Properties

Label 7350.2.a.cp.1.1
Level 7350
Weight 2
Character 7350.1
Self dual yes
Analytic conductor 58.690
Analytic rank 1
Dimension 1
CM no
Inner twists 1

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 7350 = 2 \cdot 3 \cdot 5^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7350.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(58.6900454856\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 210)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 7350.1

$q$-expansion

\(f(q)\) \(=\) \(q+1.00000 q^{2} +1.00000 q^{3} +1.00000 q^{4} +1.00000 q^{6} +1.00000 q^{8} +1.00000 q^{9} +O(q^{10})\) \(q+1.00000 q^{2} +1.00000 q^{3} +1.00000 q^{4} +1.00000 q^{6} +1.00000 q^{8} +1.00000 q^{9} -1.00000 q^{11} +1.00000 q^{12} -1.00000 q^{13} +1.00000 q^{16} +1.00000 q^{18} -3.00000 q^{19} -1.00000 q^{22} -7.00000 q^{23} +1.00000 q^{24} -1.00000 q^{26} +1.00000 q^{27} -8.00000 q^{29} -2.00000 q^{31} +1.00000 q^{32} -1.00000 q^{33} +1.00000 q^{36} -11.0000 q^{37} -3.00000 q^{38} -1.00000 q^{39} -11.0000 q^{41} -8.00000 q^{43} -1.00000 q^{44} -7.00000 q^{46} +5.00000 q^{47} +1.00000 q^{48} -1.00000 q^{52} +11.0000 q^{53} +1.00000 q^{54} -3.00000 q^{57} -8.00000 q^{58} +4.00000 q^{59} -2.00000 q^{62} +1.00000 q^{64} -1.00000 q^{66} -7.00000 q^{69} -6.00000 q^{71} +1.00000 q^{72} +6.00000 q^{73} -11.0000 q^{74} -3.00000 q^{76} -1.00000 q^{78} -8.00000 q^{79} +1.00000 q^{81} -11.0000 q^{82} -8.00000 q^{83} -8.00000 q^{86} -8.00000 q^{87} -1.00000 q^{88} -10.0000 q^{89} -7.00000 q^{92} -2.00000 q^{93} +5.00000 q^{94} +1.00000 q^{96} +16.0000 q^{97} -1.00000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 1.00000 0.577350
\(4\) 1.00000 0.500000
\(5\) 0 0
\(6\) 1.00000 0.408248
\(7\) 0 0
\(8\) 1.00000 0.353553
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) −1.00000 −0.301511 −0.150756 0.988571i \(-0.548171\pi\)
−0.150756 + 0.988571i \(0.548171\pi\)
\(12\) 1.00000 0.288675
\(13\) −1.00000 −0.277350 −0.138675 0.990338i \(-0.544284\pi\)
−0.138675 + 0.990338i \(0.544284\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(18\) 1.00000 0.235702
\(19\) −3.00000 −0.688247 −0.344124 0.938924i \(-0.611824\pi\)
−0.344124 + 0.938924i \(0.611824\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −1.00000 −0.213201
\(23\) −7.00000 −1.45960 −0.729800 0.683660i \(-0.760387\pi\)
−0.729800 + 0.683660i \(0.760387\pi\)
\(24\) 1.00000 0.204124
\(25\) 0 0
\(26\) −1.00000 −0.196116
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) −8.00000 −1.48556 −0.742781 0.669534i \(-0.766494\pi\)
−0.742781 + 0.669534i \(0.766494\pi\)
\(30\) 0 0
\(31\) −2.00000 −0.359211 −0.179605 0.983739i \(-0.557482\pi\)
−0.179605 + 0.983739i \(0.557482\pi\)
\(32\) 1.00000 0.176777
\(33\) −1.00000 −0.174078
\(34\) 0 0
\(35\) 0 0
\(36\) 1.00000 0.166667
\(37\) −11.0000 −1.80839 −0.904194 0.427121i \(-0.859528\pi\)
−0.904194 + 0.427121i \(0.859528\pi\)
\(38\) −3.00000 −0.486664
\(39\) −1.00000 −0.160128
\(40\) 0 0
\(41\) −11.0000 −1.71791 −0.858956 0.512050i \(-0.828886\pi\)
−0.858956 + 0.512050i \(0.828886\pi\)
\(42\) 0 0
\(43\) −8.00000 −1.21999 −0.609994 0.792406i \(-0.708828\pi\)
−0.609994 + 0.792406i \(0.708828\pi\)
\(44\) −1.00000 −0.150756
\(45\) 0 0
\(46\) −7.00000 −1.03209
\(47\) 5.00000 0.729325 0.364662 0.931140i \(-0.381184\pi\)
0.364662 + 0.931140i \(0.381184\pi\)
\(48\) 1.00000 0.144338
\(49\) 0 0
\(50\) 0 0
\(51\) 0 0
\(52\) −1.00000 −0.138675
\(53\) 11.0000 1.51097 0.755483 0.655168i \(-0.227402\pi\)
0.755483 + 0.655168i \(0.227402\pi\)
\(54\) 1.00000 0.136083
\(55\) 0 0
\(56\) 0 0
\(57\) −3.00000 −0.397360
\(58\) −8.00000 −1.05045
\(59\) 4.00000 0.520756 0.260378 0.965507i \(-0.416153\pi\)
0.260378 + 0.965507i \(0.416153\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(62\) −2.00000 −0.254000
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) −1.00000 −0.123091
\(67\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(68\) 0 0
\(69\) −7.00000 −0.842701
\(70\) 0 0
\(71\) −6.00000 −0.712069 −0.356034 0.934473i \(-0.615871\pi\)
−0.356034 + 0.934473i \(0.615871\pi\)
\(72\) 1.00000 0.117851
\(73\) 6.00000 0.702247 0.351123 0.936329i \(-0.385800\pi\)
0.351123 + 0.936329i \(0.385800\pi\)
\(74\) −11.0000 −1.27872
\(75\) 0 0
\(76\) −3.00000 −0.344124
\(77\) 0 0
\(78\) −1.00000 −0.113228
\(79\) −8.00000 −0.900070 −0.450035 0.893011i \(-0.648589\pi\)
−0.450035 + 0.893011i \(0.648589\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) −11.0000 −1.21475
