Properties

Label 7360.2.a
Level $7360$
Weight $2$
Character orbit 7360.a
Rep. character $\chi_{7360}(1,\cdot)$
Character field $\Q$
Dimension $176$
Newform subspaces $74$
Sturm bound $2304$
Trace bound $11$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 7360 = 2^{6} \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7360.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 74 \)
Sturm bound: \(2304\)
Trace bound: \(11\)
Distinguishing \(T_p\): \(3\), \(7\), \(11\), \(13\), \(17\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(7360))\).

Total New Old
Modular forms 1176 176 1000
Cusp forms 1129 176 953
Eisenstein series 47 0 47

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(5\)\(23\)FrickeDim.
\(+\)\(+\)\(+\)\(+\)\(22\)
\(+\)\(+\)\(-\)\(-\)\(22\)
\(+\)\(-\)\(+\)\(-\)\(25\)
\(+\)\(-\)\(-\)\(+\)\(19\)
\(-\)\(+\)\(+\)\(-\)\(22\)
\(-\)\(+\)\(-\)\(+\)\(22\)
\(-\)\(-\)\(+\)\(+\)\(19\)
\(-\)\(-\)\(-\)\(-\)\(25\)
Plus space\(+\)\(82\)
Minus space\(-\)\(94\)

Trace form

\( 176q + 176q^{9} + O(q^{10}) \) \( 176q + 176q^{9} - 32q^{13} - 32q^{21} + 176q^{25} + 32q^{33} - 32q^{37} + 32q^{41} + 176q^{49} + 32q^{57} - 32q^{61} + 208q^{81} + 16q^{93} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(7360))\) into newform subspaces

Label Dim. \(A\) Field CM Traces A-L signs $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\) 2 5 23
7360.2.a.a \(1\) \(58.770\) \(\Q\) None \(0\) \(-3\) \(-1\) \(2\) \(-\) \(+\) \(+\) \(q-3q^{3}-q^{5}+2q^{7}+6q^{9}-q^{13}+\cdots\)
7360.2.a.b \(1\) \(58.770\) \(\Q\) None \(0\) \(-3\) \(1\) \(2\) \(+\) \(-\) \(+\) \(q-3q^{3}+q^{5}+2q^{7}+6q^{9}+3q^{13}+\cdots\)
7360.2.a.c \(1\) \(58.770\) \(\Q\) None \(0\) \(-2\) \(-1\) \(-1\) \(+\) \(+\) \(-\) \(q-2q^{3}-q^{5}-q^{7}+q^{9}+2q^{11}+4q^{13}+\cdots\)
7360.2.a.d \(1\) \(58.770\) \(\Q\) None \(0\) \(-2\) \(1\) \(-3\) \(+\) \(-\) \(+\) \(q-2q^{3}+q^{5}-3q^{7}+q^{9}+6q^{11}+\cdots\)
7360.2.a.e \(1\) \(58.770\) \(\Q\) None \(0\) \(-2\) \(1\) \(-1\) \(+\) \(-\) \(-\) \(q-2q^{3}+q^{5}-q^{7}+q^{9}+2q^{11}-2q^{15}+\cdots\)
7360.2.a.f \(1\) \(58.770\) \(\Q\) None \(0\) \(-2\) \(1\) \(5\) \(-\) \(-\) \(+\) \(q-2q^{3}+q^{5}+5q^{7}+q^{9}-2q^{11}+\cdots\)
7360.2.a.g \(1\) \(58.770\) \(\Q\) None \(0\) \(-1\) \(-1\) \(0\) \(-\) \(+\) \(-\) \(q-q^{3}-q^{5}-2q^{9}+2q^{11}+5q^{13}+\cdots\)
