Properties

Label 7360.2.a.t.1.1
Level $7360$
Weight $2$
Character 7360.1
Self dual yes
Analytic conductor $58.770$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7360,2,Mod(1,7360)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7360, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7360.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 7360 = 2^{6} \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7360.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(58.7698958877\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 920)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 7360.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{3} -1.00000 q^{5} -2.00000 q^{9} +O(q^{10})\) \(q+1.00000 q^{3} -1.00000 q^{5} -2.00000 q^{9} -2.00000 q^{11} +5.00000 q^{13} -1.00000 q^{15} -4.00000 q^{17} +2.00000 q^{19} -1.00000 q^{23} +1.00000 q^{25} -5.00000 q^{27} +3.00000 q^{29} +7.00000 q^{31} -2.00000 q^{33} +2.00000 q^{37} +5.00000 q^{39} -9.00000 q^{41} +4.00000 q^{43} +2.00000 q^{45} -9.00000 q^{47} -7.00000 q^{49} -4.00000 q^{51} +6.00000 q^{53} +2.00000 q^{55} +2.00000 q^{57} -2.00000 q^{61} -5.00000 q^{65} +2.00000 q^{67} -1.00000 q^{69} -1.00000 q^{71} +1.00000 q^{73} +1.00000 q^{75} -14.0000 q^{79} +1.00000 q^{81} +4.00000 q^{85} +3.00000 q^{87} +16.0000 q^{89} +7.00000 q^{93} -2.00000 q^{95} -4.00000 q^{97} +4.00000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000 0.577350 0.288675 0.957427i \(-0.406785\pi\)
0.288675 + 0.957427i \(0.406785\pi\)
\(4\) 0 0
\(5\) −1.00000 −0.447214
\(6\) 0 0
\(7\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(8\) 0 0
\(9\) −2.00000 −0.666667
\(10\) 0 0
\(11\) −2.00000 −0.603023 −0.301511 0.953463i \(-0.597491\pi\)
−0.301511 + 0.953463i \(0.597491\pi\)
\(12\) 0 0
\(13\) 5.00000 1.38675 0.693375 0.720577i \(-0.256123\pi\)
0.693375 + 0.720577i \(0.256123\pi\)
\(14\) 0 0
\(15\) −1.00000 −0.258199
\(16\) 0 0
\(17\) −4.00000 −0.970143 −0.485071 0.874475i \(-0.661206\pi\)
−0.485071 + 0.874475i \(0.661206\pi\)
\(18\) 0 0
\(19\) 2.00000 0.458831 0.229416 0.973329i \(-0.426318\pi\)
0.229416 + 0.973329i \(0.426318\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −1.00000 −0.208514
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) −5.00000 −0.962250
\(28\) 0 0
\(29\) 3.00000 0.557086 0.278543 0.960424i \(-0.410149\pi\)
0.278543 + 0.960424i \(0.410149\pi\)
\(30\) 0 0
\(31\) 7.00000 1.25724 0.628619 0.777714i \(-0.283621\pi\)
0.628619 + 0.777714i \(0.283621\pi\)
\(32\) 0 0
\(33\) −2.00000 −0.348155
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 2.00000 0.328798 0.164399 0.986394i \(-0.447432\pi\)
0.164399 + 0.986394i \(0.447432\pi\)
\(38\) 0 0
\(39\) 5.00000 0.800641
\(40\) 0 0
\(41\) −9.00000 −1.40556 −0.702782 0.711405i \(-0.748059\pi\)
−0.702782 + 0.711405i \(0.748059\pi\)
\(42\) 0 0
\(43\) 4.00000 0.609994 0.304997 0.952353i \(-0.401344\pi\)
0.304997 + 0.952353i \(0.401344\pi\)
\(44\) 0 0
\(45\) 2.00000 0.298142
\(46\) 0 0
\(47\) −9.00000 −1.31278 −0.656392 0.754420i \(-0.727918\pi\)
−0.656392 + 0.754420i \(0.727918\pi\)
\(48\) 0 0
\(49\) −7.00000 −1.00000
\(50\) 0 0
\(51\) −4.00000 −0.560112
\(52\) 0 0
\(53\) 6.00000 0.824163 0.412082 0.911147i \(-0.364802\pi\)
0.412082 + 0.911147i \(0.364802\pi\)
\(54\) 0 0
\(55\) 2.00000 0.269680
\(56\) 0 0
\(57\) 2.00000 0.264906
\(58\) 0 0
\(59\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(60\) 0 0
\(61\) −2.00000 −0.256074 −0.128037 0.991769i \(-0.540868\pi\)
−0.128037 + 0.991769i \(0.540868\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −5.00000 −0.620174
\(66\) 0 0
\(67\) 2.00000 0.244339 0.122169 0.992509i \(-0.461015\pi\)
0.122169 + 0.992509i \(0.461015\pi\)
\(68\) 0 0
\(69\) −1.00000 −0.120386
\(70\) 0 0
\(71\) −1.00000 −0.118678 −0.0593391 0.998238i \(-0.518899\pi\)
−0.0593391 + 0.998238i \(0.518899\pi\)
\(72\) 0 0
\(73\) 1.00000 0.117041 0.0585206 0.998286i \(-0.481362\pi\)
0.0585206 + 0.998286i \(0.481362\pi\)
\(74\) 0 0
\(75\) 1.00000 0.115470