\(83\) −8.00000 −0.878114 −0.439057 0.898459i \(-0.644687\pi\)
−0.439057 + 0.898459i \(0.644687\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −8.00000 −0.862662
\(87\) −8.00000 −0.857690
\(88\) −1.00000 −0.106600
\(89\) −10.0000 −1.06000 −0.529999 0.847998i \(-0.677808\pi\)
−0.529999 + 0.847998i \(0.677808\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −7.00000 −0.729800
\(93\) −2.00000 −0.207390
\(94\) 5.00000 0.515711
\(95\) 0 0
\(96\) 1.00000 0.102062
\(97\) 16.0000 1.62455 0.812277 0.583272i \(-0.198228\pi\)
0.812277 + 0.583272i \(0.198228\pi\)
\(98\) 0 0
\(99\) −1.00000 −0.100504
\(100\) 0 0
\(101\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(102\) 0 0
\(103\) 16.0000 1.57653 0.788263 0.615338i \(-0.210980\pi\)
0.788263 + 0.615338i \(0.210980\pi\)
\(104\) −1.00000 −0.0980581
\(105\) 0 0
\(106\) 11.0000 1.06841
\(107\) 10.0000 0.966736 0.483368 0.875417i \(-0.339413\pi\)
0.483368 + 0.875417i \(0.339413\pi\)
\(108\) 1.00000 0.0962250
\(109\) 6.00000 0.574696 0.287348 0.957826i \(-0.407226\pi\)
0.287348 + 0.957826i \(0.407226\pi\)
\(110\) 0 0
\(111\) −11.0000 −1.04407
\(112\) 0 0
\(113\) −6.00000 −0.564433 −0.282216 0.959351i \(-0.591070\pi\)
−0.282216 + 0.959351i \(0.591070\pi\)
\(114\) −3.00000 −0.280976
\(115\) 0 0
\(116\) −8.00000 −0.742781
\(117\) −1.00000 −0.0924500
\(118\) 4.00000 0.368230
\(119\) 0 0
\(120\) 0 0
\(121\) −10.0000 −0.909091
\(122\) 0 0
\(123\) −11.0000 −0.991837
\(124\) −2.00000 −0.179605
\(125\) 0 0
\(126\) 0 0
\(127\) 17.0000 1.50851 0.754253 0.656584i \(-0.227999\pi\)
0.754253 + 0.656584i \(0.227999\pi\)
\(128\) 1.00000 0.0883883
\(129\) −8.00000 −0.704361
\(130\) 0 0
\(131\) −5.00000 −0.436852 −0.218426 0.975854i \(-0.570092\pi\)
−0.218426 + 0.975854i \(0.570092\pi\)
\(132\) −1.00000 −0.0870388
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 18.0000 1.53784 0.768922 0.639343i \(-0.220793\pi\)
0.768922 + 0.639343i \(0.220793\pi\)
\(138\) −7.00000 −0.595880
\(139\) 20.0000 1.69638 0.848189 0.529694i \(-0.177693\pi\)
0.848189 + 0.529694i \(0.177693\pi\)
\(140\) 0 0
\(141\) 5.00000 0.421076
\(142\) −6.00000 −0.503509
\(143\) 1.00000 0.0836242
\(144\) 1.00000 0.0833333
\(145\) 0 0
\(146\) 6.00000 0.496564
\(147\) 0 0
\(148\) −11.0000 −0.904194
\(149\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(150\) 0 0
\(151\) 6.00000 0.488273 0.244137 0.969741i \(-0.421495\pi\)
0.244137 + 0.969741i \(0.421495\pi\)
\(152\) −3.00000 −0.243332
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) −1.00000 −0.0800641
\(157\) 7.00000 0.558661 0.279330 0.960195i \(-0.409888\pi\)
0.279330 + 0.960195i \(0.409888\pi\)
\(158\) −8.00000 −0.636446
\(159\) 11.0000 0.872357
\(160\) 0 0
\(161\) 0 0
\(162\) 1.00000 0.0785674
\(163\) −16.0000 −1.25322 −0.626608 0.779334i \(-0.715557\pi\)
−0.626608 + 0.779334i \(0.715557\pi\)
\(164\) −11.0000 −0.858956
\(165\) 0 0
\(166\) −8.00000 −0.620920
\(167\) 3.00000 0.232147 0.116073 0.993241i \(-0.462969\pi\)
0.116073 + 0.993241i \(0.462969\pi\)
\(168\) 0 0
\(169\) −12.0000 −0.923077
\(170\) 0 0
\(171\) −3.00000 −0.229416
\(172\) −8.00000 −0.609994
\(173\) 15.0000 1.14043 0.570214 0.821496i \(-0.306860\pi\)
0.570214 + 0.821496i \(0.306860\pi\)
\(174\) −8.00000 −0.606478
\(175\) 0 0
\(176\) −1.00000 −0.0753778
\(177\) 4.00000 0.300658
\(178\) −10.0000 −0.749532
\(179\) −19.0000 −1.42013 −0.710063 0.704138i \(-0.751334\pi\)
−0.710063 + 0.704138i \(0.751334\pi\)
\(180\) 0 0
\(181\) −24.0000 −1.78391 −0.891953 0.452128i \(-0.850665\pi\)
−0.891953 + 0.452128i \(0.850665\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −7.00000 −0.516047
\(185\) 0 0
\(186\) −2.00000 −0.146647
\(187\) 0 0
\(188\) 5.00000 0.364662
\(189\) 0 0
\(190\) 0 0
\(191\) −6.00000 −0.434145 −0.217072 0.976156i \(-0.569651\pi\)
−0.217072 + 0.976156i \(0.569651\pi\)
\(192\) 1.00000 0.0721688
\(193\) −22.0000 −1.58359 −0.791797 0.610784i \(-0.790854\pi\)
−0.791797 + 0.610784i \(0.790854\pi\)
\(194\) 16.0000 1.14873
\(195\) 0 0
\(196\) 0 0
\(197\) 1.00000 0.0712470 0.0356235 0.999365i \(-0.488658\pi\)
0.0356235 + 0.999365i \(0.488658\pi\)
\(198\) −1.00000 −0.0710669
\(199\) −24.0000 −1.70131 −0.850657 0.525720i \(-0.823796\pi\)
−0.850657 + 0.525720i \(0.823796\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 16.0000 1.11477
\(207\) −7.00000 −0.486534
\(208\) −1.00000 −0.0693375
\(209\) 3.00000 0.207514
\(210\) 0 0
\(211\) 5.00000 0.344214 0.172107 0.985078i \(-0.444942\pi\)
0.172107 + 0.985078i \(0.444942\pi\)
\(212\) 11.0000 0.755483
\(213\) −6.00000 −0.411113