7360.2.a.h \(1\) \(58.770\) \(\Q\) None \(0\) \(-1\) \(-1\) \(2\) \(-\) \(+\) \(-\) \(q-q^{3}-q^{5}+2q^{7}-2q^{9}-4q^{11}+\cdots\)
7360.2.a.i \(1\) \(58.770\) \(\Q\) None \(0\) \(-1\) \(1\) \(-4\) \(+\) \(-\) \(-\) \(q-q^{3}+q^{5}-4q^{7}-2q^{9}+6q^{11}+\cdots\)
7360.2.a.j \(1\) \(58.770\) \(\Q\) None \(0\) \(-1\) \(1\) \(-2\) \(+\) \(-\) \(-\) \(q-q^{3}+q^{5}-2q^{7}-2q^{9}-q^{13}-q^{15}+\cdots\)
7360.2.a.k \(1\) \(58.770\) \(\Q\) None \(0\) \(0\) \(-1\) \(-1\) \(-\) \(+\) \(+\) \(q-q^{5}-q^{7}-3q^{9}-6q^{11}+2q^{13}+\cdots\)
7360.2.a.l \(1\) \(58.770\) \(\Q\) None \(0\) \(0\) \(-1\) \(1\) \(+\) \(+\) \(-\) \(q-q^{5}+q^{7}-3q^{9}+6q^{11}+2q^{13}+\cdots\)
7360.2.a.m \(1\) \(58.770\) \(\Q\) None \(0\) \(0\) \(1\) \(-1\) \(+\) \(-\) \(+\) \(q+q^{5}-q^{7}-3q^{9}-6q^{11}-6q^{13}+\cdots\)
7360.2.a.n \(1\) \(58.770\) \(\Q\) None \(0\) \(0\) \(1\) \(-1\) \(-\) \(-\) \(+\) \(q+q^{5}-q^{7}-3q^{9}+2q^{11}+2q^{13}+\cdots\)
7360.2.a.o \(1\) \(58.770\) \(\Q\) None \(0\) \(0\) \(1\) \(0\) \(-\) \(-\) \(-\) \(q+q^{5}-3q^{9}-4q^{11}+2q^{13}+2q^{17}+\cdots\)
7360.2.a.p \(1\) \(58.770\) \(\Q\) None \(0\) \(0\) \(1\) \(0\) \(-\) \(-\) \(+\) \(q+q^{5}-3q^{9}+4q^{11}+2q^{13}+2q^{17}+\cdots\)
7360.2.a.q \(1\) \(58.770\) \(\Q\) None \(0\) \(0\) \(1\) \(1\) \(+\) \(-\) \(-\) \(q+q^{5}+q^{7}-3q^{9}-2q^{11}+2q^{13}+\cdots\)
7360.2.a.r \(1\) \(58.770\) \(\Q\) None \(0\) \(0\) \(1\) \(1\) \(-\) \(-\) \(-\) \(q+q^{5}+q^{7}-3q^{9}+6q^{11}-6q^{13}+\cdots\)
7360.2.a.s \(1\) \(58.770\) \(\Q\) None \(0\) \(1\) \(-1\) \(-2\) \(+\) \(+\) \(+\) \(q+q^{3}-q^{5}-2q^{7}-2q^{9}+4q^{11}+\cdots\)
7360.2.a.t \(1\) \(58.770\) \(\Q\) None \(0\) \(1\) \(-1\) \(0\) \(+\) \(+\) \(+\) \(q+q^{3}-q^{5}-2q^{9}-2q^{11}+5q^{13}+\cdots\)
7360.2.a.u \(1\) \(58.770\) \(\Q\) None \(0\) \(1\) \(1\) \(2\) \(-\) \(-\) \(+\) \(q+q^{3}+q^{5}+2q^{7}-2q^{9}-q^{13}+q^{15}+\cdots\)
7360.2.a.v \(1\) \(58.770\) \(\Q\) None \(0\) \(1\) \(1\) \(4\) \(-\) \(-\) \(+\) \(q+q^{3}+q^{5}+4q^{7}-2q^{9}-6q^{11}+\cdots\)
7360.2.a.w \(1\) \(58.770\) \(\Q\) None \(0\) \(2\) \(-1\) \(1\) \(+\) \(+\) \(+\) \(q+2q^{3}-q^{5}+q^{7}+q^{9}-2q^{11}+4q^{13}+\cdots\)
7360.2.a.x \(1\) \(58.770\) \(\Q\) None \(0\) \(2\) \(1\) \(-5\) \(-\) \(-\) \(-\) \(q+2q^{3}+q^{5}-5q^{7}+q^{9}+2q^{11}+\cdots\)
7360.2.a.y \(1\) \(58.770\) \(\Q\) None \(0\) \(2\) \(1\) \(1\) \(+\) \(-\) \(+\) \(q+2q^{3}+q^{5}+q^{7}+q^{9}-2q^{11}+2q^{15}+\cdots\)
