Properties

Label 7350.2.a.q.1.1
Level $7350$
Weight $2$
Character 7350.1
Self dual yes
Analytic conductor $58.690$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 7350 = 2 \cdot 3 \cdot 5^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7350.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(58.6900454856\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 42)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 7350.1

$q$-expansion

\(f(q)\) \(=\) \(q-1.00000 q^{2} -1.00000 q^{3} +1.00000 q^{4} +1.00000 q^{6} -1.00000 q^{8} +1.00000 q^{9} +O(q^{10})\) \(q-1.00000 q^{2} -1.00000 q^{3} +1.00000 q^{4} +1.00000 q^{6} -1.00000 q^{8} +1.00000 q^{9} +5.00000 q^{11} -1.00000 q^{12} +1.00000 q^{16} -4.00000 q^{17} -1.00000 q^{18} -8.00000 q^{19} -5.00000 q^{22} +4.00000 q^{23} +1.00000 q^{24} -1.00000 q^{27} -5.00000 q^{29} -3.00000 q^{31} -1.00000 q^{32} -5.00000 q^{33} +4.00000 q^{34} +1.00000 q^{36} +4.00000 q^{37} +8.00000 q^{38} -2.00000 q^{43} +5.00000 q^{44} -4.00000 q^{46} -6.00000 q^{47} -1.00000 q^{48} +4.00000 q^{51} +9.00000 q^{53} +1.00000 q^{54} +8.00000 q^{57} +5.00000 q^{58} +11.0000 q^{59} +6.00000 q^{61} +3.00000 q^{62} +1.00000 q^{64} +5.00000 q^{66} +2.00000 q^{67} -4.00000 q^{68} -4.00000 q^{69} +2.00000 q^{71} -1.00000 q^{72} +10.0000 q^{73} -4.00000 q^{74} -8.00000 q^{76} +3.00000 q^{79} +1.00000 q^{81} -7.00000 q^{83} +2.00000 q^{86} +5.00000 q^{87} -5.00000 q^{88} +6.00000 q^{89} +4.00000 q^{92} +3.00000 q^{93} +6.00000 q^{94} +1.00000 q^{96} +7.00000 q^{97} +5.00000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) −1.00000 −0.577350
\(4\) 1.00000 0.500000
\(5\) 0 0
\(6\) 1.00000 0.408248
\(7\) 0 0
\(8\) −1.00000 −0.353553
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 5.00000 1.50756 0.753778 0.657129i \(-0.228229\pi\)
0.753778 + 0.657129i \(0.228229\pi\)
\(12\) −1.00000 −0.288675
\(13\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) −4.00000 −0.970143 −0.485071 0.874475i \(-0.661206\pi\)
−0.485071 + 0.874475i \(0.661206\pi\)
\(18\) −1.00000 −0.235702
\(19\) −8.00000 −1.83533 −0.917663 0.397360i \(-0.869927\pi\)
−0.917663 + 0.397360i \(0.869927\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −5.00000 −1.06600
\(23\) 4.00000 0.834058 0.417029 0.908893i \(-0.363071\pi\)
0.417029 + 0.908893i \(0.363071\pi\)
\(24\) 1.00000 0.204124
\(25\) 0 0
\(26\) 0 0
\(27\) −1.00000 −0.192450
\(28\) 0 0
\(29\) −5.00000 −0.928477 −0.464238 0.885710i \(-0.653672\pi\)
−0.464238 + 0.885710i \(0.653672\pi\)
\(30\) 0 0
\(31\) −3.00000 −0.538816 −0.269408 0.963026i \(-0.586828\pi\)
−0.269408 + 0.963026i \(0.586828\pi\)
\(32\) −1.00000 −0.176777
\(33\) −5.00000 −0.870388
\(34\) 4.00000 0.685994
\(35\) 0 0
\(36\) 1.00000 0.166667
\(37\) 4.00000 0.657596 0.328798 0.944400i \(-0.393356\pi\)
0.328798 + 0.944400i \(0.393356\pi\)
\(38\) 8.00000 1.29777
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(42\) 0 0
\(43\) −2.00000 −0.304997 −0.152499 0.988304i \(-0.548732\pi\)
−0.152499 + 0.988304i \(0.548732\pi\)
\(44\) 5.00000 0.753778
\(45\) 0 0
\(46\) −4.00000 −0.589768
\(47\) −6.00000 −0.875190 −0.437595 0.899172i \(-0.644170\pi\)
−0.437595 + 0.899172i \(0.644170\pi\)
\(48\) −1.00000 −0.144338
\(49\) 0 0
\(50\) 0 0
\(51\) 4.00000 0.560112
\(52\) 0 0
\(53\) 9.00000 1.23625 0.618123 0.786082i \(-0.287894\pi\)
0.618123 + 0.786082i \(0.287894\pi\)
\(54\) 1.00000 0.136083
\(55\) 0 0
\(56\) 0 0
\(57\) 8.00000 1.05963
\(58\) 5.00000 0.656532
\(59\) 11.0000 1.43208 0.716039 0.698060i \(-0.245953\pi\)
0.716039 + 0.698060i \(0.245953\pi\)
\(60\) 0 0
\(61\) 6.00000 0.768221 0.384111 0.923287i \(-0.374508\pi\)
0.384111 + 0.923287i \(0.374508\pi\)
\(62\) 3.00000 0.381000
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) 5.00000 0.615457
\(67\) 2.00000 0.244339 0.122169 0.992509i \(-0.461015\pi\)
0.122169 + 0.992509i \(0.461015\pi\)
\(68\) −4.00000 −0.485071
\(69\) −4.00000 −0.481543
\(70\) 0 0
\(71\) 2.00000 0.237356 0.118678 0.992933i \(-0.462134\pi\)
0.118678 + 0.992933i \(0.462134\pi\)
\(72\) −1.00000 −0.117851
\(73\) 10.0000 1.17041 0.585206 0.810885i \(-0.301014\pi\)
0.585206 + 0.810885i \(0.301014\pi\)
\(74\) −4.00000 −0.464991
\(75\) 0 0
\(76\) −8.00000 −0.917663
\(77\) 0 0
\(78\) 0 0
\(79\) 3.00000 0.337526 0.168763 0.985657i \(-0.446023\pi\)
0.168763 + 0.985657i \(0.446023\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) −7.00000 −0.768350 −0.384175 0.923260i \(-0.625514\pi\)
−0.384175 + 0.923260i \(0.625514\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 2.00000 0.215666
\(87\) 5.00000 0.536056
\(88\) −5.00000 −0.533002
\(89\) 6.00000 0.635999 0.317999 0.948091i \(-0.396989\pi\)
0.317999 + 0.948091i \(0.396989\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 4.00000 0.417029
