Properties

Label 7350.2.a.di
Level 7350
Weight 2
Character orbit 7350.a
Self dual yes
Analytic conductor 58.690
Analytic rank 0
Dimension 2
CM no
Inner twists 1

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 7350 = 2 \cdot 3 \cdot 5^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7350.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(58.6900454856\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{2}) \)
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{2}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + q^{2} - q^{3} + q^{4} - q^{6} + q^{8} + q^{9} +O(q^{10})\) \( q + q^{2} - q^{3} + q^{4} - q^{6} + q^{8} + q^{9} + ( -2 + 3 \beta ) q^{11} - q^{12} + ( 3 + 2 \beta ) q^{13} + q^{16} + ( 1 + 4 \beta ) q^{17} + q^{18} + ( 4 + \beta ) q^{19} + ( -2 + 3 \beta ) q^{22} + ( 3 + \beta ) q^{23} - q^{24} + ( 3 + 2 \beta ) q^{26} - q^{27} + ( -5 + 4 \beta ) q^{29} + ( 3 - 3 \beta ) q^{31} + q^{32} + ( 2 - 3 \beta ) q^{33} + ( 1 + 4 \beta ) q^{34} + q^{36} + ( -4 - 3 \beta ) q^{37} + ( 4 + \beta ) q^{38} + ( -3 - 2 \beta ) q^{39} + 7 q^{41} + ( -5 - \beta ) q^{43} + ( -2 + 3 \beta ) q^{44} + ( 3 + \beta ) q^{46} + 8 q^{47} - q^{48} + ( -1 - 4 \beta ) q^{51} + ( 3 + 2 \beta ) q^{52} + ( -3 - 4 \beta ) q^{53} - q^{54} + ( -4 - \beta ) q^{57} + ( -5 + 4 \beta ) q^{58} + ( -3 - \beta ) q^{59} + ( -3 - 4 \beta ) q^{61} + ( 3 - 3 \beta ) q^{62} + q^{64} + ( 2 - 3 \beta ) q^{66} + ( 4 - 4 \beta ) q^{67} + ( 1 + 4 \beta ) q^{68} + ( -3 - \beta ) q^{69} -2 q^{71} + q^{72} + ( 4 - 3 \beta ) q^{73} + ( -4 - 3 \beta ) q^{74} + ( 4 + \beta ) q^{76} + ( -3 - 2 \beta ) q^{78} + ( 2 - 3 \beta ) q^{79} + q^{81} + 7 q^{82} + ( -7 - \beta ) q^{83} + ( -5 - \beta ) q^{86} + ( 5 - 4 \beta ) q^{87} + ( -2 + 3 \beta ) q^{88} + ( 4 - 8 \beta ) q^{89} + ( 3 + \beta ) q^{92} + ( -3 + 3 \beta ) q^{93} + 8 q^{94} - q^{96} + 14 q^{97} + ( -2 + 3 \beta ) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q + 2q^{2} - 2q^{3} + 2q^{4} - 2q^{6} + 2q^{8} + 2q^{9} + O(q^{10}) \) \( 2q + 2q^{2} - 2q^{3} + 2q^{4} - 2q^{6} + 2q^{8} + 2q^{9} - 4q^{11} - 2q^{12} + 6q^{13} + 2q^{16} + 2q^{17} + 2q^{18} + 8q^{19} - 4q^{22} + 6q^{23} - 2q^{24} + 6q^{26} - 2q^{27} - 10q^{29} + 6q^{31} + 2q^{32} + 4q^{33} + 2q^{34} + 2q^{36} - 8q^{37} + 8q^{38} - 6q^{39} + 14q^{41} - 10q^{43} - 4q^{44} + 6q^{46} + 16q^{47} - 2q^{48} - 2q^{51} + 6q^{52} - 6q^{53} - 2q^{54} - 8q^{57} - 10q^{58} - 6q^{59} - 6q^{61} + 6q^{62} + 2q^{64} + 4q^{66} + 8q^{67} + 2q^{68} - 6q^{69} - 4q^{71} + 2q^{72} + 8q^{73} - 8q^{74} + 8q^{76} - 6q^{78} + 4q^{79} + 2q^{81} + 14q^{82} - 14q^{83} - 10q^{86} + 10q^{87} - 4q^{88} + 8q^{89} + 6q^{92} - 6q^{93} + 16q^{94} - 2q^{96} + 28q^{97} - 4q^{99} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.41421
1.41421
1.00000 −1.00000 1.00000 0 −1.00000 0 1.00000 1.00000 0
1.2 1.00000 −1.00000 1.00000 0 −1.00000 0 1.00000 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 7350.2.a.di yes 2
5.b even 2 1 7350.2.a.de yes 2
7.b odd 2 1 7350.2.a.dk yes 2
35.c odd 2 1 7350.2.a.db 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
7350.2.a.db 2 35.c odd 2 1
7350.2.a.de yes 2 5.b even 2 1
7350.2.a.di yes 2 1.a even 1 1 trivial
7350.2.a.dk yes 2 7.b odd 2 1