7360.2.a.z \(1\) \(58.770\) \(\Q\) None \(0\) \(2\) \(1\) \(3\) \(+\) \(-\) \(-\) \(q+2q^{3}+q^{5}+3q^{7}+q^{9}-6q^{11}+\cdots\)
7360.2.a.ba \(1\) \(58.770\) \(\Q\) None \(0\) \(3\) \(-1\) \(-2\) \(+\) \(+\) \(-\) \(q+3q^{3}-q^{5}-2q^{7}+6q^{9}-q^{13}+\cdots\)
7360.2.a.bb \(1\) \(58.770\) \(\Q\) None \(0\) \(3\) \(1\) \(-2\) \(-\) \(-\) \(-\) \(q+3q^{3}+q^{5}-2q^{7}+6q^{9}+3q^{13}+\cdots\)
7360.2.a.bc \(2\) \(58.770\) \(\Q(\sqrt{13}) \) None \(0\) \(-3\) \(-2\) \(3\) \(+\) \(+\) \(+\) \(q+(-1-\beta )q^{3}-q^{5}+(2-\beta )q^{7}+(1+\cdots)q^{9}+\cdots\)
7360.2.a.bd \(2\) \(58.770\) \(\Q(\sqrt{13}) \) None \(0\) \(-3\) \(2\) \(-3\) \(+\) \(-\) \(-\) \(q+(-1-\beta )q^{3}+q^{5}+(-2+\beta )q^{7}+\cdots\)
7360.2.a.be \(2\) \(58.770\) \(\Q(\sqrt{7}) \) None \(0\) \(-2\) \(-2\) \(-2\) \(+\) \(+\) \(+\) \(q-q^{3}-q^{5}+(-1-\beta )q^{7}-2q^{9}+(-1+\cdots)q^{11}+\cdots\)
7360.2.a.bf \(2\) \(58.770\) \(\Q(\sqrt{5}) \) None \(0\) \(-2\) \(2\) \(2\) \(-\) \(-\) \(-\) \(q-q^{3}+q^{5}+(1+\beta )q^{7}-2q^{9}+(-1+\cdots)q^{11}+\cdots\)
7360.2.a.bg \(2\) \(58.770\) \(\Q(\sqrt{3}) \) None \(0\) \(-2\) \(2\) \(2\) \(+\) \(-\) \(+\) \(q-q^{3}+q^{5}+(1-\beta )q^{7}-2q^{9}+(1-\beta )q^{11}+\cdots\)
7360.2.a.bh \(2\) \(58.770\) \(\Q(\sqrt{5}) \) None \(0\) \(-1\) \(-2\) \(1\) \(+\) \(+\) \(-\) \(q-\beta q^{3}-q^{5}+(1-\beta )q^{7}+(-2+\beta )q^{9}+\cdots\)
7360.2.a.bi \(2\) \(58.770\) \(\Q(\sqrt{17}) \) None \(0\) \(-1\) \(-2\) \(1\) \(+\) \(+\) \(-\) \(q-\beta q^{3}-q^{5}+(1-\beta )q^{7}+(1+\beta )q^{9}+\cdots\)
7360.2.a.bj \(2\) \(58.770\) \(\Q(\sqrt{17}) \) None \(0\) \(-1\) \(-2\) \(2\) \(+\) \(+\) \(-\) \(q-\beta q^{3}-q^{5}+2\beta q^{7}+(1+\beta )q^{9}+4q^{11}+\cdots\)
7360.2.a.bk \(2\) \(58.770\) \(\Q(\sqrt{21}) \) None \(0\) \(-1\) \(2\) \(-1\) \(-\) \(-\) \(+\) \(q-\beta q^{3}+q^{5}+(-1+\beta )q^{7}+(2+\beta )q^{9}+\cdots\)
7360.2.a.bl \(2\) \(58.770\) \(\Q(\sqrt{17}) \) None \(0\) \(-1\) \(2\) \(1\) \(-\) \(-\) \(-\) \(q-\beta q^{3}+q^{5}+(1-\beta )q^{7}+(1+\beta )q^{9}+\cdots\)
7360.2.a.bm \(2\) \(58.770\) \(\Q(\sqrt{17}) \) None \(0\) \(1\) \(-2\) \(-2\) \(-\) \(+\) \(+\) \(q+\beta q^{3}-q^{5}-2\beta q^{7}+(1+\beta )q^{9}-4q^{11}+\cdots\)
7360.2.a.bn \(2\) \(58.770\) \(\Q(\sqrt{5}) \) None \(0\) \(1\) \(-2\) \(-1\) \(-\) \(+\) \(+\) \(q+\beta q^{3}-q^{5}+(-1+\beta )q^{7}+(-2+\beta )q^{9}+\cdots\)