\(93\) 3.00000 0.311086
\(94\) 6.00000 0.618853
\(95\) 0 0
\(96\) 1.00000 0.102062
\(97\) 7.00000 0.710742 0.355371 0.934725i \(-0.384354\pi\)
0.355371 + 0.934725i \(0.384354\pi\)
\(98\) 0 0
\(99\) 5.00000 0.502519
\(100\) 0 0
\(101\) −10.0000 −0.995037 −0.497519 0.867453i \(-0.665755\pi\)
−0.497519 + 0.867453i \(0.665755\pi\)
\(102\) −4.00000 −0.396059
\(103\) 8.00000 0.788263 0.394132 0.919054i \(-0.371045\pi\)
0.394132 + 0.919054i \(0.371045\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) −9.00000 −0.874157
\(107\) −3.00000 −0.290021 −0.145010 0.989430i \(-0.546322\pi\)
−0.145010 + 0.989430i \(0.546322\pi\)
\(108\) −1.00000 −0.0962250
\(109\) −2.00000 −0.191565 −0.0957826 0.995402i \(-0.530535\pi\)
−0.0957826 + 0.995402i \(0.530535\pi\)
\(110\) 0 0
\(111\) −4.00000 −0.379663
\(112\) 0 0
\(113\) −16.0000 −1.50515 −0.752577 0.658505i \(-0.771189\pi\)
−0.752577 + 0.658505i \(0.771189\pi\)
\(114\) −8.00000 −0.749269
\(115\) 0 0
\(116\) −5.00000 −0.464238
\(117\) 0 0
\(118\) −11.0000 −1.01263
\(119\) 0 0
\(120\) 0 0
\(121\) 14.0000 1.27273
\(122\) −6.00000 −0.543214
\(123\) 0 0
\(124\) −3.00000 −0.269408
\(125\) 0 0
\(126\) 0 0
\(127\) −9.00000 −0.798621 −0.399310 0.916816i \(-0.630750\pi\)
−0.399310 + 0.916816i \(0.630750\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 2.00000 0.176090
\(130\) 0 0
\(131\) −1.00000 −0.0873704 −0.0436852 0.999045i \(-0.513910\pi\)
−0.0436852 + 0.999045i \(0.513910\pi\)
\(132\) −5.00000 −0.435194
\(133\) 0 0
\(134\) −2.00000 −0.172774
\(135\) 0 0
\(136\) 4.00000 0.342997
\(137\) 2.00000 0.170872 0.0854358 0.996344i \(-0.472772\pi\)
0.0854358 + 0.996344i \(0.472772\pi\)
\(138\) 4.00000 0.340503
\(139\) 14.0000 1.18746 0.593732 0.804663i \(-0.297654\pi\)
0.593732 + 0.804663i \(0.297654\pi\)
\(140\) 0 0
\(141\) 6.00000 0.505291
\(142\) −2.00000 −0.167836
\(143\) 0 0
\(144\) 1.00000 0.0833333
\(145\) 0 0
\(146\) −10.0000 −0.827606
\(147\) 0 0
\(148\) 4.00000 0.328798
\(149\) −18.0000 −1.47462 −0.737309 0.675556i \(-0.763904\pi\)
−0.737309 + 0.675556i \(0.763904\pi\)
\(150\) 0 0
\(151\) 19.0000 1.54620 0.773099 0.634285i \(-0.218706\pi\)
0.773099 + 0.634285i \(0.218706\pi\)
\(152\) 8.00000 0.648886
\(153\) −4.00000 −0.323381
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −4.00000 −0.319235 −0.159617 0.987179i \(-0.551026\pi\)
−0.159617 + 0.987179i \(0.551026\pi\)
\(158\) −3.00000 −0.238667
\(159\) −9.00000 −0.713746
\(160\) 0 0
\(161\) 0 0
\(162\) −1.00000 −0.0785674
\(163\) 4.00000 0.313304 0.156652 0.987654i \(-0.449930\pi\)
0.156652 + 0.987654i \(0.449930\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 7.00000 0.543305
\(167\) −14.0000 −1.08335 −0.541676 0.840587i \(-0.682210\pi\)
−0.541676 + 0.840587i \(0.682210\pi\)
\(168\) 0 0
\(169\) −13.0000 −1.00000
\(170\) 0 0
\(171\) −8.00000 −0.611775
\(172\) −2.00000 −0.152499
\(173\) 22.0000 1.67263 0.836315 0.548250i \(-0.184706\pi\)
0.836315 + 0.548250i \(0.184706\pi\)
\(174\) −5.00000 −0.379049
\(175\) 0 0
\(176\) 5.00000 0.376889
\(177\) −11.0000 −0.826811
\(178\) −6.00000 −0.449719
\(179\) 12.0000 0.896922 0.448461 0.893802i \(-0.351972\pi\)
0.448461 + 0.893802i \(0.351972\pi\)
\(180\) 0 0
\(181\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(182\) 0 0
\(183\) −6.00000 −0.443533
\(184\) −4.00000 −0.294884
\(185\) 0 0
\(186\) −3.00000 −0.219971
\(187\) −20.0000 −1.46254
\(188\) −6.00000 −0.437595
\(189\) 0 0
\(190\) 0 0
\(191\) 24.0000 1.73658 0.868290 0.496058i \(-0.165220\pi\)
0.868290 + 0.496058i \(0.165220\pi\)
\(192\) −1.00000 −0.0721688
\(193\) −5.00000 −0.359908 −0.179954 0.983675i \(-0.557595\pi\)
−0.179954 + 0.983675i \(0.557595\pi\)
\(194\) −7.00000 −0.502571
\(195\) 0 0
\(196\) 0 0
\(197\) −2.00000 −0.142494 −0.0712470 0.997459i \(-0.522698\pi\)
−0.0712470 + 0.997459i \(0.522698\pi\)
\(198\) −5.00000 −0.355335
\(199\) 4.00000 0.283552 0.141776 0.989899i \(-0.454719\pi\)
0.141776 + 0.989899i \(0.454719\pi\)
\(200\) 0 0
\(201\) −2.00000 −0.141069
\(202\) 10.0000 0.703598
\(203\) 0 0
\(204\) 4.00000 0.280056
\(205\) 0 0
\(206\) −8.00000 −0.557386
\(207\) 4.00000 0.278019
\(208\) 0 0
\(209\) −40.0000 −2.76686
\(210\) 0 0
\(211\) 2.00000 0.137686 0.0688428 0.997628i \(-0.478069\pi\)
0.0688428 + 0.997628i \(0.478069\pi\)
\(212\) 9.00000 0.618123
\(213\) −2.00000 −0.137038
\(214\) 3.00000 0.205076
\(215\) 0 0
\(216\) 1.00000 0.0680414
\(217\) 0 0
\(218\) 2.00000 0.135457
\(219\) −10.0000 −0.675737
\(220\) 0 0
\(221\) 0 0
\(222\) 4.00000 0.268462
\(223\) −7.00000 −0.468755 −0.234377 0.972146i \(-0.575305\pi\)
−0.234377 + 0.972146i \(0.575305\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 16.0000 1.06430