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(3\) \(1\)
\(5\) \(1\)
\(7\) \(1\)

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(7350))\):

\( T_{11}^{2} + 4 T_{11} - 14 \)
\( T_{13}^{2} - 6 T_{13} + 1 \)
\( T_{17}^{2} - 2 T_{17} - 31 \)
\( T_{19}^{2} - 8 T_{19} + 14 \)
\( T_{23}^{2} - 6 T_{23} + 7 \)
\( T_{31}^{2} - 6 T_{31} - 9 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( ( 1 - T )^{2} \)
$3$ \( ( 1 + T )^{2} \)
$5$ 1
$7$ 1
$11$ \( 1 + 4 T + 8 T^{2} + 44 T^{3} + 121 T^{4} \)
$13$ \( 1 - 6 T + 27 T^{2} - 78 T^{3} + 169 T^{4} \)
$17$ \( 1 - 2 T + 3 T^{2} - 34 T^{3} + 289 T^{4} \)
$19$ \( 1 - 8 T + 52 T^{2} - 152 T^{3} + 361 T^{4} \)
$23$ \( 1 - 6 T + 53 T^{2} - 138 T^{3} + 529 T^{4} \)
$29$ \( 1 + 10 T + 51 T^{2} + 290 T^{3} + 841 T^{4} \)
$31$ \( 1 - 6 T + 53 T^{2} - 186 T^{3} + 961 T^{4} \)
$37$ \( 1 + 8 T + 72 T^{2} + 296 T^{3} + 1369 T^{4} \)
$41$ \( ( 1 - 7 T + 41 T^{2} )^{2} \)
$43$ \( 1 + 10 T + 109 T^{2} + 430 T^{3} + 1849 T^{4} \)
$47$ \( ( 1 - 8 T + 47 T^{2} )^{2} \)
$53$ \( 1 + 6 T + 83 T^{2} + 318 T^{3} + 2809 T^{4} \)
$59$ \( 1 + 6 T + 125 T^{2} + 354 T^{3} + 3481 T^{4} \)
$61$ \( 1 + 6 T + 99 T^{2} + 366 T^{3} + 3721 T^{4} \)
$67$ \( 1 - 8 T + 118 T^{2} - 536 T^{3} + 4489 T^{4} \)
$71$ \( ( 1 + 2 T + 71 T^{2} )^{2} \)
$73$ \( 1 - 8 T + 144 T^{2} - 584 T^{3} + 5329 T^{4} \)
$79$ \( 1 - 4 T + 144 T^{2} - 316 T^{3} + 6241 T^{4} \)
$83$ \( 1 + 14 T + 213 T^{2} + 1162 T^{3} + 6889 T^{4} \)
$89$ \( 1 - 8 T + 66 T^{2} - 712 T^{3} + 7921 T^{4} \)
$97$ \( ( 1 - 14 T + 97 T^{2} )^{2} \)
show more
show less