Properties

Label 7350.2.a.cz.1.1
Level 7350
Weight 2
Character 7350.1
Self dual yes
Analytic conductor 58.690
Analytic rank 0
Dimension 1
CM no
Inner twists 1

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 7350 = 2 \cdot 3 \cdot 5^{2} \cdot 7^{2} \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 7350.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(58.6900454856\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1050)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(0\)
Character \(\chi\) = 7350.1

$q$-expansion

\(f(q)\) \(=\) \(q+1.00000 q^{2} +1.00000 q^{3} +1.00000 q^{4} +1.00000 q^{6} +1.00000 q^{8} +1.00000 q^{9} +O(q^{10})\) \(q+1.00000 q^{2} +1.00000 q^{3} +1.00000 q^{4} +1.00000 q^{6} +1.00000 q^{8} +1.00000 q^{9} +6.00000 q^{11} +1.00000 q^{12} -1.00000 q^{13} +1.00000 q^{16} +3.00000 q^{17} +1.00000 q^{18} +4.00000 q^{19} +6.00000 q^{22} +3.00000 q^{23} +1.00000 q^{24} -1.00000 q^{26} +1.00000 q^{27} +3.00000 q^{29} -5.00000 q^{31} +1.00000 q^{32} +6.00000 q^{33} +3.00000 q^{34} +1.00000 q^{36} +10.0000 q^{37} +4.00000 q^{38} -1.00000 q^{39} -9.00000 q^{41} +1.00000 q^{43} +6.00000 q^{44} +3.00000 q^{46} +1.00000 q^{48} +3.00000 q^{51} -1.00000 q^{52} -9.00000 q^{53} +1.00000 q^{54} +4.00000 q^{57} +3.00000 q^{58} -9.00000 q^{59} -11.0000 q^{61} -5.00000 q^{62} +1.00000 q^{64} +6.00000 q^{66} +4.00000 q^{67} +3.00000 q^{68} +3.00000 q^{69} -12.0000 q^{71} +1.00000 q^{72} -10.0000 q^{73} +10.0000 q^{74} +4.00000 q^{76} -1.00000 q^{78} -10.0000 q^{79} +1.00000 q^{81} -9.00000 q^{82} +9.00000 q^{83} +1.00000 q^{86} +3.00000 q^{87} +6.00000 q^{88} +6.00000 q^{89} +3.00000 q^{92} -5.00000 q^{93} +1.00000 q^{96} +14.0000 q^{97} +6.00000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 1.00000 0.577350
\(4\) 1.00000 0.500000
\(5\) 0 0
\(6\) 1.00000 0.408248
\(7\) 0 0
\(8\) 1.00000 0.353553
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 6.00000 1.80907 0.904534 0.426401i \(-0.140219\pi\)
0.904534 + 0.426401i \(0.140219\pi\)
\(12\) 1.00000 0.288675
\(13\) −1.00000 −0.277350 −0.138675 0.990338i \(-0.544284\pi\)
−0.138675 + 0.990338i \(0.544284\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 3.00000 0.727607 0.363803 0.931476i \(-0.381478\pi\)
0.363803 + 0.931476i \(0.381478\pi\)
\(18\) 1.00000 0.235702
\(19\) 4.00000 0.917663 0.458831 0.888523i \(-0.348268\pi\)
0.458831 + 0.888523i \(0.348268\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 6.00000 1.27920
\(23\) 3.00000 0.625543 0.312772 0.949828i \(-0.398743\pi\)
0.312772 + 0.949828i \(0.398743\pi\)
\(24\) 1.00000 0.204124
\(25\) 0 0
\(26\) −1.00000 −0.196116
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) 3.00000 0.557086 0.278543 0.960424i \(-0.410149\pi\)
0.278543 + 0.960424i \(0.410149\pi\)
\(30\) 0 0
\(31\) −5.00000 −0.898027 −0.449013 0.893525i \(-0.648224\pi\)
−0.449013 + 0.893525i \(0.648224\pi\)
\(32\) 1.00000 0.176777
\(33\) 6.00000 1.04447
\(34\) 3.00000 0.514496
\(35\) 0 0
\(36\) 1.00000 0.166667
\(37\) 10.0000 1.64399 0.821995 0.569495i \(-0.192861\pi\)
0.821995 + 0.569495i \(0.192861\pi\)
\(38\) 4.00000 0.648886
\(39\) −1.00000 −0.160128
\(40\) 0 0
\(41\) −9.00000 −1.40556 −0.702782 0.711405i \(-0.748059\pi\)
−0.702782 + 0.711405i \(0.748059\pi\)
\(42\) 0 0
\(43\) 1.00000 0.152499 0.0762493 0.997089i \(-0.475706\pi\)
0.0762493 + 0.997089i \(0.475706\pi\)
\(44\) 6.00000 0.904534
\(45\) 0 0
\(46\) 3.00000 0.442326
\(47\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(48\) 1.00000 0.144338
\(49\) 0 0
\(50\) 0 0
\(51\) 3.00000 0.420084
\(52\) −1.00000 −0.138675
\(53\) −9.00000 −1.23625 −0.618123 0.786082i \(-0.712106\pi\)
−0.618123 + 0.786082i \(0.712106\pi\)
\(54\) 1.00000 0.136083
\(55\) 0 0
\(56\) 0 0
\(57\) 4.00000 0.529813
\(58\) 3.00000 0.393919
\(59\) −9.00000 −1.17170 −0.585850 0.810419i \(-0.699239\pi\)
−0.585850 + 0.810419i \(0.699239\pi\)
\(60\) 0 0
\(61\) −11.0000 −1.40841 −0.704203 0.709999i \(-0.748695\pi\)
−0.704203 + 0.709999i \(0.748695\pi\)
\(62\) −5.00000 −0.635001
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) 6.00000 0.738549
\(67\) 4.00000 0.488678 0.244339 0.969690i \(-0.421429\pi\)
0.244339 + 0.969690i \(0.421429\pi\)
\(68\) 3.00000 0.363803
\(69\) 3.00000 0.361158
\(70\) 0 0
\(71\) −12.0000 −1.42414 −0.712069 0.702109i \(-0.752242\pi\)
−0.712069 + 0.702109i \(0.752242\pi\)
\(72\) 1.00000 0.117851
\(73\) −10.0000 −1.17041 −0.585206 0.810885i \(-0.698986\pi\)
−0.585206 + 0.810885i \(0.698986\pi\)
\(74\) 10.0000 1.16248
\(75\) 0 0