\(227\) 3.00000 0.199117 0.0995585 0.995032i \(-0.468257\pi\)
0.0995585 + 0.995032i \(0.468257\pi\)
\(228\) 8.00000 0.529813
\(229\) 20.0000 1.32164 0.660819 0.750546i \(-0.270209\pi\)
0.660819 + 0.750546i \(0.270209\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 5.00000 0.328266
\(233\) 4.00000 0.262049 0.131024 0.991379i \(-0.458173\pi\)
0.131024 + 0.991379i \(0.458173\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 11.0000 0.716039
\(237\) −3.00000 −0.194871
\(238\) 0 0
\(239\) −12.0000 −0.776215 −0.388108 0.921614i \(-0.626871\pi\)
−0.388108 + 0.921614i \(0.626871\pi\)
\(240\) 0 0
\(241\) 25.0000 1.61039 0.805196 0.593009i \(-0.202060\pi\)
0.805196 + 0.593009i \(0.202060\pi\)
\(242\) −14.0000 −0.899954
\(243\) −1.00000 −0.0641500
\(244\) 6.00000 0.384111
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 3.00000 0.190500
\(249\) 7.00000 0.443607
\(250\) 0 0
\(251\) −21.0000 −1.32551 −0.662754 0.748837i \(-0.730613\pi\)
−0.662754 + 0.748837i \(0.730613\pi\)
\(252\) 0 0
\(253\) 20.0000 1.25739
\(254\) 9.00000 0.564710
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −6.00000 −0.374270 −0.187135 0.982334i \(-0.559920\pi\)
−0.187135 + 0.982334i \(0.559920\pi\)
\(258\) −2.00000 −0.124515
\(259\) 0 0
\(260\) 0 0
\(261\) −5.00000 −0.309492
\(262\) 1.00000 0.0617802
\(263\) 30.0000 1.84988 0.924940 0.380114i \(-0.124115\pi\)
0.924940 + 0.380114i \(0.124115\pi\)
\(264\) 5.00000 0.307729
\(265\) 0 0
\(266\) 0 0
\(267\) −6.00000 −0.367194
\(268\) 2.00000 0.122169
\(269\) −31.0000 −1.89010 −0.945052 0.326921i \(-0.893989\pi\)
−0.945052 + 0.326921i \(0.893989\pi\)
\(270\) 0 0
\(271\) −15.0000 −0.911185 −0.455593 0.890188i \(-0.650573\pi\)
−0.455593 + 0.890188i \(0.650573\pi\)
\(272\) −4.00000 −0.242536
\(273\) 0 0
\(274\) −2.00000 −0.120824
\(275\) 0 0
\(276\) −4.00000 −0.240772
\(277\) 16.0000 0.961347 0.480673 0.876900i \(-0.340392\pi\)
0.480673 + 0.876900i \(0.340392\pi\)
\(278\) −14.0000 −0.839664
\(279\) −3.00000 −0.179605
\(280\) 0 0
\(281\) 2.00000 0.119310 0.0596550 0.998219i \(-0.481000\pi\)
0.0596550 + 0.998219i \(0.481000\pi\)
\(282\) −6.00000 −0.357295
\(283\) 10.0000 0.594438 0.297219 0.954809i \(-0.403941\pi\)
0.297219 + 0.954809i \(0.403941\pi\)
\(284\) 2.00000 0.118678
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) −1.00000 −0.0589256
\(289\) −1.00000 −0.0588235
\(290\) 0 0
\(291\) −7.00000 −0.410347
\(292\) 10.0000 0.585206
\(293\) −21.0000 −1.22683 −0.613417 0.789760i \(-0.710205\pi\)
−0.613417 + 0.789760i \(0.710205\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −4.00000 −0.232495
\(297\) −5.00000 −0.290129
\(298\) 18.0000 1.04271
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) −19.0000 −1.09333
\(303\) 10.0000 0.574485
\(304\) −8.00000 −0.458831
\(305\) 0 0
\(306\) 4.00000 0.228665
\(307\) 28.0000 1.59804 0.799022 0.601302i \(-0.205351\pi\)
0.799022 + 0.601302i \(0.205351\pi\)
\(308\) 0 0
\(309\) −8.00000 −0.455104
\(310\) 0 0
\(311\) 32.0000 1.81455 0.907277 0.420534i \(-0.138157\pi\)
0.907277 + 0.420534i \(0.138157\pi\)
\(312\) 0 0
\(313\) 1.00000 0.0565233 0.0282617 0.999601i \(-0.491003\pi\)
0.0282617 + 0.999601i \(0.491003\pi\)
\(314\) 4.00000 0.225733
\(315\) 0 0
\(316\) 3.00000 0.168763
\(317\) −3.00000 −0.168497 −0.0842484 0.996445i \(-0.526849\pi\)
−0.0842484 + 0.996445i \(0.526849\pi\)
\(318\) 9.00000 0.504695
\(319\) −25.0000 −1.39973
\(320\) 0 0
\(321\) 3.00000 0.167444
\(322\) 0 0
\(323\) 32.0000 1.78053
\(324\) 1.00000 0.0555556
\(325\) 0 0
\(326\) −4.00000 −0.221540
\(327\) 2.00000 0.110600
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −4.00000 −0.219860 −0.109930 0.993939i \(-0.535063\pi\)
−0.109930 + 0.993939i \(0.535063\pi\)
\(332\) −7.00000 −0.384175
\(333\) 4.00000 0.219199
\(334\) 14.0000 0.766046
\(335\) 0 0
\(336\) 0 0
\(337\) −9.00000 −0.490261 −0.245131 0.969490i \(-0.578831\pi\)
−0.245131 + 0.969490i \(0.578831\pi\)
\(338\) 13.0000 0.707107
\(339\) 16.0000 0.869001
\(340\) 0 0
\(341\) −15.0000 −0.812296
\(342\) 8.00000 0.432590
\(343\) 0 0
\(344\) 2.00000 0.107833
\(345\) 0 0
\(346\) −22.0000 −1.18273
\(347\) −12.0000 −0.644194 −0.322097 0.946707i \(-0.604388\pi\)
−0.322097 + 0.946707i \(0.604388\pi\)
\(348\) 5.00000 0.268028
\(349\) 14.0000 0.749403 0.374701 0.927146i \(-0.377745\pi\)
0.374701 + 0.927146i \(0.377745\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −5.00000 −0.266501
\(353\) 24.0000 1.27739 0.638696 0.769460i \(-0.279474\pi\)
0.638696 + 0.769460i \(0.279474\pi\)
\(354\) 11.0000 0.584643
\(355\) 0 0
\(356\) 6.00000 0.317999
\(357\) 0 0
\(358\) −12.0000 −0.634220
\(359\) 10.0000 0.527780 0.263890 0.964553i \(-0.414994\pi\)
0.263890 + 0.964553i \(0.414994\pi\)
\(360\) 0 0
\(361\) 45.0000 2.36842