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −14.0000 −1.57512 −0.787562 0.616236i \(-0.788657\pi\)
−0.787562 + 0.616236i \(0.788657\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(84\) 0 0
\(85\) 4.00000 0.433861
\(86\) 0 0
\(87\) 3.00000 0.321634
\(88\) 0 0
\(89\) 16.0000 1.69600 0.847998 0.529999i \(-0.177808\pi\)
0.847998 + 0.529999i \(0.177808\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 7.00000 0.725866
\(94\) 0 0
\(95\) −2.00000 −0.205196
\(96\) 0 0
\(97\) −4.00000 −0.406138 −0.203069 0.979164i \(-0.565092\pi\)
−0.203069 + 0.979164i \(0.565092\pi\)
\(98\) 0 0
\(99\) 4.00000 0.402015
\(100\) 0 0
\(101\) −10.0000 −0.995037 −0.497519 0.867453i \(-0.665755\pi\)
−0.497519 + 0.867453i \(0.665755\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −10.0000 −0.966736 −0.483368 0.875417i \(-0.660587\pi\)
−0.483368 + 0.875417i \(0.660587\pi\)
\(108\) 0 0
\(109\) 4.00000 0.383131 0.191565 0.981480i \(-0.438644\pi\)
0.191565 + 0.981480i \(0.438644\pi\)
\(110\) 0 0
\(111\) 2.00000 0.189832
\(112\) 0 0
\(113\) −16.0000 −1.50515 −0.752577 0.658505i \(-0.771189\pi\)
−0.752577 + 0.658505i \(0.771189\pi\)
\(114\) 0 0
\(115\) 1.00000 0.0932505
\(116\) 0 0
\(117\) −10.0000 −0.924500
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −7.00000 −0.636364
\(122\) 0 0
\(123\) −9.00000 −0.811503
\(124\) 0 0
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) −7.00000 −0.621150 −0.310575 0.950549i \(-0.600522\pi\)
−0.310575 + 0.950549i \(0.600522\pi\)
\(128\) 0 0
\(129\) 4.00000 0.352180
\(130\) 0 0
\(131\) −15.0000 −1.31056 −0.655278 0.755388i \(-0.727449\pi\)
−0.655278 + 0.755388i \(0.727449\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 5.00000 0.430331
\(136\) 0 0
\(137\) −12.0000 −1.02523 −0.512615 0.858619i \(-0.671323\pi\)
−0.512615 + 0.858619i \(0.671323\pi\)
\(138\) 0 0
\(139\) −9.00000 −0.763370 −0.381685 0.924292i \(-0.624656\pi\)
−0.381685 + 0.924292i \(0.624656\pi\)
\(140\) 0 0
\(141\) −9.00000 −0.757937
\(142\) 0 0
\(143\) −10.0000 −0.836242
\(144\) 0 0
\(145\) −3.00000 −0.249136
\(146\) 0 0
\(147\) −7.00000 −0.577350
\(148\) 0 0
\(149\) −14.0000 −1.14692 −0.573462 0.819232i \(-0.694400\pi\)
−0.573462 + 0.819232i \(0.694400\pi\)
\(150\) 0 0
\(151\) 15.0000 1.22068 0.610341 0.792139i \(-0.291032\pi\)
0.610341 + 0.792139i \(0.291032\pi\)
\(152\) 0 0
\(153\) 8.00000 0.646762
\(154\) 0 0
\(155\) −7.00000 −0.562254
\(156\) 0 0
\(157\) 4.00000 0.319235 0.159617 0.987179i \(-0.448974\pi\)
0.159617 + 0.987179i \(0.448974\pi\)
\(158\) 0 0
\(159\) 6.00000 0.475831
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 23.0000 1.80150 0.900750 0.434339i \(-0.143018\pi\)
0.900750 + 0.434339i \(0.143018\pi\)
\(164\) 0 0
\(165\) 2.00000 0.155700
\(166\) 0 0
\(167\) 16.0000 1.23812 0.619059 0.785345i \(-0.287514\pi\)
0.619059 + 0.785345i \(0.287514\pi\)
\(168\) 0 0
\(169\) 12.0000 0.923077
\(170\) 0 0
\(171\) −4.00000 −0.305888
\(172\) 0 0
\(173\) −14.0000 −1.06440 −0.532200 0.846619i \(-0.678635\pi\)
−0.532200 + 0.846619i \(0.678635\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −9.00000 −0.672692 −0.336346 0.941739i \(-0.609191\pi\)
−0.336346 + 0.941739i \(0.609191\pi\)
\(180\) 0 0
\(181\) 2.00000 0.148659 0.0743294 0.997234i \(-0.476318\pi\)
0.0743294 + 0.997234i \(0.476318\pi\)
\(182\) 0 0
\(183\) −2.00000 −0.147844
\(184\) 0 0
\(185\) −2.00000 −0.147043
\(186\) 0 0
\(187\) 8.00000 0.585018
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 14.0000 1.01300 0.506502 0.862239i \(-0.330938\pi\)
0.506502 + 0.862239i \(0.330938\pi\)
\(192\) 0 0
\(193\) 5.00000 0.359908 0.179954 0.983675i \(-0.442405\pi\)
0.179954 + 0.983675i \(0.442405\pi\)
\(194\) 0 0
\(195\) −5.00000 −0.358057
\(196\) 0 0
\(197\) −25.0000 −1.78118 −0.890588 0.454811i \(-0.849707\pi\)
−0.890588 + 0.454811i \(0.849707\pi\)
\(198\) 0 0
\(199\) −10.0000 −0.708881 −0.354441 0.935079i \(-0.615329\pi\)
−0.354441 + 0.935079i \(0.615329\pi\)
\(200\) 0 0
\(201\) 2.00000 0.141069
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 9.00000 0.628587
\(206\) 0 0
\(207\) 2.00000 0.139010