\(76\) 4.00000 0.458831
\(77\) 0 0
\(78\) −1.00000 −0.113228
\(79\) −10.0000 −1.12509 −0.562544 0.826767i \(-0.690177\pi\)
−0.562544 + 0.826767i \(0.690177\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) −9.00000 −0.993884
\(83\) 9.00000 0.987878 0.493939 0.869496i \(-0.335557\pi\)
0.493939 + 0.869496i \(0.335557\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 1.00000 0.107833
\(87\) 3.00000 0.321634
\(88\) 6.00000 0.639602
\(89\) 6.00000 0.635999 0.317999 0.948091i \(-0.396989\pi\)
0.317999 + 0.948091i \(0.396989\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 3.00000 0.312772
\(93\) −5.00000 −0.518476
\(94\) 0 0
\(95\) 0 0
\(96\) 1.00000 0.102062
\(97\) 14.0000 1.42148 0.710742 0.703452i \(-0.248359\pi\)
0.710742 + 0.703452i \(0.248359\pi\)
\(98\) 0 0
\(99\) 6.00000 0.603023
\(100\) 0 0
\(101\) 12.0000 1.19404 0.597022 0.802225i \(-0.296350\pi\)
0.597022 + 0.802225i \(0.296350\pi\)
\(102\) 3.00000 0.297044
\(103\) 17.0000 1.67506 0.837530 0.546392i \(-0.183999\pi\)
0.837530 + 0.546392i \(0.183999\pi\)
\(104\) −1.00000 −0.0980581
\(105\) 0 0
\(106\) −9.00000 −0.874157
\(107\) −18.0000 −1.74013 −0.870063 0.492941i \(-0.835922\pi\)
−0.870063 + 0.492941i \(0.835922\pi\)
\(108\) 1.00000 0.0962250
\(109\) 8.00000 0.766261 0.383131 0.923694i \(-0.374846\pi\)
0.383131 + 0.923694i \(0.374846\pi\)
\(110\) 0 0
\(111\) 10.0000 0.949158
\(112\) 0 0
\(113\) 6.00000 0.564433 0.282216 0.959351i \(-0.408930\pi\)
0.282216 + 0.959351i \(0.408930\pi\)
\(114\) 4.00000 0.374634
\(115\) 0 0
\(116\) 3.00000 0.278543
\(117\) −1.00000 −0.0924500
\(118\) −9.00000 −0.828517
\(119\) 0 0
\(120\) 0 0
\(121\) 25.0000 2.27273
\(122\) −11.0000 −0.995893
\(123\) −9.00000 −0.811503
\(124\) −5.00000 −0.449013
\(125\) 0 0
\(126\) 0 0
\(127\) 10.0000 0.887357 0.443678 0.896186i \(-0.353673\pi\)
0.443678 + 0.896186i \(0.353673\pi\)
\(128\) 1.00000 0.0883883
\(129\) 1.00000 0.0880451
\(130\) 0 0
\(131\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(132\) 6.00000 0.522233
\(133\) 0 0
\(134\) 4.00000 0.345547
\(135\) 0 0
\(136\) 3.00000 0.257248
\(137\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(138\) 3.00000 0.255377
\(139\) 16.0000 1.35710 0.678551 0.734553i \(-0.262608\pi\)
0.678551 + 0.734553i \(0.262608\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −12.0000 −1.00702
\(143\) −6.00000 −0.501745
\(144\) 1.00000 0.0833333
\(145\) 0 0
\(146\) −10.0000 −0.827606
\(147\) 0 0
\(148\) 10.0000 0.821995
\(149\) −9.00000 −0.737309 −0.368654 0.929567i \(-0.620181\pi\)
−0.368654 + 0.929567i \(0.620181\pi\)
\(150\) 0 0
\(151\) 2.00000 0.162758 0.0813788 0.996683i \(-0.474068\pi\)
0.0813788 + 0.996683i \(0.474068\pi\)
\(152\) 4.00000 0.324443
\(153\) 3.00000 0.242536
\(154\) 0 0
\(155\) 0 0
\(156\) −1.00000 −0.0800641
\(157\) −10.0000 −0.798087 −0.399043 0.916932i \(-0.630658\pi\)
−0.399043 + 0.916932i \(0.630658\pi\)
\(158\) −10.0000 −0.795557
\(159\) −9.00000 −0.713746
\(160\) 0 0
\(161\) 0 0
\(162\) 1.00000 0.0785674
\(163\) −5.00000 −0.391630 −0.195815 0.980641i \(-0.562735\pi\)
−0.195815 + 0.980641i \(0.562735\pi\)
\(164\) −9.00000 −0.702782
\(165\) 0 0
\(166\) 9.00000 0.698535
\(167\) 18.0000 1.39288 0.696441 0.717614i \(-0.254766\pi\)
0.696441 + 0.717614i \(0.254766\pi\)
\(168\) 0 0
\(169\) −12.0000 −0.923077
\(170\) 0 0
\(171\) 4.00000 0.305888
\(172\) 1.00000 0.0762493
\(173\) −12.0000 −0.912343 −0.456172 0.889892i \(-0.650780\pi\)
−0.456172 + 0.889892i \(0.650780\pi\)
\(174\) 3.00000 0.227429
\(175\) 0 0
\(176\) 6.00000 0.452267
\(177\) −9.00000 −0.676481
\(178\) 6.00000 0.449719
\(179\) 18.0000 1.34538 0.672692 0.739923i \(-0.265138\pi\)
0.672692 + 0.739923i \(0.265138\pi\)
\(180\) 0 0
\(181\) −2.00000 −0.148659 −0.0743294 0.997234i \(-0.523682\pi\)
−0.0743294 + 0.997234i \(0.523682\pi\)
\(182\) 0 0
\(183\) −11.0000 −0.813143
\(184\) 3.00000 0.221163
\(185\) 0 0
\(186\) −5.00000 −0.366618
\(187\) 18.0000 1.31629
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −15.0000 −1.08536 −0.542681 0.839939i \(-0.682591\pi\)
−0.542681 + 0.839939i \(0.682591\pi\)
\(192\) 1.00000 0.0721688
\(193\) 22.0000 1.58359 0.791797 0.610784i \(-0.209146\pi\)
0.791797 + 0.610784i \(0.209146\pi\)
\(194\) 14.0000 1.00514
\(195\) 0 0
\(196\) 0 0
\(197\) 15.0000 1.06871 0.534353 0.845262i \(-0.320555\pi\)
0.534353 + 0.845262i \(0.320555\pi\)
\(198\) 6.00000 0.426401
\(199\) −8.00000 −0.567105 −0.283552 0.958957i \(-0.591513\pi\)
−0.283552 + 0.958957i \(0.591513\pi\)
\(200\) 0 0
\(201\) 4.00000 0.282138
\(202\) 12.0000 0.844317