\(362\) 0 0
\(363\) −14.0000 −0.734809
\(364\) 0 0
\(365\) 0 0
\(366\) 6.00000 0.313625
\(367\) 17.0000 0.887393 0.443696 0.896177i \(-0.353667\pi\)
0.443696 + 0.896177i \(0.353667\pi\)
\(368\) 4.00000 0.208514
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 3.00000 0.155543
\(373\) 32.0000 1.65690 0.828449 0.560065i \(-0.189224\pi\)
0.828449 + 0.560065i \(0.189224\pi\)
\(374\) 20.0000 1.03418
\(375\) 0 0
\(376\) 6.00000 0.309426
\(377\) 0 0
\(378\) 0 0
\(379\) 16.0000 0.821865 0.410932 0.911666i \(-0.365203\pi\)
0.410932 + 0.911666i \(0.365203\pi\)
\(380\) 0 0
\(381\) 9.00000 0.461084
\(382\) −24.0000 −1.22795
\(383\) −34.0000 −1.73732 −0.868659 0.495410i \(-0.835018\pi\)
−0.868659 + 0.495410i \(0.835018\pi\)
\(384\) 1.00000 0.0510310
\(385\) 0 0
\(386\) 5.00000 0.254493
\(387\) −2.00000 −0.101666
\(388\) 7.00000 0.355371
\(389\) −2.00000 −0.101404 −0.0507020 0.998714i \(-0.516146\pi\)
−0.0507020 + 0.998714i \(0.516146\pi\)
\(390\) 0 0
\(391\) −16.0000 −0.809155
\(392\) 0 0
\(393\) 1.00000 0.0504433
\(394\) 2.00000 0.100759
\(395\) 0 0
\(396\) 5.00000 0.251259
\(397\) 36.0000 1.80679 0.903394 0.428811i \(-0.141067\pi\)
0.903394 + 0.428811i \(0.141067\pi\)
\(398\) −4.00000 −0.200502
\(399\) 0 0
\(400\) 0 0
\(401\) 24.0000 1.19850 0.599251 0.800561i \(-0.295465\pi\)
0.599251 + 0.800561i \(0.295465\pi\)
\(402\) 2.00000 0.0997509
\(403\) 0 0
\(404\) −10.0000 −0.497519
\(405\) 0 0
\(406\) 0 0
\(407\) 20.0000 0.991363
\(408\) −4.00000 −0.198030
\(409\) 25.0000 1.23617 0.618085 0.786111i \(-0.287909\pi\)
0.618085 + 0.786111i \(0.287909\pi\)
\(410\) 0 0
\(411\) −2.00000 −0.0986527
\(412\) 8.00000 0.394132
\(413\) 0 0
\(414\) −4.00000 −0.196589
\(415\) 0 0
\(416\) 0 0
\(417\) −14.0000 −0.685583
\(418\) 40.0000 1.95646
\(419\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(420\) 0 0
\(421\) 30.0000 1.46211 0.731055 0.682318i \(-0.239028\pi\)
0.731055 + 0.682318i \(0.239028\pi\)
\(422\) −2.00000 −0.0973585
\(423\) −6.00000 −0.291730
\(424\) −9.00000 −0.437079
\(425\) 0 0
\(426\) 2.00000 0.0969003
\(427\) 0 0
\(428\) −3.00000 −0.145010
\(429\) 0 0
\(430\) 0 0
\(431\) 12.0000 0.578020 0.289010 0.957326i \(-0.406674\pi\)
0.289010 + 0.957326i \(0.406674\pi\)
\(432\) −1.00000 −0.0481125
\(433\) 14.0000 0.672797 0.336399 0.941720i \(-0.390791\pi\)
0.336399 + 0.941720i \(0.390791\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −2.00000 −0.0957826
\(437\) −32.0000 −1.53077
\(438\) 10.0000 0.477818
\(439\) −15.0000 −0.715911 −0.357955 0.933739i \(-0.616526\pi\)
−0.357955 + 0.933739i \(0.616526\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −17.0000 −0.807694 −0.403847 0.914826i \(-0.632327\pi\)
−0.403847 + 0.914826i \(0.632327\pi\)
\(444\) −4.00000 −0.189832
\(445\) 0 0
\(446\) 7.00000 0.331460
\(447\) 18.0000 0.851371
\(448\) 0 0
\(449\) 16.0000 0.755087 0.377543 0.925992i \(-0.376769\pi\)
0.377543 + 0.925992i \(0.376769\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) −16.0000 −0.752577
\(453\) −19.0000 −0.892698
\(454\) −3.00000 −0.140797
\(455\) 0 0
\(456\) −8.00000 −0.374634
\(457\) −31.0000 −1.45012 −0.725059 0.688686i \(-0.758188\pi\)
−0.725059 + 0.688686i \(0.758188\pi\)
\(458\) −20.0000 −0.934539
\(459\) 4.00000 0.186704
\(460\) 0 0
\(461\) 14.0000 0.652045 0.326023 0.945362i \(-0.394291\pi\)
0.326023 + 0.945362i \(0.394291\pi\)
\(462\) 0 0
\(463\) −16.0000 −0.743583 −0.371792 0.928316i \(-0.621256\pi\)
−0.371792 + 0.928316i \(0.621256\pi\)
\(464\) −5.00000 −0.232119
\(465\) 0 0
\(466\) −4.00000 −0.185296
\(467\) −20.0000 −0.925490 −0.462745 0.886492i \(-0.653135\pi\)
−0.462745 + 0.886492i \(0.653135\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 4.00000 0.184310
\(472\) −11.0000 −0.506316
\(473\) −10.0000 −0.459800
\(474\) 3.00000 0.137795
\(475\) 0 0
\(476\) 0 0
\(477\) 9.00000 0.412082
\(478\) 12.0000 0.548867
\(479\) −38.0000 −1.73626 −0.868132 0.496333i \(-0.834679\pi\)
−0.868132 + 0.496333i \(0.834679\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) −25.0000 −1.13872
\(483\) 0 0
\(484\) 14.0000 0.636364
\(485\) 0 0
\(486\) 1.00000 0.0453609
\(487\) −5.00000 −0.226572 −0.113286 0.993562i \(-0.536138\pi\)
−0.113286 + 0.993562i \(0.536138\pi\)
\(488\) −6.00000 −0.271607
\(489\) −4.00000 −0.180886
\(490\) 0 0
\(491\) 9.00000 0.406164 0.203082 0.979162i \(-0.434904\pi\)
0.203082 + 0.979162i \(0.434904\pi\)
\(492\) 0 0
\(493\) 20.0000 0.900755
\(494\) 0 0
\(495\) 0 0
\(496\) −3.00000 −0.134704
\(497\) 0 0
\(498\) −7.00000 −0.313678
\(499\) 10.0000 0.447661 0.223831 0.974628i \(-0.428144\pi\)
0.223831 + 0.974628i \(0.428144\pi\)
\(500\) 0 0
\(501\) 14.0000 0.625474
\(502\) 21.0000 0.937276
\(503\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −20.0000 −0.889108