\(214\) 10.0000 0.683586
\(215\) 0 0
\(216\) 1.00000 0.0680414
\(217\) 0 0
\(218\) 6.00000 0.406371
\(219\) 6.00000 0.405442
\(220\) 0 0
\(221\) 0 0
\(222\) −11.0000 −0.738272
\(223\) −12.0000 −0.803579 −0.401790 0.915732i \(-0.631612\pi\)
−0.401790 + 0.915732i \(0.631612\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) −6.00000 −0.399114
\(227\) −8.00000 −0.530979 −0.265489 0.964114i \(-0.585534\pi\)
−0.265489 + 0.964114i \(0.585534\pi\)
\(228\) −3.00000 −0.198680
\(229\) 14.0000 0.925146 0.462573 0.886581i \(-0.346926\pi\)
0.462573 + 0.886581i \(0.346926\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −8.00000 −0.525226
\(233\) −18.0000 −1.17922 −0.589610 0.807688i \(-0.700718\pi\)
−0.589610 + 0.807688i \(0.700718\pi\)
\(234\) −1.00000 −0.0653720
\(235\) 0 0
\(236\) 4.00000 0.260378
\(237\) −8.00000 −0.519656
\(238\) 0 0
\(239\) −18.0000 −1.16432 −0.582162 0.813073i \(-0.697793\pi\)
−0.582162 + 0.813073i \(0.697793\pi\)
\(240\) 0 0
\(241\) 7.00000 0.450910 0.225455 0.974254i \(-0.427613\pi\)
0.225455 + 0.974254i \(0.427613\pi\)
\(242\) −10.0000 −0.642824
\(243\) 1.00000 0.0641500
\(244\) 0 0
\(245\) 0 0
\(246\) −11.0000 −0.701334
\(247\) 3.00000 0.190885
\(248\) −2.00000 −0.127000
\(249\) −8.00000 −0.506979
\(250\) 0 0
\(251\) 13.0000 0.820553 0.410276 0.911961i \(-0.365432\pi\)
0.410276 + 0.911961i \(0.365432\pi\)
\(252\) 0 0
\(253\) 7.00000 0.440086
\(254\) 17.0000 1.06667
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 20.0000 1.24757 0.623783 0.781598i \(-0.285595\pi\)
0.623783 + 0.781598i \(0.285595\pi\)
\(258\) −8.00000 −0.498058
\(259\) 0 0
\(260\) 0 0
\(261\) −8.00000 −0.495188
\(262\) −5.00000 −0.308901
\(263\) −24.0000 −1.47990 −0.739952 0.672660i \(-0.765152\pi\)
−0.739952 + 0.672660i \(0.765152\pi\)
\(264\) −1.00000 −0.0615457
\(265\) 0 0
\(266\) 0 0
\(267\) −10.0000 −0.611990
\(268\) 0 0
\(269\) 20.0000 1.21942 0.609711 0.792624i \(-0.291286\pi\)
0.609711 + 0.792624i \(0.291286\pi\)
\(270\) 0 0
\(271\) 32.0000 1.94386 0.971931 0.235267i \(-0.0755965\pi\)
0.971931 + 0.235267i \(0.0755965\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 18.0000 1.08742
\(275\) 0 0
\(276\) −7.00000 −0.421350
\(277\) 22.0000 1.32185 0.660926 0.750451i \(-0.270164\pi\)
0.660926 + 0.750451i \(0.270164\pi\)
\(278\) 20.0000 1.19952
\(279\) −2.00000 −0.119737
\(280\) 0 0
\(281\) −1.00000 −0.0596550 −0.0298275 0.999555i \(-0.509496\pi\)
−0.0298275 + 0.999555i \(0.509496\pi\)
\(282\) 5.00000 0.297746
\(283\) 14.0000 0.832214 0.416107 0.909316i \(-0.363394\pi\)
0.416107 + 0.909316i \(0.363394\pi\)
\(284\) −6.00000 −0.356034
\(285\) 0 0
\(286\) 1.00000 0.0591312
\(287\) 0 0
\(288\) 1.00000 0.0589256
\(289\) −17.0000 −1.00000
\(290\) 0 0
\(291\) 16.0000 0.937937
\(292\) 6.00000 0.351123
\(293\) −27.0000 −1.57736 −0.788678 0.614806i \(-0.789234\pi\)
−0.788678 + 0.614806i \(0.789234\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −11.0000 −0.639362
\(297\) −1.00000 −0.0580259
\(298\) 0 0
\(299\) 7.00000 0.404820
\(300\) 0 0
\(301\) 0 0
\(302\) 6.00000 0.345261
\(303\) 0 0
\(304\) −3.00000 −0.172062
\(305\) 0 0
\(306\) 0 0
\(307\) −20.0000 −1.14146 −0.570730 0.821138i \(-0.693340\pi\)
−0.570730 + 0.821138i \(0.693340\pi\)
\(308\) 0 0
\(309\) 16.0000 0.910208
\(310\) 0 0
\(311\) 12.0000 0.680458 0.340229 0.940343i \(-0.389495\pi\)
0.340229 + 0.940343i \(0.389495\pi\)
\(312\) −1.00000 −0.0566139
\(313\) 12.0000 0.678280 0.339140 0.940736i \(-0.389864\pi\)
0.339140 + 0.940736i \(0.389864\pi\)
\(314\) 7.00000 0.395033
\(315\) 0 0
\(316\) −8.00000 −0.450035
\(317\) 18.0000 1.01098 0.505490 0.862832i \(-0.331312\pi\)
0.505490 + 0.862832i \(0.331312\pi\)
\(318\) 11.0000 0.616849
\(319\) 8.00000 0.447914
\(320\) 0 0
\(321\) 10.0000 0.558146
\(322\) 0 0
\(323\) 0 0
\(324\) 1.00000 0.0555556
\(325\) 0 0
\(326\) −16.0000 −0.886158
\(327\) 6.00000 0.331801
\(328\) −11.0000 −0.607373
\(329\) 0 0
\(330\) 0 0
\(331\) −13.0000 −0.714545 −0.357272 0.934000i \(-0.616293\pi\)
−0.357272 + 0.934000i \(0.616293\pi\)
\(332\) −8.00000 −0.439057
\(333\) −11.0000 −0.602796
\(334\) 3.00000 0.164153
\(335\) 0 0
\(336\) 0 0
\(337\) 12.0000 0.653682 0.326841 0.945079i \(-0.394016\pi\)
0.326841 + 0.945079i \(0.394016\pi\)
\(338\) −12.0000 −0.652714
\(339\) −6.00000 −0.325875
\(340\) 0 0
\(341\) 2.00000 0.108306
\(342\) −3.00000 −0.162221
\(343\) 0 0
\(344\) −8.00000 −0.431331
\(345\) 0 0
\(346\) 15.0000 0.806405
\(347\) −14.0000 −0.751559 −0.375780 0.926709i \(-0.622625\pi\)