\(203\) 0 0
\(204\) 3.00000 0.210042
\(205\) 0 0
\(206\) 17.0000 1.18445
\(207\) 3.00000 0.208514
\(208\) −1.00000 −0.0693375
\(209\) 24.0000 1.66011
\(210\) 0 0
\(211\) −25.0000 −1.72107 −0.860535 0.509390i \(-0.829871\pi\)
−0.860535 + 0.509390i \(0.829871\pi\)
\(212\) −9.00000 −0.618123
\(213\) −12.0000 −0.822226
\(214\) −18.0000 −1.23045
\(215\) 0 0
\(216\) 1.00000 0.0680414
\(217\) 0 0
\(218\) 8.00000 0.541828
\(219\) −10.0000 −0.675737
\(220\) 0 0
\(221\) −3.00000 −0.201802
\(222\) 10.0000 0.671156
\(223\) −19.0000 −1.27233 −0.636167 0.771551i \(-0.719481\pi\)
−0.636167 + 0.771551i \(0.719481\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 6.00000 0.399114
\(227\) 3.00000 0.199117 0.0995585 0.995032i \(-0.468257\pi\)
0.0995585 + 0.995032i \(0.468257\pi\)
\(228\) 4.00000 0.264906
\(229\) 22.0000 1.45380 0.726900 0.686743i \(-0.240960\pi\)
0.726900 + 0.686743i \(0.240960\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 3.00000 0.196960
\(233\) −12.0000 −0.786146 −0.393073 0.919507i \(-0.628588\pi\)
−0.393073 + 0.919507i \(0.628588\pi\)
\(234\) −1.00000 −0.0653720
\(235\) 0 0
\(236\) −9.00000 −0.585850
\(237\) −10.0000 −0.649570
\(238\) 0 0
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) −2.00000 −0.128831 −0.0644157 0.997923i \(-0.520518\pi\)
−0.0644157 + 0.997923i \(0.520518\pi\)
\(242\) 25.0000 1.60706
\(243\) 1.00000 0.0641500
\(244\) −11.0000 −0.704203
\(245\) 0 0
\(246\) −9.00000 −0.573819
\(247\) −4.00000 −0.254514
\(248\) −5.00000 −0.317500
\(249\) 9.00000 0.570352
\(250\) 0 0
\(251\) 27.0000 1.70422 0.852112 0.523359i \(-0.175321\pi\)
0.852112 + 0.523359i \(0.175321\pi\)
\(252\) 0 0
\(253\) 18.0000 1.13165
\(254\) 10.0000 0.627456
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 15.0000 0.935674 0.467837 0.883815i \(-0.345033\pi\)
0.467837 + 0.883815i \(0.345033\pi\)
\(258\) 1.00000 0.0622573
\(259\) 0 0
\(260\) 0 0
\(261\) 3.00000 0.185695
\(262\) 0 0
\(263\) −9.00000 −0.554964 −0.277482 0.960731i \(-0.589500\pi\)
−0.277482 + 0.960731i \(0.589500\pi\)
\(264\) 6.00000 0.369274
\(265\) 0 0
\(266\) 0 0
\(267\) 6.00000 0.367194
\(268\) 4.00000 0.244339
\(269\) 18.0000 1.09748 0.548740 0.835993i \(-0.315108\pi\)
0.548740 + 0.835993i \(0.315108\pi\)
\(270\) 0 0
\(271\) −20.0000 −1.21491 −0.607457 0.794353i \(-0.707810\pi\)
−0.607457 + 0.794353i \(0.707810\pi\)
\(272\) 3.00000 0.181902
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 3.00000 0.180579
\(277\) 10.0000 0.600842 0.300421 0.953807i \(-0.402873\pi\)
0.300421 + 0.953807i \(0.402873\pi\)
\(278\) 16.0000 0.959616
\(279\) −5.00000 −0.299342
\(280\) 0 0
\(281\) −24.0000 −1.43172 −0.715860 0.698244i \(-0.753965\pi\)
−0.715860 + 0.698244i \(0.753965\pi\)
\(282\) 0 0
\(283\) −4.00000 −0.237775 −0.118888 0.992908i \(-0.537933\pi\)
−0.118888 + 0.992908i \(0.537933\pi\)
\(284\) −12.0000 −0.712069
\(285\) 0 0
\(286\) −6.00000 −0.354787
\(287\) 0 0
\(288\) 1.00000 0.0589256
\(289\) −8.00000 −0.470588
\(290\) 0 0
\(291\) 14.0000 0.820695
\(292\) −10.0000 −0.585206
\(293\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 10.0000 0.581238
\(297\) 6.00000 0.348155
\(298\) −9.00000 −0.521356
\(299\) −3.00000 −0.173494
\(300\) 0 0
\(301\) 0 0
\(302\) 2.00000 0.115087
\(303\) 12.0000 0.689382
\(304\) 4.00000 0.229416
\(305\) 0 0
\(306\) 3.00000 0.171499
\(307\) 2.00000 0.114146 0.0570730 0.998370i \(-0.481823\pi\)
0.0570730 + 0.998370i \(0.481823\pi\)
\(308\) 0 0
\(309\) 17.0000 0.967096
\(310\) 0 0
\(311\) 18.0000 1.02069 0.510343 0.859971i \(-0.329518\pi\)
0.510343 + 0.859971i \(0.329518\pi\)
\(312\) −1.00000 −0.0566139
\(313\) −10.0000 −0.565233 −0.282617 0.959233i \(-0.591202\pi\)
−0.282617 + 0.959233i \(0.591202\pi\)
\(314\) −10.0000 −0.564333
\(315\) 0 0
\(316\) −10.0000 −0.562544
\(317\) 27.0000 1.51647 0.758236 0.651981i \(-0.226062\pi\)
0.758236 + 0.651981i \(0.226062\pi\)
\(318\) −9.00000 −0.504695
\(319\) 18.0000 1.00781
\(320\) 0 0
\(321\) −18.0000 −1.00466
\(322\) 0 0
\(323\) 12.0000 0.667698
\(324\) 1.00000 0.0555556
\(325\) 0 0
\(326\) −5.00000 −0.276924
\(327\) 8.00000 0.442401
\(328\) −9.00000 −0.496942
\(329\) 0 0
\(330\) 0 0
\(331\) −19.0000 −1.04433 −0.522167 0.852843i \(-0.674876\pi\)
−0.522167 + 0.852843i \(0.674876\pi\)
\(332\) 9.00000 0.493939
\(333\) 10.0000 0.547997
\(334\) 18.0000 0.984916
\(335\) 0 0
\(336\) 0 0
\(337\) 13.0000 0.708155 0.354078 0.935216i \(-0.384795\pi\)
0.354078 + 0.935216i \(0.384795\pi\)
\(338\) −12.0000 −0.652714
\(339\) 6.00000 0.325875
\(340\) 0 0
