# Properties

 Label 7350.2.a.k Level 7350 Weight 2 Character orbit 7350.a Self dual yes Analytic conductor 58.690 Analytic rank 1 Dimension 1 CM no Inner twists 1

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$7350 = 2 \cdot 3 \cdot 5^{2} \cdot 7^{2}$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 7350.a (trivial)

## Newform invariants

 Self dual: yes Analytic conductor: $$58.6900454856$$ Analytic rank: $$1$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 1050) Fricke sign: $$1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

 $$f(q)$$ $$=$$ $$q - q^{2} - q^{3} + q^{4} + q^{6} - q^{8} + q^{9} + O(q^{10})$$ $$q - q^{2} - q^{3} + q^{4} + q^{6} - q^{8} + q^{9} - q^{12} - 5q^{13} + q^{16} + 6q^{17} - q^{18} + 7q^{19} - 6q^{23} + q^{24} + 5q^{26} - q^{27} - 8q^{31} - q^{32} - 6q^{34} + q^{36} - q^{37} - 7q^{38} + 5q^{39} + 8q^{43} + 6q^{46} - 6q^{47} - q^{48} - 6q^{51} - 5q^{52} - 6q^{53} + q^{54} - 7q^{57} + 6q^{59} + q^{61} + 8q^{62} + q^{64} - 13q^{67} + 6q^{68} + 6q^{69} + 12q^{71} - q^{72} - 5q^{73} + q^{74} + 7q^{76} - 5q^{78} - 7q^{79} + q^{81} + 18q^{83} - 8q^{86} + 6q^{89} - 6q^{92} + 8q^{93} + 6q^{94} + q^{96} + 7q^{97} + O(q^{100})$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 0
−1.00000 −1.00000 1.00000 0 1.00000 0 −1.00000 1.00000 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 7350.2.a.k 1
5.b even 2 1 7350.2.a.cv 1
7.b odd 2 1 7350.2.a.bf 1
7.d odd 6 2 1050.2.i.n yes 2
35.c odd 2 1 7350.2.a.bv 1
35.i odd 6 2 1050.2.i.g 2
35.k even 12 4 1050.2.o.d 4

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1050.2.i.g 2 35.i odd 6 2
1050.2.i.n yes 2 7.d odd 6 2
1050.2.o.d 4 35.k even 12 4
7350.2.a.k 1 1.a even 1 1 trivial
7350.2.a.bf 1 7.b odd 2 1
7350.2.a.bv 1 35.c odd 2 1
7350.2.a.cv 1 5.b even 2 1

## Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$1$$
$$3$$ $$1$$
$$5$$ $$-1$$
$$7$$ $$-1$$

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(7350))$$:

 $$T_{11}$$ $$T_{13} + 5$$ $$T_{17} - 6$$ $$T_{19} - 7$$ $$T_{23} + 6$$ $$T_{31} + 8$$

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$1 + T$$
$3$ $$1 + T$$
$5$ 1
$7$ 1
$11$ $$1 + 11 T^{2}$$
$13$ $$1 + 5 T + 13 T^{2}$$
$17$ $$1 - 6 T + 17 T^{2}$$
$19$ $$1 - 7 T + 19 T^{2}$$
$23$ $$1 + 6 T + 23 T^{2}$$
$29$ $$1 + 29 T^{2}$$
$31$ $$1 + 8 T + 31 T^{2}$$
$37$ $$1 + T + 37 T^{2}$$
$41$ $$1 + 41 T^{2}$$
$43$ $$1 - 8 T + 43 T^{2}$$
$47$ $$1 + 6 T + 47 T^{2}$$
$53$ $$1 + 6 T + 53 T^{2}$$
$59$ $$1 - 6 T + 59 T^{2}$$
$61$ $$1 - T + 61 T^{2}$$
$67$ $$1 + 13 T + 67 T^{2}$$
$71$ $$1 - 12 T + 71 T^{2}$$
$73$ $$1 + 5 T + 73 T^{2}$$
$79$ $$1 + 7 T + 79 T^{2}$$
$83$ $$1 - 18 T + 83 T^{2}$$
$89$ $$1 - 6 T + 89 T^{2}$$
$97$ $$1 - 7 T + 97 T^{2}$$