−0.375780 + 0.926709i \(0.622625\pi\)
\(348\) −8.00000 −0.428845
\(349\) 12.0000 0.642345 0.321173 0.947021i \(-0.395923\pi\)
0.321173 + 0.947021i \(0.395923\pi\)
\(350\) 0 0
\(351\) −1.00000 −0.0533761
\(352\) −1.00000 −0.0533002
\(353\) −24.0000 −1.27739 −0.638696 0.769460i \(-0.720526\pi\)
−0.638696 + 0.769460i \(0.720526\pi\)
\(354\) 4.00000 0.212598
\(355\) 0 0
\(356\) −10.0000 −0.529999
\(357\) 0 0
\(358\) −19.0000 −1.00418
\(359\) 4.00000 0.211112 0.105556 0.994413i \(-0.466338\pi\)
0.105556 + 0.994413i \(0.466338\pi\)
\(360\) 0 0
\(361\) −10.0000 −0.526316
\(362\) −24.0000 −1.26141
\(363\) −10.0000 −0.524864
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −25.0000 −1.30499 −0.652495 0.757793i \(-0.726278\pi\)
−0.652495 + 0.757793i \(0.726278\pi\)
\(368\) −7.00000 −0.364900
\(369\) −11.0000 −0.572637
\(370\) 0 0
\(371\) 0 0
\(372\) −2.00000 −0.103695
\(373\) −6.00000 −0.310668 −0.155334 0.987862i \(-0.549645\pi\)
−0.155334 + 0.987862i \(0.549645\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 5.00000 0.257855
\(377\) 8.00000 0.412021
\(378\) 0 0
\(379\) −19.0000 −0.975964 −0.487982 0.872854i \(-0.662267\pi\)
−0.487982 + 0.872854i \(0.662267\pi\)
\(380\) 0 0
\(381\) 17.0000 0.870936
\(382\) −6.00000 −0.306987
\(383\) −35.0000 −1.78842 −0.894208 0.447651i \(-0.852261\pi\)
−0.894208 + 0.447651i \(0.852261\pi\)
\(384\) 1.00000 0.0510310
\(385\) 0 0
\(386\) −22.0000 −1.11977
\(387\) −8.00000 −0.406663
\(388\) 16.0000 0.812277
\(389\) 10.0000 0.507020 0.253510 0.967333i \(-0.418415\pi\)
0.253510 + 0.967333i \(0.418415\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) −5.00000 −0.252217
\(394\) 1.00000 0.0503793
\(395\) 0 0
\(396\) −1.00000 −0.0502519
\(397\) −14.0000 −0.702640 −0.351320 0.936255i \(-0.614267\pi\)
−0.351320 + 0.936255i \(0.614267\pi\)
\(398\) −24.0000 −1.20301
\(399\) 0 0
\(400\) 0 0
\(401\) −5.00000 −0.249688 −0.124844 0.992176i \(-0.539843\pi\)
−0.124844 + 0.992176i \(0.539843\pi\)
\(402\) 0 0
\(403\) 2.00000 0.0996271
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 11.0000 0.545250
\(408\) 0 0
\(409\) 2.00000 0.0988936 0.0494468 0.998777i \(-0.484254\pi\)
0.0494468 + 0.998777i \(0.484254\pi\)
\(410\) 0 0
\(411\) 18.0000 0.887875
\(412\) 16.0000 0.788263
\(413\) 0 0
\(414\) −7.00000 −0.344031
\(415\) 0 0
\(416\) −1.00000 −0.0490290
\(417\) 20.0000 0.979404
\(418\) 3.00000 0.146735
\(419\) −5.00000 −0.244266 −0.122133 0.992514i \(-0.538973\pi\)
−0.122133 + 0.992514i \(0.538973\pi\)
\(420\) 0 0
\(421\) 22.0000 1.07221 0.536107 0.844150i \(-0.319894\pi\)
0.536107 + 0.844150i \(0.319894\pi\)
\(422\) 5.00000 0.243396
\(423\) 5.00000 0.243108
\(424\) 11.0000 0.534207
\(425\) 0 0
\(426\) −6.00000 −0.290701
\(427\) 0 0
\(428\) 10.0000 0.483368
\(429\) 1.00000 0.0482805
\(430\) 0 0
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) 1.00000 0.0481125
\(433\) 32.0000 1.53782 0.768911 0.639356i \(-0.220799\pi\)
0.768911 + 0.639356i \(0.220799\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 6.00000 0.287348
\(437\) 21.0000 1.00457
\(438\) 6.00000 0.286691
\(439\) 32.0000 1.52728 0.763638 0.645644i \(-0.223411\pi\)
0.763638 + 0.645644i \(0.223411\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −16.0000 −0.760183 −0.380091 0.924949i \(-0.624107\pi\)
−0.380091 + 0.924949i \(0.624107\pi\)
\(444\) −11.0000 −0.522037
\(445\) 0 0
\(446\) −12.0000 −0.568216
\(447\) 0 0
\(448\) 0 0
\(449\) 11.0000 0.519122 0.259561 0.965727i \(-0.416422\pi\)
0.259561 + 0.965727i \(0.416422\pi\)
\(450\) 0 0
\(451\) 11.0000 0.517970
\(452\) −6.00000 −0.282216
\(453\) 6.00000 0.281905
\(454\) −8.00000 −0.375459
\(455\) 0 0
\(456\) −3.00000 −0.140488
\(457\) 18.0000 0.842004 0.421002 0.907060i \(-0.361678\pi\)
0.421002 + 0.907060i \(0.361678\pi\)
\(458\) 14.0000 0.654177
\(459\) 0 0
\(460\) 0 0
\(461\) −12.0000 −0.558896 −0.279448 0.960161i \(-0.590151\pi\)
−0.279448 + 0.960161i \(0.590151\pi\)
\(462\) 0 0
\(463\) 13.0000 0.604161 0.302081 0.953282i \(-0.402319\pi\)
0.302081 + 0.953282i \(0.402319\pi\)
\(464\) −8.00000 −0.371391
\(465\) 0 0
\(466\) −18.0000 −0.833834
\(467\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(468\) −1.00000 −0.0462250
\(469\) 0 0
\(470\) 0 0
\(471\) 7.00000 0.322543
\(472\) 4.00000 0.184115
\(473\) 8.00000 0.367840
\(474\) −8.00000 −0.367452
\(475\) 0 0
\(476\) 0 0
\(477\) 11.0000 0.503655
\(478\) −18.0000 −0.823301
\(479\) 22.0000 1.00521 0.502603 0.864517i \(-0.332376\pi\)
0.502603 + 0.864517i \(0.332376\pi\)
\(480\) 0 0
\(481\) 11.0000 0.501557
