Properties

Label 7350.2.a.cd
Level $7350$
Weight $2$
Character orbit 7350.a
Self dual yes
Analytic conductor $58.690$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 7350 = 2 \cdot 3 \cdot 5^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7350.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(58.6900454856\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 210)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q + q^{2} - q^{3} + q^{4} - q^{6} + q^{8} + q^{9} + O(q^{10}) \) \( q + q^{2} - q^{3} + q^{4} - q^{6} + q^{8} + q^{9} + 3q^{11} - q^{12} - 5q^{13} + q^{16} + q^{18} + 5q^{19} + 3q^{22} + 9q^{23} - q^{24} - 5q^{26} - q^{27} - 10q^{31} + q^{32} - 3q^{33} + q^{36} + q^{37} + 5q^{38} + 5q^{39} + 9q^{41} - 8q^{43} + 3q^{44} + 9q^{46} - 3q^{47} - q^{48} - 5q^{52} + 3q^{53} - q^{54} - 5q^{57} + 12q^{59} + 8q^{61} - 10q^{62} + q^{64} - 3q^{66} - 8q^{67} - 9q^{69} - 6q^{71} + q^{72} - 2q^{73} + q^{74} + 5q^{76} + 5q^{78} + 8q^{79} + q^{81} + 9q^{82} - 8q^{86} + 3q^{88} + 6q^{89} + 9q^{92} + 10q^{93} - 3q^{94} - q^{96} - 8q^{97} + 3q^{99} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
1.00000 −1.00000 1.00000 0 −1.00000 0 1.00000 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(3\) \(1\)
\(5\) \(1\)
\(7\) \(1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 7350.2.a.cd 1
5.b even 2 1 1470.2.a.f 1
7.b odd 2 1 7350.2.a.cx 1
7.c even 3 2 1050.2.i.i 2
15.d odd 2 1 4410.2.a.bh 1
35.c odd 2 1 1470.2.a.e 1
35.i odd 6 2 1470.2.i.p 2
35.j even 6 2 210.2.i.c 2
35.l odd 12 4 1050.2.o.c 4
105.g even 2 1 4410.2.a.w 1
105.o odd 6 2 630.2.k.a 2
140.p odd 6 2 1680.2.bg.n 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
210.2.i.c 2 35.j even 6 2
630.2.k.a 2 105.o odd 6 2
1050.2.i.i 2 7.c even 3 2
1050.2.o.c 4 35.l odd 12 4
1470.2.a.e 1 35.c odd 2 1
1470.2.a.f 1 5.b even 2 1
1470.2.i.p 2 35.i odd 6 2
1680.2.bg.n 2 140.p odd 6 2
4410.2.a.w 1 105.g even 2 1
4410.2.a.bh 1 15.d odd 2 1
7350.2.a.cd 1 1.a even 1 1 trivial
7350.2.a.cx 1 7.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(7350))\):

\( T_{11} - 3 \)
\( T_{13} + 5 \)
\( T_{17} \)
\( T_{19} - 5 \)
\( T_{23} - 9 \)
\( T_{31} + 10 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( -1 + T \)
$3$ \( 1 + T \)
$5$ \( T \)
$7$ \( T \)
$11$ \( -3 + T \)
$13$ \( 5 + T \)
$17$ \( T \)
$19$ \( -5 + T \)
$23$ \( -9 + T \)
$29$ \( T \)
$31$ \( 10 + T \)
$37$ \( -1 + T \)
$41$ \( -9 + T \)
$43$ \( 8 + T \)
$47$ \( 3 + T \)
$53$ \( -3 + T \)
$59$ \( -12 + T \)
$61$ \( -8 + T \)
$67$ \( 8 + T \)
$71$ \( 6 + T \)
$73$ \( 2 + T \)
$79$ \( -8 + T \)
$83$ \( T \)
$89$ \( -6 + T \)
$97$ \( 8 + T \)
show more
show less