7360.2.a.bo \(2\) \(58.770\) \(\Q(\sqrt{17}) \) None \(0\) \(1\) \(-2\) \(-1\) \(-\) \(+\) \(+\) \(q+\beta q^{3}-q^{5}+(-1+\beta )q^{7}+(1+\beta )q^{9}+\cdots\)
7360.2.a.bp \(2\) \(58.770\) \(\Q(\sqrt{17}) \) None \(0\) \(1\) \(2\) \(-1\) \(+\) \(-\) \(+\) \(q+\beta q^{3}+q^{5}+(-1+\beta )q^{7}+(1+\beta )q^{9}+\cdots\)
7360.2.a.bq \(2\) \(58.770\) \(\Q(\sqrt{21}) \) None \(0\) \(1\) \(2\) \(1\) \(+\) \(-\) \(-\) \(q+\beta q^{3}+q^{5}+(1-\beta )q^{7}+(2+\beta )q^{9}+\cdots\)
7360.2.a.br \(2\) \(58.770\) \(\Q(\sqrt{7}) \) None \(0\) \(2\) \(-2\) \(2\) \(+\) \(+\) \(-\) \(q+q^{3}-q^{5}+(1+\beta )q^{7}-2q^{9}+(1+\beta )q^{11}+\cdots\)
7360.2.a.bs \(2\) \(58.770\) \(\Q(\sqrt{3}) \) None \(0\) \(2\) \(2\) \(-2\) \(+\) \(-\) \(-\) \(q+q^{3}+q^{5}+(-1+\beta )q^{7}-2q^{9}+(-1+\cdots)q^{11}+\cdots\)
7360.2.a.bt \(2\) \(58.770\) \(\Q(\sqrt{5}) \) None \(0\) \(2\) \(2\) \(-2\) \(+\) \(-\) \(+\) \(q+q^{3}+q^{5}+(-1-\beta )q^{7}-2q^{9}+(1+\cdots)q^{11}+\cdots\)
7360.2.a.bu \(2\) \(58.770\) \(\Q(\sqrt{13}) \) None \(0\) \(3\) \(-2\) \(-3\) \(-\) \(+\) \(-\) \(q+(1+\beta )q^{3}-q^{5}+(-2+\beta )q^{7}+(1+\cdots)q^{9}+\cdots\)
7360.2.a.bv \(2\) \(58.770\) \(\Q(\sqrt{13}) \) None \(0\) \(3\) \(2\) \(3\) \(+\) \(-\) \(+\) \(q+(1+\beta )q^{3}+q^{5}+(2-\beta )q^{7}+(1+3\beta )q^{9}+\cdots\)
7360.2.a.bw \(3\) \(58.770\) 3.3.229.1 None \(0\) \(-2\) \(-3\) \(7\) \(+\) \(+\) \(+\) \(q+(-1-\beta _{2})q^{3}-q^{5}+(2-\beta _{2})q^{7}+\cdots\)
7360.2.a.bx \(3\) \(58.770\) 3.3.1573.1 None \(0\) \(-1\) \(-3\) \(-4\) \(+\) \(+\) \(+\) \(q-\beta _{1}q^{3}-q^{5}+(-1-\beta _{1})q^{7}+(2+\beta _{1}+\cdots)q^{9}+\cdots\)
7360.2.a.by \(3\) \(58.770\) 3.3.2597.1 None \(0\) \(-1\) \(-3\) \(2\) \(+\) \(+\) \(-\) \(q-\beta _{1}q^{3}-q^{5}+(1-\beta _{1})q^{7}+(3+\beta _{2})q^{9}+\cdots\)
7360.2.a.bz \(3\) \(58.770\) 3.3.1101.1 None \(0\) \(-1\) \(3\) \(3\) \(+\) \(-\) \(+\) \(q-\beta _{1}q^{3}+q^{5}+(1-\beta _{1}-\beta _{2})q^{7}+(4+\cdots)q^{9}+\cdots\)
7360.2.a.ca \(3\) \(58.770\) 3.3.621.1 None \(0\) \(0\) \(3\) \(-3\) \(-\) \(-\) \(+\) \(q+\beta _{1}q^{3}+q^{5}+(-1-\beta _{1})q^{7}+(1+\beta _{1}+\cdots)q^{9}+\cdots\)
7360.2.a.cb \(3\) \(58.770\) 3.3.621.1 None \(0\) \(0\) \(3\) \(3\) \(+\) \(-\) \(-\) \(q-\beta _{1}q^{3}+q^{5}+(1+\beta _{1})q^{7}+(1+\beta _{1}+\cdots)q^{9}+\cdots\)
