Properties

Label 736.2.h
Level $736$
Weight $2$
Character orbit 736.h
Rep. character $\chi_{736}(367,\cdot)$
Character field $\Q$
Dimension $22$
Newform subspaces $3$
Sturm bound $192$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 736 = 2^{5} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 736.h (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 184 \)
Character field: \(\Q\)
Newform subspaces: \( 3 \)
Sturm bound: \(192\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(736, [\chi])\).

Total New Old
Modular forms 104 26 78
Cusp forms 88 22 66
Eisenstein series 16 4 12

Trace form

\( 22 q + 4 q^{3} + 14 q^{9} + 10 q^{25} + 4 q^{27} + 24 q^{35} - 4 q^{41} + 6 q^{49} + 16 q^{59} - 4 q^{73} + 36 q^{75} - 26 q^{81}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(736, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
736.2.h.a 736.h 184.h $4$ $5.877$ \(\Q(i, \sqrt{14})\) None 184.2.h.a \(0\) \(8\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+2q^{3}+\beta _{3}q^{5}+q^{9}+\beta _{2}q^{11}-4\beta _{1}q^{13}+\cdots\)
736.2.h.b 736.h 184.h $6$ $5.877$ 6.0.8869743.1 \(\Q(\sqrt{-23}) \) 184.2.h.b \(0\) \(0\) \(0\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q+\beta _{2}q^{3}+(3+\beta _{2}-\beta _{5})q^{9}+(-\beta _{1}+\cdots)q^{13}+\cdots\)
736.2.h.c 736.h 184.h $12$ $5.877$ 12.0.\(\cdots\).2 None 184.2.h.c \(0\) \(-4\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{6}q^{3}-\beta _{8}q^{5}-\beta _{4}q^{7}+(-1-\beta _{1}+\cdots)q^{9}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(736, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(736, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(184, [\chi])\)\(^{\oplus 3}\)