\(208\) 0 0
\(209\) −4.00000 −0.276686
\(210\) 0 0
\(211\) −28.0000 −1.92760 −0.963800 0.266627i \(-0.914091\pi\)
−0.963800 + 0.266627i \(0.914091\pi\)
\(212\) 0 0
\(213\) −1.00000 −0.0685189
\(214\) 0 0
\(215\) −4.00000 −0.272798
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 1.00000 0.0675737
\(220\) 0 0
\(221\) −20.0000 −1.34535
\(222\) 0 0
\(223\) −8.00000 −0.535720 −0.267860 0.963458i \(-0.586316\pi\)
−0.267860 + 0.963458i \(0.586316\pi\)
\(224\) 0 0
\(225\) −2.00000 −0.133333
\(226\) 0 0
\(227\) 4.00000 0.265489 0.132745 0.991150i \(-0.457621\pi\)
0.132745 + 0.991150i \(0.457621\pi\)
\(228\) 0 0
\(229\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −25.0000 −1.63780 −0.818902 0.573933i \(-0.805417\pi\)
−0.818902 + 0.573933i \(0.805417\pi\)
\(234\) 0 0
\(235\) 9.00000 0.587095
\(236\) 0 0
\(237\) −14.0000 −0.909398
\(238\) 0 0
\(239\) −9.00000 −0.582162 −0.291081 0.956698i \(-0.594015\pi\)
−0.291081 + 0.956698i \(0.594015\pi\)
\(240\) 0 0
\(241\) −10.0000 −0.644157 −0.322078 0.946713i \(-0.604381\pi\)
−0.322078 + 0.946713i \(0.604381\pi\)
\(242\) 0 0
\(243\) 16.0000 1.02640
\(244\) 0 0
\(245\) 7.00000 0.447214
\(246\) 0 0
\(247\) 10.0000 0.636285
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −8.00000 −0.504956 −0.252478 0.967603i \(-0.581245\pi\)
−0.252478 + 0.967603i \(0.581245\pi\)
\(252\) 0 0
\(253\) 2.00000 0.125739
\(254\) 0 0
\(255\) 4.00000 0.250490
\(256\) 0 0
\(257\) 19.0000 1.18519 0.592594 0.805502i \(-0.298104\pi\)
0.592594 + 0.805502i \(0.298104\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −6.00000 −0.371391
\(262\) 0 0
\(263\) 14.0000 0.863277 0.431638 0.902047i \(-0.357936\pi\)
0.431638 + 0.902047i \(0.357936\pi\)
\(264\) 0 0
\(265\) −6.00000 −0.368577
\(266\) 0 0
\(267\) 16.0000 0.979184
\(268\) 0 0
\(269\) 7.00000 0.426798 0.213399 0.976965i \(-0.431547\pi\)
0.213399 + 0.976965i \(0.431547\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −2.00000 −0.120605
\(276\) 0 0
\(277\) −13.0000 −0.781094 −0.390547 0.920583i \(-0.627714\pi\)
−0.390547 + 0.920583i \(0.627714\pi\)
\(278\) 0 0
\(279\) −14.0000 −0.838158
\(280\) 0 0
\(281\) −32.0000 −1.90896 −0.954480 0.298275i \(-0.903589\pi\)
−0.954480 + 0.298275i \(0.903589\pi\)
\(282\) 0 0
\(283\) 22.0000 1.30776 0.653882 0.756596i \(-0.273139\pi\)
0.653882 + 0.756596i \(0.273139\pi\)
\(284\) 0 0
\(285\) −2.00000 −0.118470
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −1.00000 −0.0588235
\(290\) 0 0
\(291\) −4.00000 −0.234484
\(292\) 0 0
\(293\) −16.0000 −0.934730 −0.467365 0.884064i \(-0.654797\pi\)
−0.467365 + 0.884064i \(0.654797\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 10.0000 0.580259
\(298\) 0 0
\(299\) −5.00000 −0.289157
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) −10.0000 −0.574485
\(304\) 0 0
\(305\) 2.00000 0.114520
\(306\) 0 0
\(307\) −16.0000 −0.913168 −0.456584 0.889680i \(-0.650927\pi\)
−0.456584 + 0.889680i \(0.650927\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −9.00000 −0.510343 −0.255172 0.966896i \(-0.582132\pi\)
−0.255172 + 0.966896i \(0.582132\pi\)
\(312\) 0 0
\(313\) 8.00000 0.452187 0.226093 0.974106i \(-0.427405\pi\)
0.226093 + 0.974106i \(0.427405\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −2.00000 −0.112331 −0.0561656 0.998421i \(-0.517887\pi\)
−0.0561656 + 0.998421i \(0.517887\pi\)
\(318\) 0 0
\(319\) −6.00000 −0.335936
\(320\) 0 0
\(321\) −10.0000 −0.558146
\(322\) 0 0
\(323\) −8.00000 −0.445132
\(324\) 0 0
\(325\) 5.00000 0.277350
\(326\) 0 0
\(327\) 4.00000 0.221201
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 19.0000 1.04433 0.522167 0.852843i \(-0.325124\pi\)
0.522167 + 0.852843i \(0.325124\pi\)
\(332\) 0 0
\(333\) −4.00000 −0.219199
\(334\) 0 0
\(335\) −2.00000 −0.109272
\(336\) 0 0
\(337\) 8.00000 0.435788 0.217894 0.975972i \(-0.430081\pi\)
0.217894 + 0.975972i \(0.430081\pi\)
\(338\) 0 0
\(339\) −16.0000 −0.869001
\(340\) 0 0
\(341\) −14.0000 −0.758143
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 1.00000 0.0538382