\(341\) −30.0000 −1.62459
\(342\) 4.00000 0.216295
\(343\) 0 0
\(344\) 1.00000 0.0539164
\(345\) 0 0
\(346\) −12.0000 −0.645124
\(347\) −18.0000 −0.966291 −0.483145 0.875540i \(-0.660506\pi\)
−0.483145 + 0.875540i \(0.660506\pi\)
\(348\) 3.00000 0.160817
\(349\) −17.0000 −0.909989 −0.454995 0.890494i \(-0.650359\pi\)
−0.454995 + 0.890494i \(0.650359\pi\)
\(350\) 0 0
\(351\) −1.00000 −0.0533761
\(352\) 6.00000 0.319801
\(353\) −30.0000 −1.59674 −0.798369 0.602168i \(-0.794304\pi\)
−0.798369 + 0.602168i \(0.794304\pi\)
\(354\) −9.00000 −0.478345
\(355\) 0 0
\(356\) 6.00000 0.317999
\(357\) 0 0
\(358\) 18.0000 0.951330
\(359\) −3.00000 −0.158334 −0.0791670 0.996861i \(-0.525226\pi\)
−0.0791670 + 0.996861i \(0.525226\pi\)
\(360\) 0 0
\(361\) −3.00000 −0.157895
\(362\) −2.00000 −0.105118
\(363\) 25.0000 1.31216
\(364\) 0 0
\(365\) 0 0
\(366\) −11.0000 −0.574979
\(367\) −37.0000 −1.93138 −0.965692 0.259690i \(-0.916380\pi\)
−0.965692 + 0.259690i \(0.916380\pi\)
\(368\) 3.00000 0.156386
\(369\) −9.00000 −0.468521
\(370\) 0 0
\(371\) 0 0
\(372\) −5.00000 −0.259238
\(373\) −8.00000 −0.414224 −0.207112 0.978317i \(-0.566407\pi\)
−0.207112 + 0.978317i \(0.566407\pi\)
\(374\) 18.0000 0.930758
\(375\) 0 0
\(376\) 0 0
\(377\) −3.00000 −0.154508
\(378\) 0 0
\(379\) 35.0000 1.79783 0.898915 0.438124i \(-0.144357\pi\)
0.898915 + 0.438124i \(0.144357\pi\)
\(380\) 0 0
\(381\) 10.0000 0.512316
\(382\) −15.0000 −0.767467
\(383\) −24.0000 −1.22634 −0.613171 0.789950i \(-0.710106\pi\)
−0.613171 + 0.789950i \(0.710106\pi\)
\(384\) 1.00000 0.0510310
\(385\) 0 0
\(386\) 22.0000 1.11977
\(387\) 1.00000 0.0508329
\(388\) 14.0000 0.710742
\(389\) −6.00000 −0.304212 −0.152106 0.988364i \(-0.548606\pi\)
−0.152106 + 0.988364i \(0.548606\pi\)
\(390\) 0 0
\(391\) 9.00000 0.455150
\(392\) 0 0
\(393\) 0 0
\(394\) 15.0000 0.755689
\(395\) 0 0
\(396\) 6.00000 0.301511
\(397\) 29.0000 1.45547 0.727734 0.685859i \(-0.240573\pi\)
0.727734 + 0.685859i \(0.240573\pi\)
\(398\) −8.00000 −0.401004
\(399\) 0 0
\(400\) 0 0
\(401\) −12.0000 −0.599251 −0.299626 0.954057i \(-0.596862\pi\)
−0.299626 + 0.954057i \(0.596862\pi\)
\(402\) 4.00000 0.199502
\(403\) 5.00000 0.249068
\(404\) 12.0000 0.597022
\(405\) 0 0
\(406\) 0 0
\(407\) 60.0000 2.97409
\(408\) 3.00000 0.148522
\(409\) −38.0000 −1.87898 −0.939490 0.342578i \(-0.888700\pi\)
−0.939490 + 0.342578i \(0.888700\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 17.0000 0.837530
\(413\) 0 0
\(414\) 3.00000 0.147442
\(415\) 0 0
\(416\) −1.00000 −0.0490290
\(417\) 16.0000 0.783523
\(418\) 24.0000 1.17388
\(419\) 21.0000 1.02592 0.512959 0.858413i \(-0.328549\pi\)
0.512959 + 0.858413i \(0.328549\pi\)
\(420\) 0 0
\(421\) −34.0000 −1.65706 −0.828529 0.559946i \(-0.810822\pi\)
−0.828529 + 0.559946i \(0.810822\pi\)
\(422\) −25.0000 −1.21698
\(423\) 0 0
\(424\) −9.00000 −0.437079
\(425\) 0 0
\(426\) −12.0000 −0.581402
\(427\) 0 0
\(428\) −18.0000 −0.870063
\(429\) −6.00000 −0.289683
\(430\) 0 0
\(431\) −15.0000 −0.722525 −0.361262 0.932464i \(-0.617654\pi\)
−0.361262 + 0.932464i \(0.617654\pi\)
\(432\) 1.00000 0.0481125
\(433\) 38.0000 1.82616 0.913082 0.407777i \(-0.133696\pi\)
0.913082 + 0.407777i \(0.133696\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 8.00000 0.383131
\(437\) 12.0000 0.574038
\(438\) −10.0000 −0.477818
\(439\) −41.0000 −1.95682 −0.978412 0.206666i \(-0.933739\pi\)
−0.978412 + 0.206666i \(0.933739\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −3.00000 −0.142695
\(443\) −24.0000 −1.14027 −0.570137 0.821549i \(-0.693110\pi\)
−0.570137 + 0.821549i \(0.693110\pi\)
\(444\) 10.0000 0.474579
\(445\) 0 0
\(446\) −19.0000 −0.899676
\(447\) −9.00000 −0.425685
\(448\) 0 0
\(449\) 24.0000 1.13263 0.566315 0.824189i \(-0.308369\pi\)
0.566315 + 0.824189i \(0.308369\pi\)
\(450\) 0 0
\(451\) −54.0000 −2.54276
\(452\) 6.00000 0.282216
\(453\) 2.00000 0.0939682
\(454\) 3.00000 0.140797
\(455\) 0 0
\(456\) 4.00000 0.187317
\(457\) 25.0000 1.16945 0.584725 0.811231i \(-0.301202\pi\)
0.584725 + 0.811231i \(0.301202\pi\)
\(458\) 22.0000 1.02799
\(459\) 3.00000 0.140028
\(460\) 0 0
\(461\) −12.0000 −0.558896 −0.279448 0.960161i \(-0.590151\pi\)
−0.279448 + 0.960161i \(0.590151\pi\)
\(462\) 0 0
\(463\) −32.0000 −1.48717 −0.743583 0.668644i \(-0.766875\pi\)
−0.743583 + 0.668644i \(0.766875\pi\)
\(464\) 3.00000 0.139272
\(465\) 0 0
\(466\) −12.0000 −0.555889
\(467\) −3.00000 −0.138823 −0.0694117 0.997588i \(-0.522112\pi\)
−0.0694117 + 0.997588i \(0.522112\pi\)
\(468\) −1.00000 −0.0462250
