Defining parameters
Level: | \( N \) | \(=\) | \( 736 = 2^{5} \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 736.h (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 184 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(192\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(736, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 104 | 26 | 78 |
Cusp forms | 88 | 22 | 66 |
Eisenstein series | 16 | 4 | 12 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(736, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
736.2.h.a | $4$ | $5.877$ | \(\Q(i, \sqrt{14})\) | None | \(0\) | \(8\) | \(0\) | \(0\) | \(q+2q^{3}+\beta _{3}q^{5}+q^{9}+\beta _{2}q^{11}-4\beta _{1}q^{13}+\cdots\) |
736.2.h.b | $6$ | $5.877$ | 6.0.8869743.1 | \(\Q(\sqrt{-23}) \) | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\beta _{2}q^{3}+(3+\beta _{2}-\beta _{5})q^{9}+(-\beta _{1}+\cdots)q^{13}+\cdots\) |
736.2.h.c | $12$ | $5.877$ | 12.0.\(\cdots\).2 | None | \(0\) | \(-4\) | \(0\) | \(0\) | \(q-\beta _{6}q^{3}-\beta _{8}q^{5}-\beta _{4}q^{7}+(-1-\beta _{1}+\cdots)q^{9}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(736, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(736, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(184, [\chi])\)\(^{\oplus 3}\)