7360.2.a.cc \(3\) \(58.770\) 3.3.2597.1 None \(0\) \(1\) \(-3\) \(-2\) \(-\) \(+\) \(+\) \(q+\beta _{1}q^{3}-q^{5}+(-1+\beta _{1})q^{7}+(3+\beta _{2})q^{9}+\cdots\)
7360.2.a.cd \(3\) \(58.770\) 3.3.1573.1 None \(0\) \(1\) \(-3\) \(4\) \(+\) \(+\) \(-\) \(q+\beta _{1}q^{3}-q^{5}+(1+\beta _{1})q^{7}+(2+\beta _{1}+\cdots)q^{9}+\cdots\)
7360.2.a.ce \(3\) \(58.770\) 3.3.1101.1 None \(0\) \(1\) \(3\) \(-3\) \(-\) \(-\) \(-\) \(q+\beta _{1}q^{3}+q^{5}+(-1+\beta _{1}+\beta _{2})q^{7}+\cdots\)
7360.2.a.cf \(3\) \(58.770\) 3.3.229.1 None \(0\) \(2\) \(-3\) \(-7\) \(-\) \(+\) \(-\) \(q+(1+\beta _{2})q^{3}-q^{5}+(-2+\beta _{2})q^{7}+\cdots\)
7360.2.a.cg \(4\) \(58.770\) 4.4.15317.1 None \(0\) \(-2\) \(-4\) \(3\) \(-\) \(+\) \(-\) \(q+(-1-\beta _{2})q^{3}-q^{5}+(1+\beta _{3})q^{7}+\cdots\)
7360.2.a.ch \(4\) \(58.770\) 4.4.21208.1 None \(0\) \(-1\) \(4\) \(5\) \(-\) \(-\) \(-\) \(q+\beta _{3}q^{3}+q^{5}+(1+\beta _{1})q^{7}+(3-\beta _{1}+\cdots)q^{9}+\cdots\)
7360.2.a.ci \(4\) \(58.770\) 4.4.21208.1 None \(0\) \(1\) \(4\) \(-5\) \(-\) \(-\) \(+\) \(q-\beta _{3}q^{3}+q^{5}+(-1-\beta _{1})q^{7}+(3-\beta _{1}+\cdots)q^{9}+\cdots\)
7360.2.a.cj \(4\) \(58.770\) 4.4.15317.1 None \(0\) \(2\) \(-4\) \(-3\) \(+\) \(+\) \(+\) \(q+(1+\beta _{2})q^{3}-q^{5}+(-1-\beta _{3})q^{7}+\cdots\)
7360.2.a.ck \(5\) \(58.770\) 5.5.406264.1 None \(0\) \(-3\) \(-5\) \(8\) \(-\) \(+\) \(+\) \(q+(-1-\beta _{2})q^{3}-q^{5}+(2-\beta _{1}+\beta _{4})q^{7}+\cdots\)
7360.2.a.cl \(5\) \(58.770\) 5.5.876604.1 None \(0\) \(-1\) \(-5\) \(1\) \(+\) \(+\) \(+\) \(q-\beta _{3}q^{3}-q^{5}+(\beta _{2}+\beta _{3}+\beta _{4})q^{7}+\cdots\)
7360.2.a.cm \(5\) \(58.770\) 5.5.2255384.1 None \(0\) \(-1\) \(5\) \(-4\) \(-\) \(-\) \(+\) \(q-\beta _{1}q^{3}+q^{5}+(-\beta _{2}+\beta _{3})q^{7}+\beta _{2}q^{9}+\cdots\)
7360.2.a.cn \(5\) \(58.770\) 5.5.1143052.1 None \(0\) \(-1\) \(5\) \(-1\) \(+\) \(-\) \(-\) \(q+\beta _{2}q^{3}+q^{5}+(-1+2\beta _{1}-\beta _{2}+\beta _{4})q^{7}+\cdots\)
7360.2.a.co \(5\) \(58.770\) 5.5.13955077.1 None \(0\) \(0\) \(5\) \(-2\) \(+\) \(-\) \(+\) \(q-\beta _{1}q^{3}+q^{5}+(-\beta _{3}-\beta _{4})q^{7}+(2+\cdots)q^{9}+\cdots\)
7360.2.a.cp \(5\) \(58.770\) 5.5.13955077.1 None \(0\) \(0\) \(5\) \(2\) \(-\) \(-\) \(-\) \(q+\beta _{1}q^{3}+q^{5}+(\beta _{3}+\beta _{4})q^{7}+(2+\beta _{2}+\cdots)q^{9}+\cdots\)