\(469\) 0 0
\(470\) 0 0
\(471\) −10.0000 −0.460776
\(472\) −9.00000 −0.414259
\(473\) 6.00000 0.275880
\(474\) −10.0000 −0.459315
\(475\) 0 0
\(476\) 0 0
\(477\) −9.00000 −0.412082
\(478\) 0 0
\(479\) −24.0000 −1.09659 −0.548294 0.836286i \(-0.684723\pi\)
−0.548294 + 0.836286i \(0.684723\pi\)
\(480\) 0 0
\(481\) −10.0000 −0.455961
\(482\) −2.00000 −0.0910975
\(483\) 0 0
\(484\) 25.0000 1.13636
\(485\) 0 0
\(486\) 1.00000 0.0453609
\(487\) −2.00000 −0.0906287 −0.0453143 0.998973i \(-0.514429\pi\)
−0.0453143 + 0.998973i \(0.514429\pi\)
\(488\) −11.0000 −0.497947
\(489\) −5.00000 −0.226108
\(490\) 0 0
\(491\) 42.0000 1.89543 0.947717 0.319113i \(-0.103385\pi\)
0.947717 + 0.319113i \(0.103385\pi\)
\(492\) −9.00000 −0.405751
\(493\) 9.00000 0.405340
\(494\) −4.00000 −0.179969
\(495\) 0 0
\(496\) −5.00000 −0.224507
\(497\) 0 0
\(498\) 9.00000 0.403300
\(499\) −19.0000 −0.850557 −0.425278 0.905063i \(-0.639824\pi\)
−0.425278 + 0.905063i \(0.639824\pi\)
\(500\) 0 0
\(501\) 18.0000 0.804181
\(502\) 27.0000 1.20507
\(503\) 6.00000 0.267527 0.133763 0.991013i \(-0.457294\pi\)
0.133763 + 0.991013i \(0.457294\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 18.0000 0.800198
\(507\) −12.0000 −0.532939
\(508\) 10.0000 0.443678
\(509\) 24.0000 1.06378 0.531891 0.846813i \(-0.321482\pi\)
0.531891 + 0.846813i \(0.321482\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 1.00000 0.0441942
\(513\) 4.00000 0.176604
\(514\) 15.0000 0.661622
\(515\) 0 0
\(516\) 1.00000 0.0440225
\(517\) 0 0
\(518\) 0 0
\(519\) −12.0000 −0.526742
\(520\) 0 0
\(521\) 21.0000 0.920027 0.460013 0.887912i \(-0.347845\pi\)
0.460013 + 0.887912i \(0.347845\pi\)
\(522\) 3.00000 0.131306
\(523\) 20.0000 0.874539 0.437269 0.899331i \(-0.355946\pi\)
0.437269 + 0.899331i \(0.355946\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) −9.00000 −0.392419
\(527\) −15.0000 −0.653410
\(528\) 6.00000 0.261116
\(529\) −14.0000 −0.608696
\(530\) 0 0
\(531\) −9.00000 −0.390567
\(532\) 0 0
\(533\) 9.00000 0.389833
\(534\) 6.00000 0.259645
\(535\) 0 0
\(536\) 4.00000 0.172774
\(537\) 18.0000 0.776757
\(538\) 18.0000 0.776035
\(539\) 0 0
\(540\) 0 0
\(541\) 20.0000 0.859867 0.429934 0.902861i \(-0.358537\pi\)
0.429934 + 0.902861i \(0.358537\pi\)
\(542\) −20.0000 −0.859074
\(543\) −2.00000 −0.0858282
\(544\) 3.00000 0.128624
\(545\) 0 0
\(546\) 0 0
\(547\) −17.0000 −0.726868 −0.363434 0.931620i \(-0.618396\pi\)
−0.363434 + 0.931620i \(0.618396\pi\)
\(548\) 0 0
\(549\) −11.0000 −0.469469
\(550\) 0 0
\(551\) 12.0000 0.511217
\(552\) 3.00000 0.127688
\(553\) 0 0
\(554\) 10.0000 0.424859
\(555\) 0 0
\(556\) 16.0000 0.678551
\(557\) 18.0000 0.762684 0.381342 0.924434i \(-0.375462\pi\)
0.381342 + 0.924434i \(0.375462\pi\)
\(558\) −5.00000 −0.211667
\(559\) −1.00000 −0.0422955
\(560\) 0 0
\(561\) 18.0000 0.759961
\(562\) −24.0000 −1.01238
\(563\) 21.0000 0.885044 0.442522 0.896758i \(-0.354084\pi\)
0.442522 + 0.896758i \(0.354084\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −4.00000 −0.168133
\(567\) 0 0
\(568\) −12.0000 −0.503509
\(569\) −6.00000 −0.251533 −0.125767 0.992060i \(-0.540139\pi\)
−0.125767 + 0.992060i \(0.540139\pi\)
\(570\) 0 0
\(571\) −13.0000 −0.544033 −0.272017 0.962293i \(-0.587691\pi\)
−0.272017 + 0.962293i \(0.587691\pi\)
\(572\) −6.00000 −0.250873
\(573\) −15.0000 −0.626634
\(574\) 0 0
\(575\) 0 0
\(576\) 1.00000 0.0416667
\(577\) −34.0000 −1.41544 −0.707719 0.706494i \(-0.750276\pi\)
−0.707719 + 0.706494i \(0.750276\pi\)
\(578\) −8.00000 −0.332756
\(579\) 22.0000 0.914289
\(580\) 0 0
\(581\) 0 0
\(582\) 14.0000 0.580319
\(583\) −54.0000 −2.23645
\(584\) −10.0000 −0.413803
\(585\) 0 0
\(586\) 0 0
\(587\) 33.0000 1.36206 0.681028 0.732257i \(-0.261533\pi\)
0.681028 + 0.732257i \(0.261533\pi\)
\(588\) 0 0
\(589\) −20.0000 −0.824086
\(590\) 0 0
\(591\) 15.0000 0.617018
\(592\) 10.0000 0.410997
\(593\) −18.0000 −0.739171 −0.369586 0.929197i \(-0.620500\pi\)
−0.369586 + 0.929197i \(0.620500\pi\)
\(594\) 6.00000 0.246183
\(595\) 0 0
\(596\) −9.00000 −0.368654
\(597\) −8.00000 −0.327418
\(598\) −3.00000 −0.122679
\(599\) 9.00000 0.367730 0.183865 0.982952i \(-0.441139\pi\)
0.183865 + 0.982952i \(0.441139\pi\)
\(600\) 0 0
\(601\) 4.00000 0.163163 0.0815817 0.996667i \(-0.474003\pi\)
0.0815817 + 0.996667i \(0.474003\pi\)
\(602\) 0 0
\(603\) 4.00000 0.162893
\(604\) 2.00000 0.0813788
\(605\) 0 0
\(606\) 12.0000 0.487467
\(607\) −28.0000 −1.13648 −0.568242 0.822861i \(-0.692376\pi\)
−0.568242 + 0.822861i \(0.692376\pi\)
\(608\) 4.00000 0.162221