\(482\) 7.00000 0.318841
\(483\) 0 0
\(484\) −10.0000 −0.454545
\(485\) 0 0
\(486\) 1.00000 0.0453609
\(487\) 16.0000 0.725029 0.362515 0.931978i \(-0.381918\pi\)
0.362515 + 0.931978i \(0.381918\pi\)
\(488\) 0 0
\(489\) −16.0000 −0.723545
\(490\) 0 0
\(491\) 20.0000 0.902587 0.451294 0.892375i \(-0.350963\pi\)
0.451294 + 0.892375i \(0.350963\pi\)
\(492\) −11.0000 −0.495918
\(493\) 0 0
\(494\) 3.00000 0.134976
\(495\) 0 0
\(496\) −2.00000 −0.0898027
\(497\) 0 0
\(498\) −8.00000 −0.358489
\(499\) −32.0000 −1.43252 −0.716258 0.697835i \(-0.754147\pi\)
−0.716258 + 0.697835i \(0.754147\pi\)
\(500\) 0 0
\(501\) 3.00000 0.134030
\(502\) 13.0000 0.580218
\(503\) −36.0000 −1.60516 −0.802580 0.596544i \(-0.796540\pi\)
−0.802580 + 0.596544i \(0.796540\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 7.00000 0.311188
\(507\) −12.0000 −0.532939
\(508\) 17.0000 0.754253
\(509\) −34.0000 −1.50702 −0.753512 0.657434i \(-0.771642\pi\)
−0.753512 + 0.657434i \(0.771642\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 1.00000 0.0441942
\(513\) −3.00000 −0.132453
\(514\) 20.0000 0.882162
\(515\) 0 0
\(516\) −8.00000 −0.352180
\(517\) −5.00000 −0.219900
\(518\) 0 0
\(519\) 15.0000 0.658427
\(520\) 0 0
\(521\) −33.0000 −1.44576 −0.722878 0.690976i \(-0.757181\pi\)
−0.722878 + 0.690976i \(0.757181\pi\)
\(522\) −8.00000 −0.350150
\(523\) −2.00000 −0.0874539 −0.0437269 0.999044i \(-0.513923\pi\)
−0.0437269 + 0.999044i \(0.513923\pi\)
\(524\) −5.00000 −0.218426
\(525\) 0 0
\(526\) −24.0000 −1.04645
\(527\) 0 0
\(528\) −1.00000 −0.0435194
\(529\) 26.0000 1.13043
\(530\) 0 0
\(531\) 4.00000 0.173585
\(532\) 0 0
\(533\) 11.0000 0.476463
\(534\) −10.0000 −0.432742
\(535\) 0 0
\(536\) 0 0
\(537\) −19.0000 −0.819911
\(538\) 20.0000 0.862261
\(539\) 0 0
\(540\) 0 0
\(541\) −10.0000 −0.429934 −0.214967 0.976621i \(-0.568964\pi\)
−0.214967 + 0.976621i \(0.568964\pi\)
\(542\) 32.0000 1.37452
\(543\) −24.0000 −1.02994
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −16.0000 −0.684111 −0.342055 0.939680i \(-0.611123\pi\)
−0.342055 + 0.939680i \(0.611123\pi\)
\(548\) 18.0000 0.768922
\(549\) 0 0
\(550\) 0 0
\(551\) 24.0000 1.02243
\(552\) −7.00000 −0.297940
\(553\) 0 0
\(554\) 22.0000 0.934690
\(555\) 0 0
\(556\) 20.0000 0.848189
\(557\) 33.0000 1.39825 0.699127 0.714997i \(-0.253572\pi\)
0.699127 + 0.714997i \(0.253572\pi\)
\(558\) −2.00000 −0.0846668
\(559\) 8.00000 0.338364
\(560\) 0 0
\(561\) 0 0
\(562\) −1.00000 −0.0421825
\(563\) 38.0000 1.60151 0.800755 0.598993i \(-0.204432\pi\)
0.800755 + 0.598993i \(0.204432\pi\)
\(564\) 5.00000 0.210538
\(565\) 0 0
\(566\) 14.0000 0.588464
\(567\) 0 0
\(568\) −6.00000 −0.251754
\(569\) −9.00000 −0.377300 −0.188650 0.982044i \(-0.560411\pi\)
−0.188650 + 0.982044i \(0.560411\pi\)
\(570\) 0 0
\(571\) −32.0000 −1.33916 −0.669579 0.742741i \(-0.733526\pi\)
−0.669579 + 0.742741i \(0.733526\pi\)
\(572\) 1.00000 0.0418121
\(573\) −6.00000 −0.250654
\(574\) 0 0
\(575\) 0 0
\(576\) 1.00000 0.0416667
\(577\) 14.0000 0.582828 0.291414 0.956597i \(-0.405874\pi\)
0.291414 + 0.956597i \(0.405874\pi\)
\(578\) −17.0000 −0.707107
\(579\) −22.0000 −0.914289
\(580\) 0 0
\(581\) 0 0
\(582\) 16.0000 0.663221
\(583\) −11.0000 −0.455573
\(584\) 6.00000 0.248282
\(585\) 0 0
\(586\) −27.0000 −1.11536
\(587\) 18.0000 0.742940 0.371470 0.928445i \(-0.378854\pi\)
0.371470 + 0.928445i \(0.378854\pi\)
\(588\) 0 0
\(589\) 6.00000 0.247226
\(590\) 0 0
\(591\) 1.00000 0.0411345
\(592\) −11.0000 −0.452097
\(593\) −16.0000 −0.657041 −0.328521 0.944497i \(-0.606550\pi\)
−0.328521 + 0.944497i \(0.606550\pi\)
\(594\) −1.00000 −0.0410305
\(595\) 0 0
\(596\) 0 0
\(597\) −24.0000 −0.982255
\(598\) 7.00000 0.286251
\(599\) 2.00000 0.0817178 0.0408589 0.999165i \(-0.486991\pi\)
0.0408589 + 0.999165i \(0.486991\pi\)
\(600\) 0 0
\(601\) −26.0000 −1.06056 −0.530281 0.847822i \(-0.677914\pi\)
−0.530281 + 0.847822i \(0.677914\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 6.00000 0.244137
\(605\) 0 0
\(606\) 0 0
\(607\) 37.0000 1.50178 0.750892 0.660425i \(-0.229624\pi\)
0.750892 + 0.660425i \(0.229624\pi\)
\(608\) −3.00000 −0.121666
\(609\) 0 0
\(610\) 0 0
\(611\) −5.00000 −0.202278
\(612\) 0 0
\(613\) 41.0000 1.65597 0.827987 0.560747i \(-0.189486\pi\)
0.827987 + 0.560747i \(0.189486\pi\)
\(614\) −20.0000 −0.807134
\(615\) 0 0
\(616\) 0 0
\(617\) −28.0000 −1.12724 −0.563619 0.826035i \(-0.690591\pi\)
−0.563619 + 0.826035i \(0.690591\pi\)
\(618\) 16.0000 0.643614