\(507\) 13.0000 0.577350
\(508\) −9.00000 −0.399310
\(509\) −15.0000 −0.664863 −0.332432 0.943127i \(-0.607869\pi\)
−0.332432 + 0.943127i \(0.607869\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −1.00000 −0.0441942
\(513\) 8.00000 0.353209
\(514\) 6.00000 0.264649
\(515\) 0 0
\(516\) 2.00000 0.0880451
\(517\) −30.0000 −1.31940
\(518\) 0 0
\(519\) −22.0000 −0.965693
\(520\) 0 0
\(521\) 18.0000 0.788594 0.394297 0.918983i \(-0.370988\pi\)
0.394297 + 0.918983i \(0.370988\pi\)
\(522\) 5.00000 0.218844
\(523\) 8.00000 0.349816 0.174908 0.984585i \(-0.444037\pi\)
0.174908 + 0.984585i \(0.444037\pi\)
\(524\) −1.00000 −0.0436852
\(525\) 0 0
\(526\) −30.0000 −1.30806
\(527\) 12.0000 0.522728
\(528\) −5.00000 −0.217597
\(529\) −7.00000 −0.304348
\(530\) 0 0
\(531\) 11.0000 0.477359
\(532\) 0 0
\(533\) 0 0
\(534\) 6.00000 0.259645
\(535\) 0 0
\(536\) −2.00000 −0.0863868
\(537\) −12.0000 −0.517838
\(538\) 31.0000 1.33650
\(539\) 0 0
\(540\) 0 0
\(541\) −18.0000 −0.773880 −0.386940 0.922105i \(-0.626468\pi\)
−0.386940 + 0.922105i \(0.626468\pi\)
\(542\) 15.0000 0.644305
\(543\) 0 0
\(544\) 4.00000 0.171499
\(545\) 0 0
\(546\) 0 0
\(547\) 12.0000 0.513083 0.256541 0.966533i \(-0.417417\pi\)
0.256541 + 0.966533i \(0.417417\pi\)
\(548\) 2.00000 0.0854358
\(549\) 6.00000 0.256074
\(550\) 0 0
\(551\) 40.0000 1.70406
\(552\) 4.00000 0.170251
\(553\) 0 0
\(554\) −16.0000 −0.679775
\(555\) 0 0
\(556\) 14.0000 0.593732
\(557\) 23.0000 0.974541 0.487271 0.873251i \(-0.337993\pi\)
0.487271 + 0.873251i \(0.337993\pi\)
\(558\) 3.00000 0.127000
\(559\) 0 0
\(560\) 0 0
\(561\) 20.0000 0.844401
\(562\) −2.00000 −0.0843649
\(563\) 17.0000 0.716465 0.358232 0.933632i \(-0.383380\pi\)
0.358232 + 0.933632i \(0.383380\pi\)
\(564\) 6.00000 0.252646
\(565\) 0 0
\(566\) −10.0000 −0.420331
\(567\) 0 0
\(568\) −2.00000 −0.0839181
\(569\) 24.0000 1.00613 0.503066 0.864248i \(-0.332205\pi\)
0.503066 + 0.864248i \(0.332205\pi\)
\(570\) 0 0
\(571\) −30.0000 −1.25546 −0.627730 0.778431i \(-0.716016\pi\)
−0.627730 + 0.778431i \(0.716016\pi\)
\(572\) 0 0
\(573\) −24.0000 −1.00261
\(574\) 0 0
\(575\) 0 0
\(576\) 1.00000 0.0416667
\(577\) 31.0000 1.29055 0.645273 0.763952i \(-0.276743\pi\)
0.645273 + 0.763952i \(0.276743\pi\)
\(578\) 1.00000 0.0415945
\(579\) 5.00000 0.207793
\(580\) 0 0
\(581\) 0 0
\(582\) 7.00000 0.290159
\(583\) 45.0000 1.86371
\(584\) −10.0000 −0.413803
\(585\) 0 0
\(586\) 21.0000 0.867502
\(587\) 35.0000 1.44460 0.722302 0.691577i \(-0.243084\pi\)
0.722302 + 0.691577i \(0.243084\pi\)
\(588\) 0 0
\(589\) 24.0000 0.988903
\(590\) 0 0
\(591\) 2.00000 0.0822690
\(592\) 4.00000 0.164399
\(593\) 36.0000 1.47834 0.739171 0.673517i \(-0.235217\pi\)
0.739171 + 0.673517i \(0.235217\pi\)
\(594\) 5.00000 0.205152
\(595\) 0 0
\(596\) −18.0000 −0.737309
\(597\) −4.00000 −0.163709
\(598\) 0 0
\(599\) −30.0000 −1.22577 −0.612883 0.790173i \(-0.709990\pi\)
−0.612883 + 0.790173i \(0.709990\pi\)
\(600\) 0 0
\(601\) −35.0000 −1.42768 −0.713840 0.700309i \(-0.753046\pi\)
−0.713840 + 0.700309i \(0.753046\pi\)
\(602\) 0 0
\(603\) 2.00000 0.0814463
\(604\) 19.0000 0.773099
\(605\) 0 0
\(606\) −10.0000 −0.406222
\(607\) −27.0000 −1.09590 −0.547948 0.836512i \(-0.684591\pi\)
−0.547948 + 0.836512i \(0.684591\pi\)
\(608\) 8.00000 0.324443
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) −4.00000 −0.161690
\(613\) −12.0000 −0.484675 −0.242338 0.970192i \(-0.577914\pi\)
−0.242338 + 0.970192i \(0.577914\pi\)
\(614\) −28.0000 −1.12999
\(615\) 0 0
\(616\) 0 0
\(617\) −2.00000 −0.0805170 −0.0402585 0.999189i \(-0.512818\pi\)
−0.0402585 + 0.999189i \(0.512818\pi\)
\(618\) 8.00000 0.321807
\(619\) −10.0000 −0.401934 −0.200967 0.979598i \(-0.564408\pi\)
−0.200967 + 0.979598i \(0.564408\pi\)
\(620\) 0 0
\(621\) −4.00000 −0.160514
\(622\) −32.0000 −1.28308
\(623\) 0 0
\(624\) 0 0
\(625\) 0 0
\(626\) −1.00000 −0.0399680
\(627\) 40.0000 1.59745
\(628\) −4.00000 −0.159617
\(629\) −16.0000 −0.637962
\(630\) 0 0
\(631\) −19.0000 −0.756378 −0.378189 0.925728i \(-0.623453\pi\)
−0.378189 + 0.925728i \(0.623453\pi\)
\(632\) −3.00000 −0.119334
\(633\) −2.00000 −0.0794929
\(634\) 3.00000 0.119145
\(635\) 0 0
\(636\) −9.00000 −0.356873
\(637\) 0 0
\(638\) 25.0000 0.989759
\(639\) 2.00000 0.0791188
\(640\) 0 0
\(641\) 26.0000 1.02694 0.513469 0.858108i \(-0.328360\pi\)
0.513469 + 0.858108i \(0.328360\pi\)
\(642\) −3.00000 −0.118401
\(643\) 14.0000 0.552106 0.276053 0.961142i \(-0.410973\pi\)
0.276053 + 0.961142i \(0.410973\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −32.0000 −1.25902
\(647\) −18.0000 −0.707653 −0.353827 0.935311i \(-0.615120\pi\)
−0.353827 + 0.935311i \(0.615120\pi\)
\(648\) −1.00000 −0.0392837