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 3.00000 0.121268
\(613\) −2.00000 −0.0807792 −0.0403896 0.999184i \(-0.512860\pi\)
−0.0403896 + 0.999184i \(0.512860\pi\)
\(614\) 2.00000 0.0807134
\(615\) 0 0
\(616\) 0 0
\(617\) 18.0000 0.724653 0.362326 0.932051i \(-0.381983\pi\)
0.362326 + 0.932051i \(0.381983\pi\)
\(618\) 17.0000 0.683840
\(619\) −26.0000 −1.04503 −0.522514 0.852631i \(-0.675006\pi\)
−0.522514 + 0.852631i \(0.675006\pi\)
\(620\) 0 0
\(621\) 3.00000 0.120386
\(622\) 18.0000 0.721734
\(623\) 0 0
\(624\) −1.00000 −0.0400320
\(625\) 0 0
\(626\) −10.0000 −0.399680
\(627\) 24.0000 0.958468
\(628\) −10.0000 −0.399043
\(629\) 30.0000 1.19618
\(630\) 0 0
\(631\) −22.0000 −0.875806 −0.437903 0.899022i \(-0.644279\pi\)
−0.437903 + 0.899022i \(0.644279\pi\)
\(632\) −10.0000 −0.397779
\(633\) −25.0000 −0.993661
\(634\) 27.0000 1.07231
\(635\) 0 0
\(636\) −9.00000 −0.356873
\(637\) 0 0
\(638\) 18.0000 0.712627
\(639\) −12.0000 −0.474713
\(640\) 0 0
\(641\) −18.0000 −0.710957 −0.355479 0.934684i \(-0.615682\pi\)
−0.355479 + 0.934684i \(0.615682\pi\)
\(642\) −18.0000 −0.710403
\(643\) 14.0000 0.552106 0.276053 0.961142i \(-0.410973\pi\)
0.276053 + 0.961142i \(0.410973\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 12.0000 0.472134
\(647\) 6.00000 0.235884 0.117942 0.993020i \(-0.462370\pi\)
0.117942 + 0.993020i \(0.462370\pi\)
\(648\) 1.00000 0.0392837
\(649\) −54.0000 −2.11969
\(650\) 0 0
\(651\) 0 0
\(652\) −5.00000 −0.195815
\(653\) −18.0000 −0.704394 −0.352197 0.935926i \(-0.614565\pi\)
−0.352197 + 0.935926i \(0.614565\pi\)
\(654\) 8.00000 0.312825
\(655\) 0 0
\(656\) −9.00000 −0.351391
\(657\) −10.0000 −0.390137
\(658\) 0 0
\(659\) 42.0000 1.63609 0.818044 0.575156i \(-0.195059\pi\)
0.818044 + 0.575156i \(0.195059\pi\)
\(660\) 0 0
\(661\) −38.0000 −1.47803 −0.739014 0.673690i \(-0.764708\pi\)
−0.739014 + 0.673690i \(0.764708\pi\)
\(662\) −19.0000 −0.738456
\(663\) −3.00000 −0.116510
\(664\) 9.00000 0.349268
\(665\) 0 0
\(666\) 10.0000 0.387492
\(667\) 9.00000 0.348481
\(668\) 18.0000 0.696441
\(669\) −19.0000 −0.734582
\(670\) 0 0
\(671\) −66.0000 −2.54790
\(672\) 0 0
\(673\) 37.0000 1.42625 0.713123 0.701039i \(-0.247280\pi\)
0.713123 + 0.701039i \(0.247280\pi\)
\(674\) 13.0000 0.500741
\(675\) 0 0
\(676\) −12.0000 −0.461538
\(677\) −12.0000 −0.461197 −0.230599 0.973049i \(-0.574068\pi\)
−0.230599 + 0.973049i \(0.574068\pi\)
\(678\) 6.00000 0.230429
\(679\) 0 0
\(680\) 0 0
\(681\) 3.00000 0.114960
\(682\) −30.0000 −1.14876
\(683\) −18.0000 −0.688751 −0.344375 0.938832i \(-0.611909\pi\)
−0.344375 + 0.938832i \(0.611909\pi\)
\(684\) 4.00000 0.152944
\(685\) 0 0
\(686\) 0 0
\(687\) 22.0000 0.839352
\(688\) 1.00000 0.0381246
\(689\) 9.00000 0.342873
\(690\) 0 0
\(691\) 34.0000 1.29342 0.646710 0.762736i \(-0.276144\pi\)
0.646710 + 0.762736i \(0.276144\pi\)
\(692\) −12.0000 −0.456172
\(693\) 0 0
\(694\) −18.0000 −0.683271
\(695\) 0 0
\(696\) 3.00000 0.113715
\(697\) −27.0000 −1.02270
\(698\) −17.0000 −0.643459
\(699\) −12.0000 −0.453882
\(700\) 0 0
\(701\) 3.00000 0.113308 0.0566542 0.998394i \(-0.481957\pi\)
0.0566542 + 0.998394i \(0.481957\pi\)
\(702\) −1.00000 −0.0377426
\(703\) 40.0000 1.50863
\(704\) 6.00000 0.226134
\(705\) 0 0
\(706\) −30.0000 −1.12906
\(707\) 0 0
\(708\) −9.00000 −0.338241
\(709\) −40.0000 −1.50223 −0.751116 0.660171i \(-0.770484\pi\)
−0.751116 + 0.660171i \(0.770484\pi\)
\(710\) 0 0
\(711\) −10.0000 −0.375029
\(712\) 6.00000 0.224860
\(713\) −15.0000 −0.561754
\(714\) 0 0
\(715\) 0 0
\(716\) 18.0000 0.672692
\(717\) 0 0
\(718\) −3.00000 −0.111959
\(719\) −30.0000 −1.11881 −0.559406 0.828894i \(-0.688971\pi\)
−0.559406 + 0.828894i \(0.688971\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −3.00000 −0.111648
\(723\) −2.00000 −0.0743808
\(724\) −2.00000 −0.0743294
\(725\) 0 0
\(726\) 25.0000 0.927837
\(727\) −7.00000 −0.259616 −0.129808 0.991539i \(-0.541436\pi\)
−0.129808 + 0.991539i \(0.541436\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 3.00000 0.110959
\(732\) −11.0000 −0.406572
\(733\) 29.0000 1.07114 0.535570 0.844491i \(-0.320097\pi\)
0.535570 + 0.844491i \(0.320097\pi\)
\(734\) −37.0000 −1.36569
\(735\) 0 0
\(736\) 3.00000 0.110581
\(737\) 24.0000 0.884051
\(738\) −9.00000 −0.331295
\(739\) −37.0000 −1.36107 −0.680534 0.732717i \(-0.738252\pi\)
−0.680534 + 0.732717i \(0.738252\pi\)
\(740\) 0 0
\(741\) −4.00000 −0.146944
\(742\) 0 0
\(743\) 9.00000 0.330178 0.165089 0.986279i \(-0.447209\pi\)
0.165089 + 0.986279i \(0.447209\pi\)
