Properties

Label 736.4.a.f
Level $736$
Weight $4$
Character orbit 736.a
Self dual yes
Analytic conductor $43.425$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [736,4,Mod(1,736)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(736, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("736.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 736 = 2^{5} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 736.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(43.4254057642\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 4x^{7} - 137x^{6} + 344x^{5} + 6175x^{4} - 7924x^{3} - 89643x^{2} + 45072x + 51084 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{8} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_1 + 2) q^{3} + ( - \beta_{3} - 1) q^{5} + (\beta_{7} - 2) q^{7} + (\beta_{2} - 2 \beta_1 + 12) q^{9} + ( - \beta_{7} - \beta_{4} - \beta_{3} + \cdots + 12) q^{11} + (\beta_{7} - \beta_{6} - \beta_{5} + \cdots - 2) q^{13}+ \cdots + ( - 18 \beta_{7} + 15 \beta_{6} + \cdots + 756) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 12 q^{3} - 12 q^{5} - 14 q^{7} + 90 q^{9} + 88 q^{11} - 30 q^{13} + 30 q^{15} + 58 q^{17} + 190 q^{19} - 66 q^{21} - 184 q^{23} + 28 q^{25} + 432 q^{27} + 190 q^{29} - 60 q^{31} + 346 q^{33} + 192 q^{35}+ \cdots + 5986 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} - 4x^{7} - 137x^{6} + 344x^{5} + 6175x^{4} - 7924x^{3} - 89643x^{2} + 45072x + 51084 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 2\nu - 35 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( - 93 \nu^{7} + 1879 \nu^{6} - 4689 \nu^{5} - 118958 \nu^{4} + 640515 \nu^{3} + 1659151 \nu^{2} + \cdots + 4336164 ) / 751446 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( - 247 \nu^{7} + 2746 \nu^{6} + 18520 \nu^{5} - 233346 \nu^{4} - 353877 \nu^{3} + 5171924 \nu^{2} + \cdots - 8344320 ) / 250482 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 487 \nu^{7} - 3555 \nu^{6} - 45473 \nu^{5} + 283119 \nu^{4} + 1155928 \nu^{3} - 5738121 \nu^{2} + \cdots + 10385325 ) / 375723 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( - 2746 \nu^{7} + 26303 \nu^{6} + 222458 \nu^{5} - 2104732 \nu^{4} - 4630204 \nu^{3} + \cdots - 16939116 ) / 751446 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 3383 \nu^{7} - 35582 \nu^{6} - 248248 \nu^{5} + 2904268 \nu^{4} + 3464273 \nu^{3} - 58336076 \nu^{2} + \cdots + 24827184 ) / 751446 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 2\beta _1 + 35 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( -\beta_{7} + \beta_{5} - 3\beta_{4} - 2\beta_{3} + 4\beta_{2} + 58\beta _1 + 57 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{7} + 12\beta_{6} + 14\beta_{5} - 21\beta_{4} - 4\beta_{3} + 78\beta_{2} + 248\beta _1 + 1904 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( -68\beta_{7} + 78\beta_{6} + 188\beta_{5} - 318\beta_{4} - 274\beta_{3} + 500\beta_{2} + 3913\beta _1 + 7296 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 14 \beta_{7} + 1518 \beta_{6} + 2194 \beta_{5} - 2526 \beta_{4} - 1208 \beta_{3} + 6449 \beta_{2} + \cdots + 121649 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( - 4455 \beta_{7} + 11388 \beta_{6} + 23829 \beta_{5} - 28803 \beta_{4} - 27330 \beta_{3} + \cdots + 718143 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
9.42564
7.48973
5.24371
1.03676
−0.557812
−5.87424
−6.05402
−6.70977
0 −7.42564 0 4.36302 0 9.40153 0 28.1401 0
1.2 0 −5.48973 0 −7.85529 0 7.65099 0 3.13714 0
1.3 0 −3.24371 0 −5.01937 0 −22.4881 0 −16.4784 0
1.4 0 0.963239 0 5.79749 0 15.5937 0 −26.0722 0
1.5 0 2.55781 0 −15.7437 0 −25.1863 0 −20.4576 0
1.6 0 7.87424 0 13.0818 0 −35.1038 0 35.0036 0
1.7 0 8.05402 0 11.6466 0 24.4224 0 37.8672 0
1.8 0 8.70977 0 −18.2706 0 11.7096 0 48.8601 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.8
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(23\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 736.4.a.f yes 8
4.b odd 2 1 736.4.a.e 8
8.b even 2 1 1472.4.a.bg 8
8.d odd 2 1 1472.4.a.bh 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
736.4.a.e 8 4.b odd 2 1
736.4.a.f yes 8 1.a even 1 1 trivial
1472.4.a.bg 8 8.b even 2 1
1472.4.a.bh 8 8.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{8} - 12T_{3}^{7} - 81T_{3}^{6} + 1188T_{3}^{5} + 1395T_{3}^{4} - 32868T_{3}^{3} + 4757T_{3}^{2} + 210540T_{3} - 179952 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(736))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} \) Copy content Toggle raw display
$3$ \( T^{8} - 12 T^{7} + \cdots - 179952 \) Copy content Toggle raw display
$5$ \( T^{8} + 12 T^{7} + \cdots + 43708192 \) Copy content Toggle raw display
$7$ \( T^{8} + \cdots - 6377755008 \) Copy content Toggle raw display
$11$ \( T^{8} + \cdots + 8187544416 \) Copy content Toggle raw display
$13$ \( T^{8} + \cdots + 3821115836436 \) Copy content Toggle raw display
$17$ \( T^{8} + \cdots - 18868965322784 \) Copy content Toggle raw display
$19$ \( T^{8} + \cdots - 349561386749184 \) Copy content Toggle raw display
$23$ \( (T + 23)^{8} \) Copy content Toggle raw display
$29$ \( T^{8} + \cdots - 46\!\cdots\!32 \) Copy content Toggle raw display
$31$ \( T^{8} + \cdots + 10\!\cdots\!92 \) Copy content Toggle raw display
$37$ \( T^{8} + \cdots - 180113889841504 \) Copy content Toggle raw display
$41$ \( T^{8} + \cdots + 15\!\cdots\!96 \) Copy content Toggle raw display
$43$ \( T^{8} + \cdots - 13\!\cdots\!64 \) Copy content Toggle raw display
$47$ \( T^{8} + \cdots + 11\!\cdots\!56 \) Copy content Toggle raw display
$53$ \( T^{8} + \cdots - 49\!\cdots\!24 \) Copy content Toggle raw display
$59$ \( T^{8} + \cdots - 74\!\cdots\!24 \) Copy content Toggle raw display
$61$ \( T^{8} + \cdots + 17\!\cdots\!16 \) Copy content Toggle raw display
$67$ \( T^{8} + \cdots + 78\!\cdots\!32 \) Copy content Toggle raw display
$71$ \( T^{8} + \cdots - 76\!\cdots\!68 \) Copy content Toggle raw display
$73$ \( T^{8} + \cdots + 43\!\cdots\!00 \) Copy content Toggle raw display
$79$ \( T^{8} + \cdots + 11\!\cdots\!68 \) Copy content Toggle raw display
$83$ \( T^{8} + \cdots - 50\!\cdots\!36 \) Copy content Toggle raw display
$89$ \( T^{8} + \cdots + 11\!\cdots\!84 \) Copy content Toggle raw display
$97$ \( T^{8} + \cdots + 55\!\cdots\!08 \) Copy content Toggle raw display
show more
show less