\(619\) 29.0000 1.16561 0.582804 0.812613i \(-0.301955\pi\)
0.582804 + 0.812613i \(0.301955\pi\)
\(620\) 0 0
\(621\) −7.00000 −0.280900
\(622\) 12.0000 0.481156
\(623\) 0 0
\(624\) −1.00000 −0.0400320
\(625\) 0 0
\(626\) 12.0000 0.479616
\(627\) 3.00000 0.119808
\(628\) 7.00000 0.279330
\(629\) 0 0
\(630\) 0 0
\(631\) −26.0000 −1.03504 −0.517522 0.855670i \(-0.673145\pi\)
−0.517522 + 0.855670i \(0.673145\pi\)
\(632\) −8.00000 −0.318223
\(633\) 5.00000 0.198732
\(634\) 18.0000 0.714871
\(635\) 0 0
\(636\) 11.0000 0.436178
\(637\) 0 0
\(638\) 8.00000 0.316723
\(639\) −6.00000 −0.237356
\(640\) 0 0
\(641\) −3.00000 −0.118493 −0.0592464 0.998243i \(-0.518870\pi\)
−0.0592464 + 0.998243i \(0.518870\pi\)
\(642\) 10.0000 0.394669
\(643\) 10.0000 0.394362 0.197181 0.980367i \(-0.436821\pi\)
0.197181 + 0.980367i \(0.436821\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 17.0000 0.668339 0.334169 0.942513i \(-0.391544\pi\)
0.334169 + 0.942513i \(0.391544\pi\)
\(648\) 1.00000 0.0392837
\(649\) −4.00000 −0.157014
\(650\) 0 0
\(651\) 0 0
\(652\) −16.0000 −0.626608
\(653\) −7.00000 −0.273931 −0.136966 0.990576i \(-0.543735\pi\)
−0.136966 + 0.990576i \(0.543735\pi\)
\(654\) 6.00000 0.234619
\(655\) 0 0
\(656\) −11.0000 −0.429478
\(657\) 6.00000 0.234082
\(658\) 0 0
\(659\) 36.0000 1.40236 0.701180 0.712984i \(-0.252657\pi\)
0.701180 + 0.712984i \(0.252657\pi\)
\(660\) 0 0
\(661\) −24.0000 −0.933492 −0.466746 0.884391i \(-0.654574\pi\)
−0.466746 + 0.884391i \(0.654574\pi\)
\(662\) −13.0000 −0.505259
\(663\) 0 0
\(664\) −8.00000 −0.310460
\(665\) 0 0
\(666\) −11.0000 −0.426241
\(667\) 56.0000 2.16833
\(668\) 3.00000 0.116073
\(669\) −12.0000 −0.463947
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −28.0000 −1.07932 −0.539660 0.841883i \(-0.681447\pi\)
−0.539660 + 0.841883i \(0.681447\pi\)
\(674\) 12.0000 0.462223
\(675\) 0 0
\(676\) −12.0000 −0.461538
\(677\) 13.0000 0.499631 0.249815 0.968294i \(-0.419630\pi\)
0.249815 + 0.968294i \(0.419630\pi\)
\(678\) −6.00000 −0.230429
\(679\) 0 0
\(680\) 0 0
\(681\) −8.00000 −0.306561
\(682\) 2.00000 0.0765840
\(683\) −4.00000 −0.153056 −0.0765279 0.997067i \(-0.524383\pi\)
−0.0765279 + 0.997067i \(0.524383\pi\)
\(684\) −3.00000 −0.114708
\(685\) 0 0
\(686\) 0 0
\(687\) 14.0000 0.534133
\(688\) −8.00000 −0.304997
\(689\) −11.0000 −0.419067
\(690\) 0 0
\(691\) −12.0000 −0.456502 −0.228251 0.973602i \(-0.573301\pi\)
−0.228251 + 0.973602i \(0.573301\pi\)
\(692\) 15.0000 0.570214
\(693\) 0 0
\(694\) −14.0000 −0.531433
\(695\) 0 0
\(696\) −8.00000 −0.303239
\(697\) 0 0
\(698\) 12.0000 0.454207
\(699\) −18.0000 −0.680823
\(700\) 0 0
\(701\) −18.0000 −0.679851 −0.339925 0.940452i \(-0.610402\pi\)
−0.339925 + 0.940452i \(0.610402\pi\)
\(702\) −1.00000 −0.0377426
\(703\) 33.0000 1.24462
\(704\) −1.00000 −0.0376889
\(705\) 0 0
\(706\) −24.0000 −0.903252
\(707\) 0 0
\(708\) 4.00000 0.150329
\(709\) 44.0000 1.65245 0.826227 0.563337i \(-0.190483\pi\)
0.826227 + 0.563337i \(0.190483\pi\)
\(710\) 0 0
\(711\) −8.00000 −0.300023
\(712\) −10.0000 −0.374766
\(713\) 14.0000 0.524304
\(714\) 0 0
\(715\) 0 0
\(716\) −19.0000 −0.710063
\(717\) −18.0000 −0.672222
\(718\) 4.00000 0.149279
\(719\) 2.00000 0.0745874 0.0372937 0.999304i \(-0.488126\pi\)
0.0372937 + 0.999304i \(0.488126\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −10.0000 −0.372161
\(723\) 7.00000 0.260333
\(724\) −24.0000 −0.891953
\(725\) 0 0
\(726\) −10.0000 −0.371135
\(727\) −11.0000 −0.407967 −0.203984 0.978974i \(-0.565389\pi\)
−0.203984 + 0.978974i \(0.565389\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) −11.0000 −0.406294 −0.203147 0.979148i \(-0.565117\pi\)
−0.203147 + 0.979148i \(0.565117\pi\)
\(734\) −25.0000 −0.922767
\(735\) 0 0
\(736\) −7.00000 −0.258023
\(737\) 0 0
\(738\) −11.0000 −0.404916
\(739\) −19.0000 −0.698926 −0.349463 0.936950i \(-0.613636\pi\)
−0.349463 + 0.936950i \(0.613636\pi\)
\(740\) 0 0
\(741\) 3.00000 0.110208
\(742\) 0 0
\(743\) −49.0000 −1.79764 −0.898818 0.438322i \(-0.855573\pi\)
−0.898818 + 0.438322i \(0.855573\pi\)
\(744\) −2.00000 −0.0733236
\(745\) 0 0
\(746\) −6.00000 −0.219676
\(747\) −8.00000 −0.292705
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 26.0000 0.948753 0.474377 0.880322i \(-0.342673\pi\)
0.474377 + 0.880322i \(0.342673\pi\)
\(752\) 5.00000 0.182331
\(753\) 13.0000 0.473746
\(754\) 8.00000 0.291343
\(755\) 0 0
\(756\) 0 0
\(757\) −2.00000 −0.0726912 −0.0363456 0.999339i \(-0.511572\pi\)
−0.0363456 + 0.999339i \(0.511572\pi\)