7360.2.a.cq \(5\) \(58.770\) 5.5.876604.1 None \(0\) \(1\) \(-5\) \(-1\) \(+\) \(+\) \(-\) \(q+\beta _{3}q^{3}-q^{5}+(-\beta _{2}-\beta _{3}-\beta _{4})q^{7}+\cdots\)
7360.2.a.cr \(5\) \(58.770\) 5.5.1143052.1 None \(0\) \(1\) \(5\) \(1\) \(+\) \(-\) \(+\) \(q-\beta _{2}q^{3}+q^{5}+(1-2\beta _{1}+\beta _{2}-\beta _{4})q^{7}+\cdots\)
7360.2.a.cs \(5\) \(58.770\) 5.5.2255384.1 None \(0\) \(1\) \(5\) \(4\) \(-\) \(-\) \(-\) \(q+\beta _{1}q^{3}+q^{5}+(\beta _{2}-\beta _{3})q^{7}+\beta _{2}q^{9}+\cdots\)
7360.2.a.ct \(5\) \(58.770\) 5.5.406264.1 None \(0\) \(3\) \(-5\) \(-8\) \(-\) \(+\) \(-\) \(q+(1+\beta _{2})q^{3}-q^{5}+(-2+\beta _{1}-\beta _{4})q^{7}+\cdots\)
7360.2.a.cu \(6\) \(58.770\) 6.6.255601784.1 None \(0\) \(-5\) \(-6\) \(4\) \(-\) \(+\) \(-\) \(q+(-1+\beta _{1})q^{3}-q^{5}+(1+\beta _{3})q^{7}+\cdots\)
7360.2.a.cv \(6\) \(58.770\) 6.6.255601784.1 None \(0\) \(5\) \(-6\) \(-4\) \(-\) \(+\) \(+\) \(q+(1-\beta _{1})q^{3}-q^{5}+(-1-\beta _{3})q^{7}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(7360))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(7360)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_0(20))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(23))\)\(^{\oplus 14}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(32))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(40))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(46))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(64))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(80))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(92))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(115))\)\(^{\oplus 7}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(160))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(184))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(230))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(320))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(368))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(460))\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(736))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(920))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1472))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1840))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(3680))\)\(^{\oplus 2}\)