)
−0.966667 + 0.256036i \(0.917584\pi\)
\(840\) 0 0
\(841\) −20.0000 −0.689655
\(842\) 0 0
\(843\) −60.0000 −2.06651
\(844\) 0 0
\(845\) 3.00000 0.103203
\(846\) 0 0
\(847\) 75.0000 2.57703
\(848\) 0 0
\(849\) 22.0000 0.755038
\(850\) 0 0
\(851\) −7.00000 −0.239957
\(852\) 0 0
\(853\) −20.0000 −0.684787 −0.342393 0.939557i \(-0.611238\pi\)
−0.342393 + 0.939557i \(0.611238\pi\)
\(854\) 0 0
\(855\) −8.00000 −0.273594
\(856\) 0 0
\(857\) 18.0000 0.614868 0.307434 0.951569i \(-0.400530\pi\)
0.307434 + 0.951569i \(0.400530\pi\)
\(858\) 0 0
\(859\) −29.0000 −0.989467 −0.494734 0.869045i \(-0.664734\pi\)
−0.494734 + 0.869045i \(0.664734\pi\)
\(860\) 0 0
\(861\) 30.0000 1.02240
\(862\) 0 0
\(863\) 54.0000 1.83818 0.919091 0.394046i \(-0.128925\pi\)
0.919091 + 0.394046i \(0.128925\pi\)
\(864\) 0 0
\(865\) 6.00000 0.204006
\(866\) 0 0
\(867\) 64.0000 2.17355
\(868\) 0 0
\(869\) −72.0000 −2.44243
\(870\) 0 0
\(871\) −4.00000 −0.135535
\(872\) 0 0
\(873\) 10.0000 0.338449
\(874\) 0 0
\(875\) 3.00000 0.101419
\(876\) 0 0
\(877\) 50.0000 1.68838 0.844190 0.536044i \(-0.180082\pi\)
0.844190 + 0.536044i \(0.180082\pi\)
\(878\) 0 0
\(879\) 54.0000 1.82137
\(880\) 0 0
\(881\) 14.0000 0.471672 0.235836 0.971793i \(-0.424217\pi\)
0.235836 + 0.971793i \(0.424217\pi\)
\(882\) 0 0
\(883\) 2.00000 0.0673054 0.0336527 0.999434i \(-0.489286\pi\)
0.0336527 + 0.999434i \(0.489286\pi\)
\(884\) 0 0
\(885\) −10.0000 −0.336146
\(886\) 0 0
\(887\) −12.0000 −0.402921 −0.201460 0.979497i \(-0.564569\pi\)
−0.201460 + 0.979497i \(0.564569\pi\)
\(888\) 0 0
\(889\) −42.0000 −1.40863
\(890\) 0 0
\(891\) 66.0000 2.21108
\(892\) 0 0
\(893\) 96.0000 3.21252
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) −8.00000 −0.267112
\(898\) 0 0
\(899\) 33.0000 1.10061
\(900\) 0 0
\(901\) −49.0000 −1.63243
\(902\) 0 0
\(903\) 72.0000 2.39601
\(904\) 0 0
\(905\) −2.00000 −0.0664822
\(906\) 0 0
\(907\) 13.0000 0.431658 0.215829 0.976431i \(-0.430755\pi\)
0.215829 + 0.976431i \(0.430755\pi\)
\(908\) 0 0
\(909\) 1.00000 0.0331679
\(910\) 0 0
\(911\) 42.0000 1.39152 0.695761 0.718273i \(-0.255067\pi\)
0.695761 + 0.718273i \(0.255067\pi\)
\(912\) 0 0
\(913\) −30.0000 −0.992855
\(914\) 0 0
\(915\) −4.00000 −0.132236
\(916\) 0 0
\(917\) 48.0000 1.58510
\(918\) 0 0
\(919\) 46.0000 1.51740 0.758700 0.651440i \(-0.225835\pi\)
0.758700 + 0.651440i \(0.225835\pi\)
\(920\) 0 0
\(921\) 4.00000 0.131804
\(922\) 0 0
\(923\) −12.0000 −0.394985
\(924\) 0 0
\(925\) −7.00000 −0.230159
\(926\) 0 0
\(927\) −8.00000 −0.262754