\(758\) −19.0000 −0.690111
\(759\) 7.00000 0.254084
\(760\) 0 0
\(761\) 27.0000 0.978749 0.489375 0.872074i \(-0.337225\pi\)
0.489375 + 0.872074i \(0.337225\pi\)
\(762\) 17.0000 0.615845
\(763\) 0 0
\(764\) −6.00000 −0.217072
\(765\) 0 0
\(766\) −35.0000 −1.26460
\(767\) −4.00000 −0.144432
\(768\) 1.00000 0.0360844
\(769\) −5.00000 −0.180305 −0.0901523 0.995928i \(-0.528735\pi\)
−0.0901523 + 0.995928i \(0.528735\pi\)
\(770\) 0 0
\(771\) 20.0000 0.720282
\(772\) −22.0000 −0.791797
\(773\) −33.0000 −1.18693 −0.593464 0.804861i \(-0.702240\pi\)
−0.593464 + 0.804861i \(0.702240\pi\)
\(774\) −8.00000 −0.287554
\(775\) 0 0
\(776\) 16.0000 0.574367
\(777\) 0 0
\(778\) 10.0000 0.358517
\(779\) 33.0000 1.18235
\(780\) 0 0
\(781\) 6.00000 0.214697
\(782\) 0 0
\(783\) −8.00000 −0.285897
\(784\) 0 0
\(785\) 0 0
\(786\) −5.00000 −0.178344
\(787\) −22.0000 −0.784215 −0.392108 0.919919i \(-0.628254\pi\)
−0.392108 + 0.919919i \(0.628254\pi\)
\(788\) 1.00000 0.0356235
\(789\) −24.0000 −0.854423
\(790\) 0 0
\(791\) 0 0
\(792\) −1.00000 −0.0355335
\(793\) 0 0
\(794\) −14.0000 −0.496841
\(795\) 0 0
\(796\) −24.0000 −0.850657
\(797\) 18.0000 0.637593 0.318796 0.947823i \(-0.396721\pi\)
0.318796 + 0.947823i \(0.396721\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) −10.0000 −0.353333
\(802\) −5.00000 −0.176556
\(803\) −6.00000 −0.211735
\(804\) 0 0
\(805\) 0 0
\(806\) 2.00000 0.0704470
\(807\) 20.0000 0.704033
\(808\) 0 0
\(809\) −39.0000 −1.37117 −0.685583 0.727994i \(-0.740453\pi\)
−0.685583 + 0.727994i \(0.740453\pi\)
\(810\) 0 0
\(811\) 9.00000 0.316033 0.158016 0.987436i \(-0.449490\pi\)
0.158016 + 0.987436i \(0.449490\pi\)
\(812\) 0 0
\(813\) 32.0000 1.12229
\(814\) 11.0000 0.385550
\(815\) 0 0
\(816\) 0 0
\(817\) 24.0000 0.839654
\(818\) 2.00000 0.0699284
\(819\) 0 0
\(820\) 0 0
\(821\) 42.0000 1.46581 0.732905 0.680331i \(-0.238164\pi\)
0.732905 + 0.680331i \(0.238164\pi\)
\(822\) 18.0000 0.627822
\(823\) 24.0000 0.836587 0.418294 0.908312i \(-0.362628\pi\)
0.418294 + 0.908312i \(0.362628\pi\)
\(824\) 16.0000 0.557386
\(825\) 0 0
\(826\) 0 0
\(827\) 10.0000 0.347734 0.173867 0.984769i \(-0.444374\pi\)
0.173867 + 0.984769i \(0.444374\pi\)
\(828\) −7.00000 −0.243267
\(829\) −8.00000 −0.277851 −0.138926 0.990303i \(-0.544365\pi\)
−0.138926 + 0.990303i \(0.544365\pi\)
\(830\) 0 0
\(831\) 22.0000 0.763172
\(832\) −1.00000 −0.0346688
\(833\) 0 0
\(834\) 20.0000 0.692543
\(835\) 0 0
\(836\) 3.00000 0.103757
\(837\) −2.00000 −0.0691301
\(838\) −5.00000 −0.172722
\(839\) −40.0000 −1.38095 −0.690477 0.723355i \(-0.742599\pi\)
−0.690477 + 0.723355i \(0.742599\pi\)
\(840\) 0 0
\(841\) 35.0000 1.20690
\(842\) 22.0000 0.758170
\(843\) −1.00000 −0.0344418
\(844\) 5.00000 0.172107
\(845\) 0 0
\(846\) 5.00000 0.171904
\(847\) 0 0
\(848\) 11.0000 0.377742
\(849\) 14.0000 0.480479
\(850\) 0 0
\(851\) 77.0000 2.63953
\(852\) −6.00000 −0.205557
\(853\) 41.0000 1.40381 0.701907 0.712269i \(-0.252332\pi\)
0.701907 + 0.712269i \(0.252332\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 10.0000 0.341793
\(857\) 14.0000 0.478231 0.239115 0.970991i \(-0.423143\pi\)
0.239115 + 0.970991i \(0.423143\pi\)
\(858\) 1.00000 0.0341394
\(859\) 12.0000 0.409435 0.204717 0.978821i \(-0.434372\pi\)
0.204717 + 0.978821i \(0.434372\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 53.0000 1.80414 0.902070 0.431589i \(-0.142047\pi\)
0.902070 + 0.431589i \(0.142047\pi\)
\(864\) 1.00000 0.0340207
\(865\) 0 0
\(866\) 32.0000 1.08740
\(867\) −17.0000 −0.577350
\(868\) 0 0
\(869\) 8.00000 0.271381
\(870\) 0 0
\(871\) 0 0
\(872\) 6.00000 0.203186
\(873\) 16.0000 0.541518
\(874\) 21.0000 0.710336
\(875\) 0 0
\(876\) 6.00000 0.202721
\(877\) −17.0000 −0.574049 −0.287025 0.957923i \(-0.592666\pi\)
−0.287025 + 0.957923i \(0.592666\pi\)
\(878\) 32.0000 1.07995
\(879\) −27.0000 −0.910687
\(880\) 0 0
\(881\) −53.0000 −1.78562 −0.892808 0.450438i \(-0.851268\pi\)
−0.892808 + 0.450438i \(0.851268\pi\)
\(882\) 0 0
\(883\) 42.0000 1.41341 0.706706 0.707507i \(-0.250180\pi\)
0.706706 + 0.707507i \(0.250180\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −16.0000 −0.537531
\(887\) −44.0000 −1.47738 −0.738688 0.674048i \(-0.764554\pi\)
−0.738688 + 0.674048i \(0.764554\pi\)
\(888\) −11.0000 −0.369136
\(889\) 0 0
\(890\) 0 0
\(891\) −1.00000 −0.0335013
\(892\) −12.0000 −0.401790
\(893\) −15.0000 −0.501956
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 7.00000 0.233723
\(898\) 11.0000 0.367075
\(899\) 16.0000 0.533630
\(900\) 0 0