\(744\) −5.00000 −0.183309
\(745\) 0 0
\(746\) −8.00000 −0.292901
\(747\) 9.00000 0.329293
\(748\) 18.0000 0.658145
\(749\) 0 0
\(750\) 0 0
\(751\) 8.00000 0.291924 0.145962 0.989290i \(-0.453372\pi\)
0.145962 + 0.989290i \(0.453372\pi\)
\(752\) 0 0
\(753\) 27.0000 0.983935
\(754\) −3.00000 −0.109254
\(755\) 0 0
\(756\) 0 0
\(757\) −14.0000 −0.508839 −0.254419 0.967094i \(-0.581884\pi\)
−0.254419 + 0.967094i \(0.581884\pi\)
\(758\) 35.0000 1.27126
\(759\) 18.0000 0.653359
\(760\) 0 0
\(761\) −18.0000 −0.652499 −0.326250 0.945284i \(-0.605785\pi\)
−0.326250 + 0.945284i \(0.605785\pi\)
\(762\) 10.0000 0.362262
\(763\) 0 0
\(764\) −15.0000 −0.542681
\(765\) 0 0
\(766\) −24.0000 −0.867155
\(767\) 9.00000 0.324971
\(768\) 1.00000 0.0360844
\(769\) 4.00000 0.144244 0.0721218 0.997396i \(-0.477023\pi\)
0.0721218 + 0.997396i \(0.477023\pi\)
\(770\) 0 0
\(771\) 15.0000 0.540212
\(772\) 22.0000 0.791797
\(773\) −48.0000 −1.72644 −0.863220 0.504828i \(-0.831556\pi\)
−0.863220 + 0.504828i \(0.831556\pi\)
\(774\) 1.00000 0.0359443
\(775\) 0 0
\(776\) 14.0000 0.502571
\(777\) 0 0
\(778\) −6.00000 −0.215110
\(779\) −36.0000 −1.28983
\(780\) 0 0
\(781\) −72.0000 −2.57636
\(782\) 9.00000 0.321839
\(783\) 3.00000 0.107211
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 26.0000 0.926800 0.463400 0.886149i \(-0.346629\pi\)
0.463400 + 0.886149i \(0.346629\pi\)
\(788\) 15.0000 0.534353
\(789\) −9.00000 −0.320408
\(790\) 0 0
\(791\) 0 0
\(792\) 6.00000 0.213201
\(793\) 11.0000 0.390621
\(794\) 29.0000 1.02917
\(795\) 0 0
\(796\) −8.00000 −0.283552
\(797\) −6.00000 −0.212531 −0.106265 0.994338i \(-0.533889\pi\)
−0.106265 + 0.994338i \(0.533889\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 6.00000 0.212000
\(802\) −12.0000 −0.423735
\(803\) −60.0000 −2.11735
\(804\) 4.00000 0.141069
\(805\) 0 0
\(806\) 5.00000 0.176117
\(807\) 18.0000 0.633630
\(808\) 12.0000 0.422159
\(809\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(810\) 0 0
\(811\) 34.0000 1.19390 0.596951 0.802278i \(-0.296379\pi\)
0.596951 + 0.802278i \(0.296379\pi\)
\(812\) 0 0
\(813\) −20.0000 −0.701431
\(814\) 60.0000 2.10300
\(815\) 0 0
\(816\) 3.00000 0.105021
\(817\) 4.00000 0.139942
\(818\) −38.0000 −1.32864
\(819\) 0 0
\(820\) 0 0
\(821\) −42.0000 −1.46581 −0.732905 0.680331i \(-0.761836\pi\)
−0.732905 + 0.680331i \(0.761836\pi\)
\(822\) 0 0
\(823\) 34.0000 1.18517 0.592583 0.805510i \(-0.298108\pi\)
0.592583 + 0.805510i \(0.298108\pi\)
\(824\) 17.0000 0.592223
\(825\) 0 0
\(826\) 0 0
\(827\) −6.00000 −0.208640 −0.104320 0.994544i \(-0.533267\pi\)
−0.104320 + 0.994544i \(0.533267\pi\)
\(828\) 3.00000 0.104257
\(829\) −29.0000 −1.00721 −0.503606 0.863934i \(-0.667994\pi\)
−0.503606 + 0.863934i \(0.667994\pi\)
\(830\) 0 0
\(831\) 10.0000 0.346896
\(832\) −1.00000 −0.0346688
\(833\) 0 0
\(834\) 16.0000 0.554035
\(835\) 0 0
\(836\) 24.0000 0.830057
\(837\) −5.00000 −0.172825
\(838\) 21.0000 0.725433
\(839\) −36.0000 −1.24286 −0.621429 0.783470i \(-0.713448\pi\)
−0.621429 + 0.783470i \(0.713448\pi\)
\(840\) 0 0
\(841\) −20.0000 −0.689655
\(842\) −34.0000 −1.17172
\(843\) −24.0000 −0.826604
\(844\) −25.0000 −0.860535
\(845\) 0 0
\(846\) 0 0
\(847\) 0 0
\(848\) −9.00000 −0.309061
\(849\) −4.00000 −0.137280
\(850\) 0 0
\(851\) 30.0000 1.02839
\(852\) −12.0000 −0.411113
\(853\) −19.0000 −0.650548 −0.325274 0.945620i \(-0.605456\pi\)
−0.325274 + 0.945620i \(0.605456\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −18.0000 −0.615227
\(857\) 18.0000 0.614868 0.307434 0.951569i \(-0.400530\pi\)
0.307434 + 0.951569i \(0.400530\pi\)
\(858\) −6.00000 −0.204837
\(859\) 40.0000 1.36478 0.682391 0.730987i \(-0.260940\pi\)
0.682391 + 0.730987i \(0.260940\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −15.0000 −0.510902
\(863\) 48.0000 1.63394 0.816970 0.576681i \(-0.195652\pi\)
0.816970 + 0.576681i \(0.195652\pi\)
\(864\) 1.00000 0.0340207
\(865\) 0 0
\(866\) 38.0000 1.29129
\(867\) −8.00000 −0.271694
\(868\) 0 0
\(869\) −60.0000 −2.03536
\(870\) 0 0
\(871\) −4.00000 −0.135535
\(872\) 8.00000 0.270914
\(873\) 14.0000 0.473828
\(874\) 12.0000 0.405906
\(875\) 0 0
\(876\) −10.0000 −0.337869
\(877\) −32.0000 −1.08056 −0.540282 0.841484i \(-0.681682\pi\)
−0.540282 + 0.841484i \(0.681682\pi\)
\(878\) −41.0000 −1.38368
\(879\) 0 0
\(880\) 0 0
\(881\) −33.0000 −1.11180 −0.555899 0.831250i \(-0.687626\pi\)
−0.555899 + 0.831250i \(0.687626\pi\)
\(882\) 0 0
\(883\) −5.00000 −0.168263 −0.0841317 0.996455i \(-0.526812\pi\)