\(649\) 55.0000 2.15894
\(650\) 0 0
\(651\) 0 0
\(652\) 4.00000 0.156652
\(653\) 39.0000 1.52619 0.763094 0.646288i \(-0.223679\pi\)
0.763094 + 0.646288i \(0.223679\pi\)
\(654\) −2.00000 −0.0782062
\(655\) 0 0
\(656\) 0 0
\(657\) 10.0000 0.390137
\(658\) 0 0
\(659\) −40.0000 −1.55818 −0.779089 0.626913i \(-0.784318\pi\)
−0.779089 + 0.626913i \(0.784318\pi\)
\(660\) 0 0
\(661\) −10.0000 −0.388955 −0.194477 0.980907i \(-0.562301\pi\)
−0.194477 + 0.980907i \(0.562301\pi\)
\(662\) 4.00000 0.155464
\(663\) 0 0
\(664\) 7.00000 0.271653
\(665\) 0 0
\(666\) −4.00000 −0.154997
\(667\) −20.0000 −0.774403
\(668\) −14.0000 −0.541676
\(669\) 7.00000 0.270636
\(670\) 0 0
\(671\) 30.0000 1.15814
\(672\) 0 0
\(673\) 19.0000 0.732396 0.366198 0.930537i \(-0.380659\pi\)
0.366198 + 0.930537i \(0.380659\pi\)
\(674\) 9.00000 0.346667
\(675\) 0 0
\(676\) −13.0000 −0.500000
\(677\) −27.0000 −1.03769 −0.518847 0.854867i \(-0.673639\pi\)
−0.518847 + 0.854867i \(0.673639\pi\)
\(678\) −16.0000 −0.614476
\(679\) 0 0
\(680\) 0 0
\(681\) −3.00000 −0.114960
\(682\) 15.0000 0.574380
\(683\) 9.00000 0.344375 0.172188 0.985064i \(-0.444916\pi\)
0.172188 + 0.985064i \(0.444916\pi\)
\(684\) −8.00000 −0.305888
\(685\) 0 0
\(686\) 0 0
\(687\) −20.0000 −0.763048
\(688\) −2.00000 −0.0762493
\(689\) 0 0
\(690\) 0 0
\(691\) −8.00000 −0.304334 −0.152167 0.988355i \(-0.548625\pi\)
−0.152167 + 0.988355i \(0.548625\pi\)
\(692\) 22.0000 0.836315
\(693\) 0 0
\(694\) 12.0000 0.455514
\(695\) 0 0
\(696\) −5.00000 −0.189525
\(697\) 0 0
\(698\) −14.0000 −0.529908
\(699\) −4.00000 −0.151294
\(700\) 0 0
\(701\) −5.00000 −0.188847 −0.0944237 0.995532i \(-0.530101\pi\)
−0.0944237 + 0.995532i \(0.530101\pi\)
\(702\) 0 0
\(703\) −32.0000 −1.20690
\(704\) 5.00000 0.188445
\(705\) 0 0
\(706\) −24.0000 −0.903252
\(707\) 0 0
\(708\) −11.0000 −0.413405
\(709\) 38.0000 1.42712 0.713560 0.700594i \(-0.247082\pi\)
0.713560 + 0.700594i \(0.247082\pi\)
\(710\) 0 0
\(711\) 3.00000 0.112509
\(712\) −6.00000 −0.224860
\(713\) −12.0000 −0.449404
\(714\) 0 0
\(715\) 0 0
\(716\) 12.0000 0.448461
\(717\) 12.0000 0.448148
\(718\) −10.0000 −0.373197
\(719\) 6.00000 0.223762 0.111881 0.993722i \(-0.464312\pi\)
0.111881 + 0.993722i \(0.464312\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −45.0000 −1.67473
\(723\) −25.0000 −0.929760
\(724\) 0 0
\(725\) 0 0
\(726\) 14.0000 0.519589
\(727\) 7.00000 0.259616 0.129808 0.991539i \(-0.458564\pi\)
0.129808 + 0.991539i \(0.458564\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 8.00000 0.295891
\(732\) −6.00000 −0.221766
\(733\) −6.00000 −0.221615 −0.110808 0.993842i \(-0.535344\pi\)
−0.110808 + 0.993842i \(0.535344\pi\)
\(734\) −17.0000 −0.627481
\(735\) 0 0
\(736\) −4.00000 −0.147442
\(737\) 10.0000 0.368355
\(738\) 0 0
\(739\) −30.0000 −1.10357 −0.551784 0.833987i \(-0.686053\pi\)
−0.551784 + 0.833987i \(0.686053\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −30.0000 −1.10059 −0.550297 0.834969i \(-0.685485\pi\)
−0.550297 + 0.834969i \(0.685485\pi\)
\(744\) −3.00000 −0.109985
\(745\) 0 0
\(746\) −32.0000 −1.17160
\(747\) −7.00000 −0.256117
\(748\) −20.0000 −0.731272
\(749\) 0 0
\(750\) 0 0
\(751\) 45.0000 1.64207 0.821037 0.570875i \(-0.193396\pi\)
0.821037 + 0.570875i \(0.193396\pi\)
\(752\) −6.00000 −0.218797
\(753\) 21.0000 0.765283
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 54.0000 1.96266 0.981332 0.192323i \(-0.0616021\pi\)
0.981332 + 0.192323i \(0.0616021\pi\)
\(758\) −16.0000 −0.581146
\(759\) −20.0000 −0.725954
\(760\) 0 0
\(761\) −8.00000 −0.290000 −0.145000 0.989432i \(-0.546318\pi\)
−0.145000 + 0.989432i \(0.546318\pi\)
\(762\) −9.00000 −0.326036
\(763\) 0 0
\(764\) 24.0000 0.868290
\(765\) 0 0
\(766\) 34.0000 1.22847
\(767\) 0 0
\(768\) −1.00000 −0.0360844
\(769\) 35.0000 1.26213 0.631066 0.775729i \(-0.282618\pi\)
0.631066 + 0.775729i \(0.282618\pi\)
\(770\) 0 0
\(771\) 6.00000 0.216085
\(772\) −5.00000 −0.179954
\(773\) 10.0000 0.359675 0.179838 0.983696i \(-0.442443\pi\)
0.179838 + 0.983696i \(0.442443\pi\)
\(774\) 2.00000 0.0718885
\(775\) 0 0
\(776\) −7.00000 −0.251285
\(777\) 0 0
\(778\) 2.00000 0.0717035
\(779\) 0 0
\(780\) 0 0
\(781\) 10.0000 0.357828
\(782\) 16.0000 0.572159
\(783\) 5.00000 0.178685
\(784\) 0 0
\(785\) 0 0
\(786\) −1.00000 −0.0356688
\(787\) −18.0000 −0.641631 −0.320815 0.947142i \(-0.603957\pi\)
−0.320815 + 0.947142i \(0.603957\pi\)
\(788\) −2.00000 −0.0712470
\(789\) −30.0000 −1.06803
\(790\) 0 0
\(791\) 0 0
\(792\) −5.00000 −0.177667
\(793\) 0 0
\(794\) −36.0000 −1.27759
\(795\) 0 0
\(796\) 4.00000 0.141776
\(797\) 21.0000 0.743858 0.371929 0.928261i \(-0.378696\pi\)
0.371929 + 0.928261i \(0.378696\pi\)
\(798\) 0 0
\(799\) 24.0000 0.849059