\(901\) 0 0
\(902\) 11.0000 0.366260
\(903\) 0 0
\(904\) −6.00000 −0.199557
\(905\) 0 0
\(906\) 6.00000 0.199337
\(907\) 10.0000 0.332045 0.166022 0.986122i \(-0.446908\pi\)
0.166022 + 0.986122i \(0.446908\pi\)
\(908\) −8.00000 −0.265489
\(909\) 0 0
\(910\) 0 0
\(911\) −2.00000 −0.0662630 −0.0331315 0.999451i \(-0.510548\pi\)
−0.0331315 + 0.999451i \(0.510548\pi\)
\(912\) −3.00000 −0.0993399
\(913\) 8.00000 0.264761
\(914\) 18.0000 0.595387
\(915\) 0 0
\(916\) 14.0000 0.462573
\(917\) 0 0
\(918\) 0 0
\(919\) −36.0000 −1.18753 −0.593765 0.804638i \(-0.702359\pi\)
−0.593765 + 0.804638i \(0.702359\pi\)
\(920\) 0 0
\(921\) −20.0000 −0.659022
\(922\) −12.0000 −0.395199
\(923\) 6.00000 0.197492
\(924\) 0 0
\(925\) 0 0
\(926\) 13.0000 0.427207
\(927\) 16.0000 0.525509
\(928\) −8.00000 −0.262613
\(929\) −21.0000 −0.688988 −0.344494 0.938789i \(-0.611949\pi\)
−0.344494 + 0.938789i \(0.611949\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −18.0000 −0.589610
\(933\) 12.0000 0.392862
\(934\) 0 0
\(935\) 0 0
\(936\) −1.00000 −0.0326860
\(937\) −12.0000 −0.392023 −0.196011 0.980602i \(-0.562799\pi\)
−0.196011 + 0.980602i \(0.562799\pi\)
\(938\) 0 0
\(939\) 12.0000 0.391605
\(940\) 0 0
\(941\) 54.0000 1.76035 0.880175 0.474650i \(-0.157425\pi\)
0.880175 + 0.474650i \(0.157425\pi\)
\(942\) 7.00000 0.228072
\(943\) 77.0000 2.50746
\(944\) 4.00000 0.130189
\(945\) 0 0
\(946\) 8.00000 0.260102
\(947\) −22.0000 −0.714904 −0.357452 0.933932i \(-0.616354\pi\)
−0.357452 + 0.933932i \(0.616354\pi\)
\(948\) −8.00000 −0.259828
\(949\) −6.00000 −0.194768
\(950\) 0 0
\(951\) 18.0000 0.583690
\(952\) 0 0
\(953\) 20.0000 0.647864 0.323932 0.946080i \(-0.394995\pi\)
0.323932 + 0.946080i \(0.394995\pi\)
\(954\) 11.0000 0.356138
\(955\) 0 0
\(956\) −18.0000 −0.582162
\(957\) 8.00000 0.258603
\(958\) 22.0000 0.710788
\(959\) 0 0
\(960\) 0 0
\(961\) −27.0000 −0.870968
\(962\) 11.0000 0.354654
\(963\) 10.0000 0.322245
\(964\) 7.00000 0.225455
\(965\) 0 0
\(966\) 0 0
\(967\) 20.0000 0.643157 0.321578 0.946883i \(-0.395787\pi\)
0.321578 + 0.946883i \(0.395787\pi\)
\(968\) −10.0000 −0.321412
\(969\) 0 0
\(970\) 0 0
\(971\) −45.0000 −1.44412 −0.722059 0.691831i \(-0.756804\pi\)
−0.722059 + 0.691831i \(0.756804\pi\)
\(972\) 1.00000 0.0320750
\(973\) 0 0
\(974\) 16.0000 0.512673
\(975\) 0 0
\(976\) 0 0
\(977\) −54.0000 −1.72761 −0.863807 0.503824i \(-0.831926\pi\)
−0.863807 + 0.503824i \(0.831926\pi\)
\(978\) −16.0000 −0.511624
\(979\) 10.0000 0.319601
\(980\) 0 0
\(981\) 6.00000 0.191565
\(982\) 20.0000 0.638226
\(983\) −49.0000 −1.56286 −0.781429 0.623995i \(-0.785509\pi\)
−0.781429 + 0.623995i \(0.785509\pi\)
\(984\) −11.0000 −0.350667
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 3.00000 0.0954427
\(989\) 56.0000 1.78070
\(990\) 0 0
\(991\) 22.0000 0.698853 0.349427 0.936964i \(-0.386376\pi\)
0.349427 + 0.936964i \(0.386376\pi\)
\(992\) −2.00000 −0.0635001
\(993\) −13.0000 −0.412543
\(994\) 0 0
\(995\) 0 0
\(996\) −8.00000 −0.253490
\(997\) −14.0000 −0.443384 −0.221692 0.975117i \(-0.571158\pi\)
−0.221692 + 0.975117i \(0.571158\pi\)
\(998\) −32.0000 −1.01294
\(999\) −11.0000 −0.348025
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7350.2.a.cp.1.1 1
5.4 even 2 1470.2.a.a.1.1 1
7.2 even 3 1050.2.i.b.151.1 2
7.4 even 3 1050.2.i.b.751.1 2
7.6 odd 2 7350.2.a.bu.1.1 1
15.14 odd 2 4410.2.a.bj.1.1 1
35.2 odd 12 1050.2.o.i.949.2 4
35.4 even 6 210.2.i.d.121.1 2
35.9 even 6 210.2.i.d.151.1 yes 2
35.18 odd 12 1050.2.o.i.499.2 4
35.19 odd 6 1470.2.i.m.361.1 2
35.23 odd 12 1050.2.o.i.949.1 4
35.24 odd 6 1470.2.i.m.961.1 2
35.32 odd 12 1050.2.o.i.499.1 4
35.34 odd 2 1470.2.a.h.1.1 1
105.44 odd 6 630.2.k.c.361.1 2
105.74 odd 6 630.2.k.c.541.1 2
105.104 even 2 4410.2.a.ba.1.1 1
140.39 odd 6 1680.2.bg.g.961.1 2
140.79 odd 6 1680.2.bg.g.1201.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
210.2.i.d.121.1 2 35.4 even 6
210.2.i.d.151.1 yes 2 35.9 even 6
630.2.k.c.361.1 2 105.44 odd 6
630.2.k.c.541.1 2 105.74 odd 6
1050.2.i.b.151.1 2 7.2 even 3
1050.2.i.b.751.1 2 7.4 even 3
1050.2.o.i.499.1 4 35.32 odd 12
1050.2.o.i.499.2 4 35.18 odd 12
1050.2.o.i.949.1 4 35.23 odd 12
1050.2.o.i.949.2 4 35.2 odd 12
1470.2.a.a.1.1 1 5.4 even 2
1470.2.a.h.1.1 1 35.34 odd 2
1470.2.i.m.361.1 2 35.19 odd 6
1470.2.i.m.961.1 2 35.24 odd 6
1680.2.bg.g.961.1 2 140.39 odd 6
1680.2.bg.g.1201.1 2 140.79 odd 6
4410.2.a.ba.1.1 1 105.104 even 2
4410.2.a.bj.1.1 1 15.14 odd 2
7350.2.a.bu.1.1 1 7.6 odd 2
7350.2.a.cp.1.1 1 1.1 even 1 trivial