−0.0841317 + 0.996455i \(0.526812\pi\)
\(884\) −3.00000 −0.100901
\(885\) 0 0
\(886\) −24.0000 −0.806296
\(887\) 54.0000 1.81314 0.906571 0.422053i \(-0.138690\pi\)
0.906571 + 0.422053i \(0.138690\pi\)
\(888\) 10.0000 0.335578
\(889\) 0 0
\(890\) 0 0
\(891\) 6.00000 0.201008
\(892\) −19.0000 −0.636167
\(893\) 0 0
\(894\) −9.00000 −0.301005
\(895\) 0 0
\(896\) 0 0
\(897\) −3.00000 −0.100167
\(898\) 24.0000 0.800890
\(899\) −15.0000 −0.500278
\(900\) 0 0
\(901\) −27.0000 −0.899500
\(902\) −54.0000 −1.79800
\(903\) 0 0
\(904\) 6.00000 0.199557
\(905\) 0 0
\(906\) 2.00000 0.0664455
\(907\) −53.0000 −1.75984 −0.879918 0.475125i \(-0.842403\pi\)
−0.879918 + 0.475125i \(0.842403\pi\)
\(908\) 3.00000 0.0995585
\(909\) 12.0000 0.398015
\(910\) 0 0
\(911\) 15.0000 0.496972 0.248486 0.968635i \(-0.420067\pi\)
0.248486 + 0.968635i \(0.420067\pi\)
\(912\) 4.00000 0.132453
\(913\) 54.0000 1.78714
\(914\) 25.0000 0.826927
\(915\) 0 0
\(916\) 22.0000 0.726900
\(917\) 0 0
\(918\) 3.00000 0.0990148
\(919\) 20.0000 0.659739 0.329870 0.944027i \(-0.392995\pi\)
0.329870 + 0.944027i \(0.392995\pi\)
\(920\) 0 0
\(921\) 2.00000 0.0659022
\(922\) −12.0000 −0.395199
\(923\) 12.0000 0.394985
\(924\) 0 0
\(925\) 0 0
\(926\) −32.0000 −1.05159
\(927\) 17.0000 0.558353
\(928\) 3.00000 0.0984798
\(929\) 27.0000 0.885841 0.442921 0.896561i \(-0.353942\pi\)
0.442921 + 0.896561i \(0.353942\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −12.0000 −0.393073
\(933\) 18.0000 0.589294
\(934\) −3.00000 −0.0981630
\(935\) 0 0
\(936\) −1.00000 −0.0326860
\(937\) 2.00000 0.0653372 0.0326686 0.999466i \(-0.489599\pi\)
0.0326686 + 0.999466i \(0.489599\pi\)
\(938\) 0 0
\(939\) −10.0000 −0.326338
\(940\) 0 0
\(941\) −24.0000 −0.782378 −0.391189 0.920310i \(-0.627936\pi\)
−0.391189 + 0.920310i \(0.627936\pi\)
\(942\) −10.0000 −0.325818
\(943\) −27.0000 −0.879241
\(944\) −9.00000 −0.292925
\(945\) 0 0
\(946\) 6.00000 0.195077
\(947\) 24.0000 0.779895 0.389948 0.920837i \(-0.372493\pi\)
0.389948 + 0.920837i \(0.372493\pi\)
\(948\) −10.0000 −0.324785
\(949\) 10.0000 0.324614
\(950\) 0 0
\(951\) 27.0000 0.875535
\(952\) 0 0
\(953\) −24.0000 −0.777436 −0.388718 0.921357i \(-0.627082\pi\)
−0.388718 + 0.921357i \(0.627082\pi\)
\(954\) −9.00000 −0.291386
\(955\) 0 0
\(956\) 0 0
\(957\) 18.0000 0.581857
\(958\) −24.0000 −0.775405
\(959\) 0 0
\(960\) 0 0
\(961\) −6.00000 −0.193548
\(962\) −10.0000 −0.322413
\(963\) −18.0000 −0.580042
\(964\) −2.00000 −0.0644157
\(965\) 0 0
\(966\) 0 0
\(967\) 28.0000 0.900419 0.450210 0.892923i \(-0.351349\pi\)
0.450210 + 0.892923i \(0.351349\pi\)
\(968\) 25.0000 0.803530
\(969\) 12.0000 0.385496
\(970\) 0 0
\(971\) 12.0000 0.385098 0.192549 0.981287i \(-0.438325\pi\)
0.192549 + 0.981287i \(0.438325\pi\)
\(972\) 1.00000 0.0320750
\(973\) 0 0
\(974\) −2.00000 −0.0640841
\(975\) 0 0
\(976\) −11.0000 −0.352101
\(977\) −42.0000 −1.34370 −0.671850 0.740688i \(-0.734500\pi\)
−0.671850 + 0.740688i \(0.734500\pi\)
\(978\) −5.00000 −0.159882
\(979\) 36.0000 1.15056
\(980\) 0 0
\(981\) 8.00000 0.255420
\(982\) 42.0000 1.34027
\(983\) 24.0000 0.765481 0.382741 0.923856i \(-0.374980\pi\)
0.382741 + 0.923856i \(0.374980\pi\)
\(984\) −9.00000 −0.286910
\(985\) 0 0
\(986\) 9.00000 0.286618
\(987\) 0 0
\(988\) −4.00000 −0.127257
\(989\) 3.00000 0.0953945
\(990\) 0 0
\(991\) −16.0000 −0.508257 −0.254128 0.967170i \(-0.581789\pi\)
−0.254128 + 0.967170i \(0.581789\pi\)
\(992\) −5.00000 −0.158750
\(993\) −19.0000 −0.602947
\(994\) 0 0
\(995\) 0 0
\(996\) 9.00000 0.285176
\(997\) 26.0000 0.823428 0.411714 0.911313i \(-0.364930\pi\)
0.411714 + 0.911313i \(0.364930\pi\)
\(998\) −19.0000 −0.601434
\(999\) 10.0000 0.316386
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7350.2.a.cz.1.1 1
5.4 even 2 7350.2.a.r.1.1 1
7.6 odd 2 1050.2.a.l.1.1 yes 1
21.20 even 2 3150.2.a.a.1.1 1
28.27 even 2 8400.2.a.ci.1.1 1
35.13 even 4 1050.2.g.e.799.1 2
35.27 even 4 1050.2.g.e.799.2 2
35.34 odd 2 1050.2.a.j.1.1 1
105.62 odd 4 3150.2.g.a.2899.1 2
105.83 odd 4 3150.2.g.a.2899.2 2
105.104 even 2 3150.2.a.bg.1.1 1
140.139 even 2 8400.2.a.a.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1050.2.a.j.1.1 1 35.34 odd 2
1050.2.a.l.1.1 yes 1 7.6 odd 2
1050.2.g.e.799.1 2 35.13 even 4
1050.2.g.e.799.2 2 35.27 even 4
3150.2.a.a.1.1 1 21.20 even 2
3150.2.a.bg.1.1 1 105.104 even 2
3150.2.g.a.2899.1 2 105.62 odd 4
3150.2.g.a.2899.2 2 105.83 odd 4
7350.2.a.r.1.1 1 5.4 even 2
7350.2.a.cz.1.1 1 1.1 even 1 trivial
8400.2.a.a.1.1 1 140.139 even 2
8400.2.a.ci.1.1 1 28.27 even 2