\(346\) 0 0
\(347\) 28.0000 1.50312 0.751559 0.659665i \(-0.229302\pi\)
0.751559 + 0.659665i \(0.229302\pi\)
\(348\) 0 0
\(349\) −17.0000 −0.909989 −0.454995 0.890494i \(-0.650359\pi\)
−0.454995 + 0.890494i \(0.650359\pi\)
\(350\) 0 0
\(351\) −25.0000 −1.33440
\(352\) 0 0
\(353\) −27.0000 −1.43706 −0.718532 0.695493i \(-0.755186\pi\)
−0.718532 + 0.695493i \(0.755186\pi\)
\(354\) 0 0
\(355\) 1.00000 0.0530745
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 30.0000 1.58334 0.791670 0.610949i \(-0.209212\pi\)
0.791670 + 0.610949i \(0.209212\pi\)
\(360\) 0 0
\(361\) −15.0000 −0.789474
\(362\) 0 0
\(363\) −7.00000 −0.367405
\(364\) 0 0
\(365\) −1.00000 −0.0523424
\(366\) 0 0
\(367\) −24.0000 −1.25279 −0.626395 0.779506i \(-0.715470\pi\)
−0.626395 + 0.779506i \(0.715470\pi\)
\(368\) 0 0
\(369\) 18.0000 0.937043
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −14.0000 −0.724893 −0.362446 0.932005i \(-0.618058\pi\)
−0.362446 + 0.932005i \(0.618058\pi\)
\(374\) 0 0
\(375\) −1.00000 −0.0516398
\(376\) 0 0
\(377\) 15.0000 0.772539
\(378\) 0 0
\(379\) 16.0000 0.821865 0.410932 0.911666i \(-0.365203\pi\)
0.410932 + 0.911666i \(0.365203\pi\)
\(380\) 0 0
\(381\) −7.00000 −0.358621
\(382\) 0 0
\(383\) 16.0000 0.817562 0.408781 0.912633i \(-0.365954\pi\)
0.408781 + 0.912633i \(0.365954\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −8.00000 −0.406663
\(388\) 0 0
\(389\) −8.00000 −0.405616 −0.202808 0.979219i \(-0.565007\pi\)
−0.202808 + 0.979219i \(0.565007\pi\)
\(390\) 0 0
\(391\) 4.00000 0.202289
\(392\) 0 0
\(393\) −15.0000 −0.756650
\(394\) 0 0
\(395\) 14.0000 0.704416
\(396\) 0 0
\(397\) −3.00000 −0.150566 −0.0752828 0.997162i \(-0.523986\pi\)
−0.0752828 + 0.997162i \(0.523986\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −30.0000 −1.49813 −0.749064 0.662497i \(-0.769497\pi\)
−0.749064 + 0.662497i \(0.769497\pi\)
\(402\) 0 0
\(403\) 35.0000 1.74347
\(404\) 0 0
\(405\) −1.00000 −0.0496904
\(406\) 0 0
\(407\) −4.00000 −0.198273
\(408\) 0 0
\(409\) −35.0000 −1.73064 −0.865319 0.501221i \(-0.832884\pi\)
−0.865319 + 0.501221i \(0.832884\pi\)
\(410\) 0 0
\(411\) −12.0000 −0.591916
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −9.00000 −0.440732
\(418\) 0 0
\(419\) 12.0000 0.586238 0.293119 0.956076i \(-0.405307\pi\)
0.293119 + 0.956076i \(0.405307\pi\)
\(420\) 0 0
\(421\) 8.00000 0.389896 0.194948 0.980814i \(-0.437546\pi\)
0.194948 + 0.980814i \(0.437546\pi\)
\(422\) 0 0
\(423\) 18.0000 0.875190
\(424\) 0 0
\(425\) −4.00000 −0.194029
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) −10.0000 −0.482805
\(430\) 0 0
\(431\) 28.0000 1.34871 0.674356 0.738406i \(-0.264421\pi\)
0.674356 + 0.738406i \(0.264421\pi\)
\(432\) 0 0
\(433\) −6.00000 −0.288342 −0.144171 0.989553i \(-0.546051\pi\)
−0.144171 + 0.989553i \(0.546051\pi\)
\(434\) 0 0
\(435\) −3.00000 −0.143839
\(436\) 0 0
\(437\) −2.00000 −0.0956730
\(438\) 0 0
\(439\) −15.0000 −0.715911 −0.357955 0.933739i \(-0.616526\pi\)
−0.357955 + 0.933739i \(0.616526\pi\)
\(440\) 0 0
\(441\) 14.0000 0.666667
\(442\) 0 0
\(443\) 25.0000 1.18779 0.593893 0.804544i \(-0.297590\pi\)
0.593893 + 0.804544i \(0.297590\pi\)
\(444\) 0 0
\(445\) −16.0000 −0.758473
\(446\) 0 0
\(447\) −14.0000 −0.662177
\(448\) 0 0
\(449\) 6.00000 0.283158 0.141579 0.989927i \(-0.454782\pi\)
0.141579 + 0.989927i \(0.454782\pi\)
\(450\) 0 0
\(451\) 18.0000 0.847587
\(452\) 0 0
\(453\) 15.0000 0.704761
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 32.0000 1.49690 0.748448 0.663193i \(-0.230799\pi\)
0.748448 + 0.663193i \(0.230799\pi\)
\(458\) 0 0
\(459\) 20.0000 0.933520
\(460\) 0 0
\(461\) 7.00000 0.326023 0.163011 0.986624i \(-0.447879\pi\)
0.163011 + 0.986624i \(0.447879\pi\)
\(462\) 0 0
\(463\) −24.0000 −1.11537 −0.557687 0.830051i \(-0.688311\pi\)
−0.557687 + 0.830051i \(0.688311\pi\)
\(464\) 0 0
\(465\) −7.00000 −0.324617
\(466\) 0 0
\(467\) 6.00000 0.277647 0.138823 0.990317i \(-0.455668\pi\)
0.138823 + 0.990317i \(0.455668\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 4.00000 0.184310