\(800\) 0 0
\(801\) 6.00000 0.212000
\(802\) −24.0000 −0.847469
\(803\) 50.0000 1.76446
\(804\) −2.00000 −0.0705346
\(805\) 0 0
\(806\) 0 0
\(807\) 31.0000 1.09125
\(808\) 10.0000 0.351799
\(809\) 40.0000 1.40633 0.703163 0.711029i \(-0.251771\pi\)
0.703163 + 0.711029i \(0.251771\pi\)
\(810\) 0 0
\(811\) 14.0000 0.491606 0.245803 0.969320i \(-0.420948\pi\)
0.245803 + 0.969320i \(0.420948\pi\)
\(812\) 0 0
\(813\) 15.0000 0.526073
\(814\) −20.0000 −0.701000
\(815\) 0 0
\(816\) 4.00000 0.140028
\(817\) 16.0000 0.559769
\(818\) −25.0000 −0.874105
\(819\) 0 0
\(820\) 0 0
\(821\) −25.0000 −0.872506 −0.436253 0.899824i \(-0.643695\pi\)
−0.436253 + 0.899824i \(0.643695\pi\)
\(822\) 2.00000 0.0697580
\(823\) −40.0000 −1.39431 −0.697156 0.716919i \(-0.745552\pi\)
−0.697156 + 0.716919i \(0.745552\pi\)
\(824\) −8.00000 −0.278693
\(825\) 0 0
\(826\) 0 0
\(827\) −9.00000 −0.312961 −0.156480 0.987681i \(-0.550015\pi\)
−0.156480 + 0.987681i \(0.550015\pi\)
\(828\) 4.00000 0.139010
\(829\) 32.0000 1.11141 0.555703 0.831381i \(-0.312449\pi\)
0.555703 + 0.831381i \(0.312449\pi\)
\(830\) 0 0
\(831\) −16.0000 −0.555034
\(832\) 0 0
\(833\) 0 0
\(834\) 14.0000 0.484780
\(835\) 0 0
\(836\) −40.0000 −1.38343
\(837\) 3.00000 0.103695
\(838\) 0 0
\(839\) 28.0000 0.966667 0.483334 0.875436i \(-0.339426\pi\)
0.483334 + 0.875436i \(0.339426\pi\)
\(840\) 0 0
\(841\) −4.00000 −0.137931
\(842\) −30.0000 −1.03387
\(843\) −2.00000 −0.0688837
\(844\) 2.00000 0.0688428
\(845\) 0 0
\(846\) 6.00000 0.206284
\(847\) 0 0
\(848\) 9.00000 0.309061
\(849\) −10.0000 −0.343199
\(850\) 0 0
\(851\) 16.0000 0.548473
\(852\) −2.00000 −0.0685189
\(853\) 14.0000 0.479351 0.239675 0.970853i \(-0.422959\pi\)
0.239675 + 0.970853i \(0.422959\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 3.00000 0.102538
\(857\) −18.0000 −0.614868 −0.307434 0.951569i \(-0.599470\pi\)
−0.307434 + 0.951569i \(0.599470\pi\)
\(858\) 0 0
\(859\) 34.0000 1.16007 0.580033 0.814593i \(-0.303040\pi\)
0.580033 + 0.814593i \(0.303040\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −12.0000 −0.408722
\(863\) −10.0000 −0.340404 −0.170202 0.985409i \(-0.554442\pi\)
−0.170202 + 0.985409i \(0.554442\pi\)
\(864\) 1.00000 0.0340207
\(865\) 0 0
\(866\) −14.0000 −0.475739
\(867\) 1.00000 0.0339618
\(868\) 0 0
\(869\) 15.0000 0.508840
\(870\) 0 0
\(871\) 0 0
\(872\) 2.00000 0.0677285
\(873\) 7.00000 0.236914
\(874\) 32.0000 1.08242
\(875\) 0 0
\(876\) −10.0000 −0.337869
\(877\) 32.0000 1.08056 0.540282 0.841484i \(-0.318318\pi\)
0.540282 + 0.841484i \(0.318318\pi\)
\(878\) 15.0000 0.506225
\(879\) 21.0000 0.708312
\(880\) 0 0
\(881\) 42.0000 1.41502 0.707508 0.706705i \(-0.249819\pi\)
0.707508 + 0.706705i \(0.249819\pi\)
\(882\) 0 0
\(883\) 40.0000 1.34611 0.673054 0.739594i \(-0.264982\pi\)
0.673054 + 0.739594i \(0.264982\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 17.0000 0.571126
\(887\) 36.0000 1.20876 0.604381 0.796696i \(-0.293421\pi\)
0.604381 + 0.796696i \(0.293421\pi\)
\(888\) 4.00000 0.134231
\(889\) 0 0
\(890\) 0 0
\(891\) 5.00000 0.167506
\(892\) −7.00000 −0.234377
\(893\) 48.0000 1.60626
\(894\) −18.0000 −0.602010
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) −16.0000 −0.533927
\(899\) 15.0000 0.500278
\(900\) 0 0
\(901\) −36.0000 −1.19933
\(902\) 0 0
\(903\) 0 0
\(904\) 16.0000 0.532152
\(905\) 0 0
\(906\) 19.0000 0.631233
\(907\) −12.0000 −0.398453 −0.199227 0.979953i \(-0.563843\pi\)
−0.199227 + 0.979953i \(0.563843\pi\)
\(908\) 3.00000 0.0995585
\(909\) −10.0000 −0.331679
\(910\) 0 0
\(911\) 30.0000 0.993944 0.496972 0.867766i \(-0.334445\pi\)
0.496972 + 0.867766i \(0.334445\pi\)
\(912\) 8.00000 0.264906
\(913\) −35.0000 −1.15833
\(914\) 31.0000 1.02539
\(915\) 0 0
\(916\) 20.0000 0.660819
\(917\) 0 0
\(918\) −4.00000 −0.132020
\(919\) −32.0000 −1.05558 −0.527791 0.849374i \(-0.676980\pi\)
−0.527791 + 0.849374i \(0.676980\pi\)
\(920\) 0 0
\(921\) −28.0000 −0.922631
\(922\) −14.0000 −0.461065
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 16.0000 0.525793
\(927\) 8.00000 0.262754
\(928\) 5.00000 0.164133
\(929\) 6.00000 0.196854 0.0984268 0.995144i \(-0.468619\pi\)
0.0984268 + 0.995144i \(0.468619\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 4.00000 0.131024
\(933\) −32.0000 −1.04763
\(934\) 20.0000 0.654420
\(935\) 0 0
\(936\) 0 0
\(937\) 35.0000 1.14340 0.571700 0.820463i \(-0.306284\pi\)
0.571700 + 0.820463i \(0.306284\pi\)
\(938\) 0 0
\(939\) −1.00000 −0.0326338
\(940\) 0 0
\(941\) 11.0000 0.358590 0.179295 0.983795i \(-0.442618\pi\)
0.179295 + 0.983795i \(0.442618\pi\)
\(942\) −4.00000 −0.130327
\(943\) 0 0
\(944\) 11.0000 0.358020
\(945\) 0 0
\(946\) 10.0000 0.325128
