Properties

Label 7350.2.a.bv
Level 7350
Weight 2
Character orbit 7350.a
Self dual yes
Analytic conductor 58.690
Analytic rank 0
Dimension 1
CM no
Inner twists 1

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 7350 = 2 \cdot 3 \cdot 5^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7350.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(58.6900454856\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1050)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q + q^{2} - q^{3} + q^{4} - q^{6} + q^{8} + q^{9} + O(q^{10}) \) \( q + q^{2} - q^{3} + q^{4} - q^{6} + q^{8} + q^{9} - q^{12} - 5q^{13} + q^{16} + 6q^{17} + q^{18} - 7q^{19} + 6q^{23} - q^{24} - 5q^{26} - q^{27} + 8q^{31} + q^{32} + 6q^{34} + q^{36} + q^{37} - 7q^{38} + 5q^{39} - 8q^{43} + 6q^{46} - 6q^{47} - q^{48} - 6q^{51} - 5q^{52} + 6q^{53} - q^{54} + 7q^{57} - 6q^{59} - q^{61} + 8q^{62} + q^{64} + 13q^{67} + 6q^{68} - 6q^{69} + 12q^{71} + q^{72} - 5q^{73} + q^{74} - 7q^{76} + 5q^{78} - 7q^{79} + q^{81} + 18q^{83} - 8q^{86} - 6q^{89} + 6q^{92} - 8q^{93} - 6q^{94} - q^{96} + 7q^{97} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
1.00000 −1.00000 1.00000 0 −1.00000 0 1.00000 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 7350.2.a.bv 1
5.b even 2 1 7350.2.a.bf 1
7.b odd 2 1 7350.2.a.cv 1
7.c even 3 2 1050.2.i.g 2
35.c odd 2 1 7350.2.a.k 1
35.j even 6 2 1050.2.i.n yes 2
35.l odd 12 4 1050.2.o.d 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1050.2.i.g 2 7.c even 3 2
1050.2.i.n yes 2 35.j even 6 2
1050.2.o.d 4 35.l odd 12 4
7350.2.a.k 1 35.c odd 2 1
7350.2.a.bf 1 5.b even 2 1
7350.2.a.bv 1 1.a even 1 1 trivial
7350.2.a.cv 1 7.b odd 2 1

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(3\) \(1\)
\(5\) \(1\)
\(7\) \(1\)

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(7350))\):

\( T_{11} \)
\( T_{13} + 5 \)
\( T_{17} - 6 \)
\( T_{19} + 7 \)
\( T_{23} - 6 \)
\( T_{31} - 8 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( 1 - T \)
$3$ \( 1 + T \)
$5$ 1
$7$ 1
$11$ \( 1 + 11 T^{2} \)
$13$ \( 1 + 5 T + 13 T^{2} \)
$17$ \( 1 - 6 T + 17 T^{2} \)
$19$ \( 1 + 7 T + 19 T^{2} \)
$23$ \( 1 - 6 T + 23 T^{2} \)
$29$ \( 1 + 29 T^{2} \)
$31$ \( 1 - 8 T + 31 T^{2} \)
$37$ \( 1 - T + 37 T^{2} \)
$41$ \( 1 + 41 T^{2} \)
$43$ \( 1 + 8 T + 43 T^{2} \)
$47$ \( 1 + 6 T + 47 T^{2} \)
$53$ \( 1 - 6 T + 53 T^{2} \)
$59$ \( 1 + 6 T + 59 T^{2} \)
$61$ \( 1 + T + 61 T^{2} \)
$67$ \( 1 - 13 T + 67 T^{2} \)
$71$ \( 1 - 12 T + 71 T^{2} \)
$73$ \( 1 + 5 T + 73 T^{2} \)
$79$ \( 1 + 7 T + 79 T^{2} \)
$83$ \( 1 - 18 T + 83 T^{2} \)
$89$ \( 1 + 6 T + 89 T^{2} \)
$97$ \( 1 - 7 T + 97 T^{2} \)
show more
show less