\(472\) 0 0
\(473\) −8.00000 −0.367840
\(474\) 0 0
\(475\) 2.00000 0.0917663
\(476\) 0 0
\(477\) −12.0000 −0.549442
\(478\) 0 0
\(479\) 16.0000 0.731059 0.365529 0.930800i \(-0.380888\pi\)
0.365529 + 0.930800i \(0.380888\pi\)
\(480\) 0 0
\(481\) 10.0000 0.455961
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 4.00000 0.181631
\(486\) 0 0
\(487\) −23.0000 −1.04223 −0.521115 0.853487i \(-0.674484\pi\)
−0.521115 + 0.853487i \(0.674484\pi\)
\(488\) 0 0
\(489\) 23.0000 1.04010
\(490\) 0 0
\(491\) −1.00000 −0.0451294 −0.0225647 0.999745i \(-0.507183\pi\)
−0.0225647 + 0.999745i \(0.507183\pi\)
\(492\) 0 0
\(493\) −12.0000 −0.540453
\(494\) 0 0
\(495\) −4.00000 −0.179787
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −3.00000 −0.134298 −0.0671492 0.997743i \(-0.521390\pi\)
−0.0671492 + 0.997743i \(0.521390\pi\)
\(500\) 0 0
\(501\) 16.0000 0.714827
\(502\) 0 0
\(503\) 22.0000 0.980932 0.490466 0.871460i \(-0.336827\pi\)
0.490466 + 0.871460i \(0.336827\pi\)
\(504\) 0 0
\(505\) 10.0000 0.444994
\(506\) 0 0
\(507\) 12.0000 0.532939
\(508\) 0 0
\(509\) 15.0000 0.664863 0.332432 0.943127i \(-0.392131\pi\)
0.332432 + 0.943127i \(0.392131\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) −10.0000 −0.441511
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 18.0000 0.791639
\(518\) 0 0
\(519\) −14.0000 −0.614532
\(520\) 0 0
\(521\) 36.0000 1.57719 0.788594 0.614914i \(-0.210809\pi\)
0.788594 + 0.614914i \(0.210809\pi\)
\(522\) 0 0
\(523\) −28.0000 −1.22435 −0.612177 0.790721i \(-0.709706\pi\)
−0.612177 + 0.790721i \(0.709706\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −28.0000 −1.21970
\(528\) 0 0
\(529\) 1.00000 0.0434783
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −45.0000 −1.94917
\(534\) 0 0
\(535\) 10.0000 0.432338
\(536\) 0 0
\(537\) −9.00000 −0.388379
\(538\) 0 0
\(539\) 14.0000 0.603023
\(540\) 0 0
\(541\) 35.0000 1.50477 0.752384 0.658725i \(-0.228904\pi\)
0.752384 + 0.658725i \(0.228904\pi\)
\(542\) 0 0
\(543\) 2.00000 0.0858282
\(544\) 0 0
\(545\) −4.00000 −0.171341
\(546\) 0 0
\(547\) 7.00000 0.299298 0.149649 0.988739i \(-0.452186\pi\)
0.149649 + 0.988739i \(0.452186\pi\)
\(548\) 0 0
\(549\) 4.00000 0.170716
\(550\) 0 0
\(551\) 6.00000 0.255609
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −2.00000 −0.0848953
\(556\) 0 0
\(557\) 24.0000 1.01691 0.508456 0.861088i \(-0.330216\pi\)
0.508456 + 0.861088i \(0.330216\pi\)
\(558\) 0 0
\(559\) 20.0000 0.845910
\(560\) 0 0
\(561\) 8.00000 0.337760
\(562\) 0 0
\(563\) −36.0000 −1.51722 −0.758610 0.651546i \(-0.774121\pi\)
−0.758610 + 0.651546i \(0.774121\pi\)
\(564\) 0 0
\(565\) 16.0000 0.673125
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 2.00000 0.0838444 0.0419222 0.999121i \(-0.486652\pi\)
0.0419222 + 0.999121i \(0.486652\pi\)
\(570\) 0 0
\(571\) −4.00000 −0.167395 −0.0836974 0.996491i \(-0.526673\pi\)
−0.0836974 + 0.996491i \(0.526673\pi\)
\(572\) 0 0
\(573\) 14.0000 0.584858
\(574\) 0 0
\(575\) −1.00000 −0.0417029
\(576\) 0 0
\(577\) −11.0000 −0.457936 −0.228968 0.973434i \(-0.573535\pi\)
−0.228968 + 0.973434i \(0.573535\pi\)
\(578\) 0 0
\(579\) 5.00000 0.207793
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −12.0000 −0.496989
\(584\) 0 0
\(585\) 10.0000 0.413449
\(586\) 0 0
\(587\) 9.00000 0.371470 0.185735 0.982600i \(-0.440533\pi\)
0.185735 + 0.982600i \(0.440533\pi\)
\(588\) 0 0
\(589\) 14.0000 0.576860
\(590\) 0 0
\(591\) −25.0000 −1.02836
\(592\) 0 0
\(593\) −2.00000 −0.0821302 −0.0410651 0.999156i \(-0.513075\pi\)
−0.0410651 + 0.999156i \(0.513075\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −10.0000 −0.409273
\(598\) 0 0
\(599\) −32.0000 −1.30748 −0.653742 0.756717i \(-0.726802\pi\)
−0.653742 + 0.756717i \(0.726802\pi\)
\(600\) 0 0
\(601\) 5.00000 0.203954 0.101977 0.994787i \(-0.467483\pi\)
0.101977 + 0.994787i \(0.467483\pi\)
\(602\) 0 0
\(603\) −4.00000 −0.162893
\(604\) 0 0
\(605\) 7.00000 0.284590
\(606\) 0 0
\(607\) −20.0000 −0.811775 −0.405887 0.913923i \(-0.633038\pi\)