\(947\) 32.0000 1.03986 0.519930 0.854209i \(-0.325958\pi\)
0.519930 + 0.854209i \(0.325958\pi\)
\(948\) −3.00000 −0.0974355
\(949\) 0 0
\(950\) 0 0
\(951\) 3.00000 0.0972817
\(952\) 0 0
\(953\) −2.00000 −0.0647864 −0.0323932 0.999475i \(-0.510313\pi\)
−0.0323932 + 0.999475i \(0.510313\pi\)
\(954\) −9.00000 −0.291386
\(955\) 0 0
\(956\) −12.0000 −0.388108
\(957\) 25.0000 0.808135
\(958\) 38.0000 1.22772
\(959\) 0 0
\(960\) 0 0
\(961\) −22.0000 −0.709677
\(962\) 0 0
\(963\) −3.00000 −0.0966736
\(964\) 25.0000 0.805196
\(965\) 0 0
\(966\) 0 0
\(967\) 61.0000 1.96163 0.980814 0.194946i \(-0.0624533\pi\)
0.980814 + 0.194946i \(0.0624533\pi\)
\(968\) −14.0000 −0.449977
\(969\) −32.0000 −1.02799
\(970\) 0 0
\(971\) −15.0000 −0.481373 −0.240686 0.970603i \(-0.577373\pi\)
−0.240686 + 0.970603i \(0.577373\pi\)
\(972\) −1.00000 −0.0320750
\(973\) 0 0
\(974\) 5.00000 0.160210
\(975\) 0 0
\(976\) 6.00000 0.192055
\(977\) 30.0000 0.959785 0.479893 0.877327i \(-0.340676\pi\)
0.479893 + 0.877327i \(0.340676\pi\)
\(978\) 4.00000 0.127906
\(979\) 30.0000 0.958804
\(980\) 0 0
\(981\) −2.00000 −0.0638551
\(982\) −9.00000 −0.287202
\(983\) −60.0000 −1.91370 −0.956851 0.290578i \(-0.906153\pi\)
−0.956851 + 0.290578i \(0.906153\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) −20.0000 −0.636930
\(987\) 0 0
\(988\) 0 0
\(989\) −8.00000 −0.254385
\(990\) 0 0
\(991\) 47.0000 1.49300 0.746502 0.665383i \(-0.231732\pi\)
0.746502 + 0.665383i \(0.231732\pi\)
\(992\) 3.00000 0.0952501
\(993\) 4.00000 0.126936
\(994\) 0 0
\(995\) 0 0
\(996\) 7.00000 0.221803
\(997\) 38.0000 1.20347 0.601736 0.798695i \(-0.294476\pi\)
0.601736 + 0.798695i \(0.294476\pi\)
\(998\) −10.0000 −0.316544
\(999\) −4.00000 −0.126554
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7350.2.a.q.1.1 1
5.4 even 2 294.2.a.f.1.1 1
7.3 odd 6 1050.2.i.l.751.1 2
7.5 odd 6 1050.2.i.l.151.1 2
7.6 odd 2 7350.2.a.bl.1.1 1
15.14 odd 2 882.2.a.d.1.1 1
20.19 odd 2 2352.2.a.f.1.1 1
35.3 even 12 1050.2.o.a.499.1 4
35.4 even 6 294.2.e.b.79.1 2
35.9 even 6 294.2.e.b.67.1 2
35.12 even 12 1050.2.o.a.949.1 4
35.17 even 12 1050.2.o.a.499.2 4
35.19 odd 6 42.2.e.a.25.1 2
35.24 odd 6 42.2.e.a.37.1 yes 2
35.33 even 12 1050.2.o.a.949.2 4
35.34 odd 2 294.2.a.e.1.1 1
40.19 odd 2 9408.2.a.cr.1.1 1
40.29 even 2 9408.2.a.z.1.1 1
60.59 even 2 7056.2.a.bl.1.1 1
105.44 odd 6 882.2.g.i.361.1 2
105.59 even 6 126.2.g.c.37.1 2
105.74 odd 6 882.2.g.i.667.1 2
105.89 even 6 126.2.g.c.109.1 2
105.104 even 2 882.2.a.c.1.1 1
140.19 even 6 336.2.q.b.193.1 2
140.39 odd 6 2352.2.q.u.961.1 2
140.59 even 6 336.2.q.b.289.1 2
140.79 odd 6 2352.2.q.u.1537.1 2
140.139 even 2 2352.2.a.t.1.1 1
280.19 even 6 1344.2.q.s.193.1 2
280.59 even 6 1344.2.q.s.961.1 2
280.69 odd 2 9408.2.a.ce.1.1 1
280.139 even 2 9408.2.a.q.1.1 1
280.229 odd 6 1344.2.q.g.193.1 2
280.269 odd 6 1344.2.q.g.961.1 2
315.59 even 6 1134.2.h.l.541.1 2
315.94 odd 6 1134.2.h.e.541.1 2
315.124 odd 6 1134.2.h.e.109.1 2
315.164 even 6 1134.2.e.e.919.1 2
315.194 even 6 1134.2.e.e.865.1 2
315.229 odd 6 1134.2.e.l.865.1 2
315.299 even 6 1134.2.h.l.109.1 2
315.304 odd 6 1134.2.e.l.919.1 2
420.59 odd 6 1008.2.s.k.289.1 2
420.299 odd 6 1008.2.s.k.865.1 2
420.419 odd 2 7056.2.a.w.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
42.2.e.a.25.1 2 35.19 odd 6
42.2.e.a.37.1 yes 2 35.24 odd 6
126.2.g.c.37.1 2 105.59 even 6
126.2.g.c.109.1 2 105.89 even 6
294.2.a.e.1.1 1 35.34 odd 2
294.2.a.f.1.1 1 5.4 even 2
294.2.e.b.67.1 2 35.9 even 6
294.2.e.b.79.1 2 35.4 even 6
336.2.q.b.193.1 2 140.19 even 6
336.2.q.b.289.1 2 140.59 even 6
882.2.a.c.1.1 1 105.104 even 2
882.2.a.d.1.1 1 15.14 odd 2
882.2.g.i.361.1 2 105.44 odd 6
882.2.g.i.667.1 2 105.74 odd 6
1008.2.s.k.289.1 2 420.59 odd 6
1008.2.s.k.865.1 2 420.299 odd 6
1050.2.i.l.151.1 2 7.5 odd 6
1050.2.i.l.751.1 2 7.3 odd 6
1050.2.o.a.499.1 4 35.3 even 12
1050.2.o.a.499.2 4 35.17 even 12
1050.2.o.a.949.1 4 35.12 even 12
1050.2.o.a.949.2 4 35.33 even 12
1134.2.e.e.865.1 2 315.194 even 6
1134.2.e.e.919.1 2 315.164 even 6
1134.2.e.l.865.1 2 315.229 odd 6
1134.2.e.l.919.1 2 315.304 odd 6
1134.2.h.e.109.1 2 315.124 odd 6
1134.2.h.e.541.1 2 315.94 odd 6
1134.2.h.l.109.1 2 315.299 even 6
1134.2.h.l.541.1 2 315.59 even 6
1344.2.q.g.193.1 2 280.229 odd 6
1344.2.q.g.961.1 2 280.269 odd 6
1344.2.q.s.193.1 2 280.19 even 6
1344.2.q.s.961.1 2 280.59 even 6
2352.2.a.f.1.1 1 20.19 odd 2
2352.2.a.t.1.1 1 140.139 even 2
2352.2.q.u.961.1 2 140.39 odd 6
2352.2.q.u.1537.1 2 140.79 odd 6
7056.2.a.w.1.1 1 420.419 odd 2
7056.2.a.bl.1.1 1 60.59 even 2
7350.2.a.q.1.1 1 1.1 even 1 trivial
7350.2.a.bl.1.1 1 7.6 odd 2
9408.2.a.q.1.1 1 280.139 even 2
9408.2.a.z.1.1 1 40.29 even 2
9408.2.a.ce.1.1 1 280.69 odd 2
9408.2.a.cr.1.1 1 40.19 odd 2