\(928\) 0 0
\(929\) −9.00000 −0.295280 −0.147640 0.989041i \(-0.547168\pi\)
−0.147640 + 0.989041i \(0.547168\pi\)
\(930\) 0 0
\(931\) −16.0000 −0.524379
\(932\) 0 0
\(933\) −24.0000 −0.785725
\(934\) 0 0
\(935\) −42.0000 −1.37355
\(936\) 0 0
\(937\) 34.0000 1.11073 0.555366 0.831606i \(-0.312578\pi\)
0.555366 + 0.831606i \(0.312578\pi\)
\(938\) 0 0
\(939\) 18.0000 0.587408
\(940\) 0 0
\(941\) −18.0000 −0.586783 −0.293392 0.955992i \(-0.594784\pi\)
−0.293392 + 0.955992i \(0.594784\pi\)
\(942\) 0 0
\(943\) 5.00000 0.162822
\(944\) 0 0
\(945\) −12.0000 −0.390360
\(946\) 0 0
\(947\) 8.00000 0.259965 0.129983 0.991516i \(-0.458508\pi\)
0.129983 + 0.991516i \(0.458508\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) −4.00000 −0.129709
\(952\) 0 0
\(953\) −42.0000 −1.36051 −0.680257 0.732974i \(-0.738132\pi\)
−0.680257 + 0.732974i \(0.738132\pi\)
\(954\) 0 0
\(955\) −4.00000 −0.129437
\(956\) 0 0
\(957\) 36.0000 1.16371
\(958\) 0 0
\(959\) −54.0000 −1.74375
\(960\) 0 0
\(961\) 90.0000 2.90323
\(962\) 0 0
\(963\) 1.00000 0.0322245
\(964\) 0 0
\(965\) 2.00000 0.0643823
\(966\) 0 0
\(967\) 32.0000 1.02905 0.514525 0.857475i \(-0.327968\pi\)
0.514525 + 0.857475i \(0.327968\pi\)
\(968\) 0 0
\(969\) −112.000 −3.59796
\(970\) 0 0
\(971\) 4.00000 0.128366 0.0641831 0.997938i \(-0.479556\pi\)
0.0641831 + 0.997938i \(0.479556\pi\)
\(972\) 0 0
\(973\) −57.0000 −1.82734
\(974\) 0 0
\(975\) −8.00000 −0.256205
\(976\) 0 0
\(977\) −43.0000 −1.37569 −0.687846 0.725857i \(-0.741444\pi\)
−0.687846 + 0.725857i \(0.741444\pi\)
\(978\) 0 0
\(979\) 36.0000 1.15056
\(980\) 0 0
\(981\) 4.00000 0.127710
\(982\) 0 0
\(983\) −21.0000 −0.669796 −0.334898 0.942254i \(-0.608702\pi\)
−0.334898 + 0.942254i \(0.608702\pi\)
\(984\) 0 0
\(985\) 22.0000 0.700978
\(986\) 0 0
\(987\) −72.0000 −2.29179
\(988\) 0 0
\(989\) 12.0000 0.381578
\(990\) 0 0
\(991\) 61.0000 1.93773 0.968864 0.247592i \(-0.0796392\pi\)
0.968864 + 0.247592i \(0.0796392\pi\)
\(992\) 0 0
\(993\) 62.0000 1.96751
\(994\) 0 0
\(995\) 4.00000 0.126809
\(996\) 0 0
\(997\) 32.0000 1.01345 0.506725 0.862108i \(-0.330856\pi\)
0.506725 + 0.862108i \(0.330856\pi\)
\(998\) 0 0
\(999\) 28.0000 0.885881
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7360.2.a.z.1.1 1
4.3 odd 2 7360.2.a.d.1.1 1
8.3 odd 2 3680.2.a.g.1.1 yes 1
8.5 even 2 3680.2.a.c.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3680.2.a.c.1.1 1 8.5 even 2
3680.2.a.g.1.1 yes 1 8.3 odd 2
7360.2.a.d.1.1 1 4.3 odd 2
7360.2.a.z.1.1 1 1.1 even 1 trivial