−0.405887 + 0.913923i \(0.633038\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −45.0000 −1.82051
\(612\) 0 0
\(613\) −12.0000 −0.484675 −0.242338 0.970192i \(-0.577914\pi\)
−0.242338 + 0.970192i \(0.577914\pi\)
\(614\) 0 0
\(615\) 9.00000 0.362915
\(616\) 0 0
\(617\) −26.0000 −1.04672 −0.523360 0.852111i \(-0.675322\pi\)
−0.523360 + 0.852111i \(0.675322\pi\)
\(618\) 0 0
\(619\) 48.0000 1.92928 0.964641 0.263566i \(-0.0848986\pi\)
0.964641 + 0.263566i \(0.0848986\pi\)
\(620\) 0 0
\(621\) 5.00000 0.200643
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) −4.00000 −0.159745
\(628\) 0 0
\(629\) −8.00000 −0.318981
\(630\) 0 0
\(631\) −40.0000 −1.59237 −0.796187 0.605050i \(-0.793153\pi\)
−0.796187 + 0.605050i \(0.793153\pi\)
\(632\) 0 0
\(633\) −28.0000 −1.11290
\(634\) 0 0
\(635\) 7.00000 0.277787
\(636\) 0 0
\(637\) −35.0000 −1.38675
\(638\) 0 0
\(639\) 2.00000 0.0791188
\(640\) 0 0
\(641\) −24.0000 −0.947943 −0.473972 0.880540i \(-0.657180\pi\)
−0.473972 + 0.880540i \(0.657180\pi\)
\(642\) 0 0
\(643\) 34.0000 1.34083 0.670415 0.741987i \(-0.266116\pi\)
0.670415 + 0.741987i \(0.266116\pi\)
\(644\) 0 0
\(645\) −4.00000 −0.157500
\(646\) 0 0
\(647\) 7.00000 0.275198 0.137599 0.990488i \(-0.456061\pi\)
0.137599 + 0.990488i \(0.456061\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −19.0000 −0.743527 −0.371764 0.928327i \(-0.621247\pi\)
−0.371764 + 0.928327i \(0.621247\pi\)
\(654\) 0 0
\(655\) 15.0000 0.586098
\(656\) 0 0
\(657\) −2.00000 −0.0780274
\(658\) 0 0
\(659\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(660\) 0 0
\(661\) 10.0000 0.388955 0.194477 0.980907i \(-0.437699\pi\)
0.194477 + 0.980907i \(0.437699\pi\)
\(662\) 0 0
\(663\) −20.0000 −0.776736
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −3.00000 −0.116160
\(668\) 0 0
\(669\) −8.00000 −0.309298
\(670\) 0 0
\(671\) 4.00000 0.154418
\(672\) 0 0
\(673\) −9.00000 −0.346925 −0.173462 0.984841i \(-0.555495\pi\)
−0.173462 + 0.984841i \(0.555495\pi\)
\(674\) 0 0
\(675\) −5.00000 −0.192450
\(676\) 0 0
\(677\) 30.0000 1.15299 0.576497 0.817099i \(-0.304419\pi\)
0.576497 + 0.817099i \(0.304419\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 4.00000 0.153280
\(682\) 0 0
\(683\) −5.00000 −0.191320 −0.0956598 0.995414i \(-0.530496\pi\)
−0.0956598 + 0.995414i \(0.530496\pi\)
\(684\) 0 0
\(685\) 12.0000 0.458496
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 30.0000 1.14291
\(690\) 0 0
\(691\) −20.0000 −0.760836 −0.380418 0.924815i \(-0.624220\pi\)
−0.380418 + 0.924815i \(0.624220\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 9.00000 0.341389
\(696\) 0 0
\(697\) 36.0000 1.36360
\(698\) 0 0
\(699\) −25.0000 −0.945587
\(700\) 0 0
\(701\) 16.0000 0.604312 0.302156 0.953259i \(-0.402294\pi\)
0.302156 + 0.953259i \(0.402294\pi\)
\(702\) 0 0
\(703\) 4.00000 0.150863
\(704\) 0 0
\(705\) 9.00000 0.338960
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 12.0000 0.450669 0.225335 0.974281i \(-0.427652\pi\)
0.225335 + 0.974281i \(0.427652\pi\)
\(710\) 0 0
\(711\) 28.0000 1.05008
\(712\) 0 0
\(713\) −7.00000 −0.262152
\(714\) 0 0
\(715\) 10.0000 0.373979
\(716\) 0 0
\(717\) −9.00000 −0.336111
\(718\) 0 0
\(719\) 32.0000 1.19340 0.596699 0.802465i \(-0.296479\pi\)
0.596699 + 0.802465i \(0.296479\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) −10.0000 −0.371904
\(724\) 0 0
\(725\) 3.00000 0.111417
\(726\) 0 0
\(727\) 46.0000 1.70605 0.853023 0.521874i \(-0.174767\pi\)
0.853023 + 0.521874i \(0.174767\pi\)
\(728\) 0 0
\(729\) 13.0000 0.481481
\(730\) 0 0
\(731\) −16.0000 −0.591781
\(732\) 0 0
\(733\) −52.0000 −1.92066 −0.960332 0.278859i \(-0.910044\pi\)
−0.960332 + 0.278859i \(0.910044\pi\)
\(734\) 0 0
\(735\) 7.00000 0.258199
\(736\) 0 0
\(737\) −4.00000 −0.147342
\(738\) 0 0
\(739\) 23.0000 0.846069 0.423034 0.906114i \(-0.360965\pi\)
0.423034 + 0.906114i \(0.360965\pi\)
\(740\) 0 0
\(741\) 10.0000 0.367359
\(742\) 0 0
\(743\) 24.0000 0.880475 0.440237 0.897881i \(-0.354894\pi\)
0.440237 + 0.897881i \(0.354894\pi\)
\(744\) 0 0
\(745\) 14.0000 0.512920
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 4.00000 0.145962 0.0729810 0.997333i \(-0.476749\pi\)
0.0729810 + 0.997333i \(0.476749\pi\)
\(752\) 0 0
\(753\) −8.00000 −0.291536
\(754\) 0 0
\(755\) −15.0000 −0.545906
\(756\) 0 0
\(757\) −26.0000 −0.944986 −0.472493 0.881334i \(-0.656646\pi\)
−0.472493 + 0.881334i \(0.656646\pi\)
\(758\) 0 0
\(759\) 2.00000 0.0725954
\(760\) 0 0
\(761\) 13.0000 0.471250 0.235625 0.971844i \(-0.424286\pi\)
0.235625 + 0.971844i \(0.424286\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) −8.00000 −0.289241
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) −34.0000 −1.22607 −0.613036 0.790055i \(-0.710052\pi\)
−0.613036 + 0.790055i \(0.710052\pi\)
\(770\) 0 0
\(771\) 19.0000 0.684268
\(772\) 0 0
\(773\) −24.0000 −0.863220 −0.431610 0.902060i \(-0.642054\pi\)
−0.431610 + 0.902060i \(0.642054\pi\)
\(774\) 0 0
\(775\) 7.00000 0.251447
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −18.0000 −0.644917
\(780\) 0 0
\(781\) 2.00000 0.0715656
\(782\) 0 0
\(783\) −15.0000 −0.536056
\(784\) 0 0
\(785\) −4.00000 −0.142766
\(786\) 0 0
\(787\) 4.00000 0.142585 0.0712923 0.997455i \(-0.477288\pi\)
0.0712923 + 0.997455i \(0.477288\pi\)
\(788\) 0 0
\(789\) 14.0000 0.498413
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −10.0000 −0.355110
\(794\) 0 0
\(795\) −6.00000 −0.212798
\(796\) 0 0
\(797\) −18.0000 −0.637593 −0.318796 0.947823i \(-0.603279\pi\)
−0.318796 + 0.947823i \(0.603279\pi\)
\(798\) 0 0
\(799\) 36.0000 1.27359
\(800\) 0 0
\(801\) −32.0000 −1.13066
\(802\) 0 0
\(803\) −2.00000 −0.0705785
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 7.00000 0.246412
\(808\) 0 0
\(809\) 10.0000 0.351581 0.175791 0.984428i \(-0.443752\pi\)
0.175791 + 0.984428i \(0.443752\pi\)
\(810\) 0 0
\(811\) 29.0000 1.01833 0.509164 0.860670i \(-0.329955\pi\)
0.509164 + 0.860670i \(0.329955\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −23.0000 −0.805655
\(816\) 0 0
\(817\) 8.00000 0.279885
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 6.00000 0.209401 0.104701 0.994504i \(-0.466612\pi\)
0.104701 + 0.994504i \(0.466612\pi\)
\(822\) 0 0
\(823\) 3.00000 0.104573 0.0522867 0.998632i \(-0.483349\pi\)
0.0522867 + 0.998632i \(0.483349\pi\)
\(824\) 0 0
\(825\) −2.00000 −0.0696311
\(826\) 0 0
\(827\) 8.00000 0.278187 0.139094 0.990279i \(-0.455581\pi\)
0.139094 + 0.990279i \(0.455581\pi\)
\(828\) 0 0
\(829\) 46.0000 1.59765 0.798823 0.601566i \(-0.205456\pi\)
0.798823 + 0.601566i \(0.205456\pi\)
\(830\) 0 0
\(831\) −13.0000 −0.450965
\(832\) 0 0
\(833\) 28.0000 0.970143
\(834\) 0 0
\(835\) −16.0000 −0.553703
\(836\) 0 0
\(837\) −35.0000 −1.20978
\(838\) 0 0
\(839\) −12.0000 −0.414286 −0.207143 0.978311i \(-0.566417\pi\)
−0.207143 + 0.978311i \(0.566417\pi\)
\(840\) 0 0
\(841\) −20.0000 −0.689655
\(842\) 0 0
\(843\) −32.0000 −1.10214
\(844\) 0 0
\(845\) −12.0000 −0.412813
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 22.0000 0.755038
\(850\) 0 0
\(851\) −2.00000 −0.0685591
\(852\) 0 0
\(853\) −22.0000 −0.753266 −0.376633 0.926363i \(-0.622918\pi\)
−0.376633 + 0.926363i \(0.622918\pi\)
\(854\) 0 0
\(855\) 4.00000 0.136797
\(856\) 0 0
\(857\) −41.0000 −1.40053 −0.700267 0.713881i \(-0.746936\pi\)
−0.700267 + 0.713881i \(0.746936\pi\)
\(858\) 0 0
\(859\) −43.0000 −1.46714 −0.733571 0.679613i \(-0.762148\pi\)
−0.733571 + 0.679613i \(0.762148\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 57.0000 1.94030 0.970151 0.242500i \(-0.0779676\pi\)
0.970151 + 0.242500i \(0.0779676\pi\)
\(864\) 0 0
\(865\) 14.0000 0.476014
\(866\) 0 0
\(867\) −1.00000 −0.0339618
\(868\) 0 0
\(869\) 28.0000 0.949835
\(870\) 0 0
\(871\) 10.0000 0.338837
\(872\) 0 0
\(873\) 8.00000 0.270759
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 50.0000 1.68838 0.844190 0.536044i \(-0.180082\pi\)
0.844190 + 0.536044i \(0.180082\pi\)
\(878\) 0 0
\(879\) −16.0000 −0.539667
\(880\) 0 0
\(881\) −28.0000 −0.943344 −0.471672 0.881774i \(-0.656349\pi\)
−0.471672 + 0.881774i \(0.656349\pi\)
\(882\) 0 0
\(883\) −52.0000 −1.74994 −0.874970 0.484178i \(-0.839119\pi\)
−0.874970 + 0.484178i \(0.839119\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −33.0000 −1.10803 −0.554016 0.832506i \(-0.686905\pi\)
−0.554016 + 0.832506i \(0.686905\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −2.00000 −0.0670025
\(892\) 0 0
\(893\) −18.0000 −0.602347
\(894\) 0 0
\(895\) 9.00000 0.300837
\(896\) 0 0
\(897\) −5.00000 −0.166945
\(898\) 0 0
\(899\) 21.0000 0.700389
\(900\) 0 0
\(901\) −24.0000 −0.799556
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −2.00000 −0.0664822
\(906\) 0 0
\(907\) 30.0000 0.996134 0.498067 0.867139i \(-0.334043\pi\)
0.498067 + 0.867139i \(0.334043\pi\)
\(908\) 0 0
\(909\) 20.0000 0.663358
\(910\) 0 0
\(911\) 50.0000 1.65657 0.828287 0.560304i \(-0.189316\pi\)
0.828287 + 0.560304i \(0.189316\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 2.00000 0.0661180
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 60.0000 1.97922 0.989609 0.143787i \(-0.0459280\pi\)
0.989609 + 0.143787i \(0.0459280\pi\)
\(920\) 0 0
\(921\) −16.0000 −0.527218
\(922\) 0 0
\(923\) −5.00000 −0.164577
\(924\) 0 0
\(925\) 2.00000 0.0657596
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 23.0000 0.754606 0.377303 0.926090i \(-0.376852\pi\)
0.377303 + 0.926090i \(0.376852\pi\)
\(930\) 0 0
\(931\) −14.0000 −0.458831
\(932\) 0 0
\(933\) −9.00000 −0.294647
\(934\) 0 0
\(935\) −8.00000 −0.261628
\(936\) 0 0
\(937\) −26.0000 −0.849383 −0.424691 0.905338i \(-0.639617\pi\)
−0.424691 + 0.905338i \(0.639617\pi\)
\(938\) 0 0
\(939\) 8.00000 0.261070
\(940\) 0 0
\(941\) 48.0000 1.56476 0.782378 0.622804i \(-0.214007\pi\)
0.782378 + 0.622804i \(0.214007\pi\)
\(942\) 0 0
\(943\) 9.00000 0.293080
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −15.0000 −0.487435 −0.243717 0.969846i \(-0.578367\pi\)
−0.243717 + 0.969846i \(0.578367\pi\)
\(948\) 0 0
\(949\) 5.00000 0.162307
\(950\) 0 0
\(951\) −2.00000 −0.0648544
\(952\) 0 0
\(953\) −26.0000 −0.842223 −0.421111 0.907009i \(-0.638360\pi\)
−0.421111 + 0.907009i \(0.638360\pi\)
\(954\) 0 0
\(955\) −14.0000 −0.453029
\(956\) 0 0
\(957\) −6.00000 −0.193952
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 18.0000 0.580645
\(962\) 0 0
\(963\) 20.0000 0.644491
\(964\) 0 0
\(965\) −5.00000 −0.160956
\(966\) 0 0
\(967\) −3.00000 −0.0964735 −0.0482367 0.998836i \(-0.515360\pi\)
−0.0482367 + 0.998836i \(0.515360\pi\)
\(968\) 0 0
\(969\) −8.00000 −0.256997
\(970\) 0 0
\(971\) −22.0000 −0.706014 −0.353007 0.935621i \(-0.614841\pi\)
−0.353007 + 0.935621i \(0.614841\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 5.00000 0.160128
\(976\) 0 0
\(977\) −26.0000 −0.831814 −0.415907 0.909407i \(-0.636536\pi\)
−0.415907 + 0.909407i \(0.636536\pi\)
\(978\) 0 0
\(979\) −32.0000 −1.02272
\(980\) 0 0
\(981\) −8.00000 −0.255420
\(982\) 0 0
\(983\) 50.0000 1.59475 0.797376 0.603483i \(-0.206221\pi\)
0.797376 + 0.603483i \(0.206221\pi\)
\(984\) 0 0
\(985\) 25.0000 0.796566
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −4.00000 −0.127193
\(990\) 0 0
\(991\) −32.0000 −1.01651 −0.508257 0.861206i \(-0.669710\pi\)
−0.508257 + 0.861206i \(0.669710\pi\)
\(992\) 0 0
\(993\) 19.0000 0.602947
\(994\) 0 0
\(995\) 10.0000 0.317021
\(996\) 0 0
\(997\) −14.0000 −0.443384 −0.221692 0.975117i \(-0.571158\pi\)
−0.221692 + 0.975117i \(0.571158\pi\)
\(998\) 0 0
\(999\) −10.0000 −0.316386
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7360.2.a.t.1.1 1
4.3 odd 2 7360.2.a.g.1.1 1
8.3 odd 2 1840.2.a.g.1.1 1
8.5 even 2 920.2.a.b.1.1 1
24.5 odd 2 8280.2.a.e.1.1 1
40.13 odd 4 4600.2.e.h.4049.1 2
40.19 odd 2 9200.2.a.n.1.1 1
40.29 even 2 4600.2.a.j.1.1 1
40.37 odd 4 4600.2.e.h.4049.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
920.2.a.b.1.1 1 8.5 even 2
1840.2.a.g.1.1 1 8.3 odd 2
4600.2.a.j.1.1 1 40.29 even 2
4600.2.e.h.4049.1 2 40.13 odd 4
4600.2.e.h.4049.2 2 40.37 odd 4
7360.2.a.g.1.1 1 4.3 odd 2
7360.2.a.t.1.1 1 1.1 even 1 trivial
8280.2.a.e.1.1 1 24.5 odd 2
9200.2.a.n.1.1 1 40.19 odd 2