Properties

Label 735.4.a.q.1.2
Level $735$
Weight $4$
Character 735.1
Self dual yes
Analytic conductor $43.366$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [735,4,Mod(1,735)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(735, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("735.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 735 = 3 \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 735.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(43.3664038542\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{41}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 10 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 105)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(3.70156\) of defining polynomial
Character \(\chi\) \(=\) 735.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.70156 q^{2} -3.00000 q^{3} +14.1047 q^{4} +5.00000 q^{5} -14.1047 q^{6} +28.7016 q^{8} +9.00000 q^{9} +O(q^{10})\) \(q+4.70156 q^{2} -3.00000 q^{3} +14.1047 q^{4} +5.00000 q^{5} -14.1047 q^{6} +28.7016 q^{8} +9.00000 q^{9} +23.5078 q^{10} +24.5969 q^{11} -42.3141 q^{12} +35.0156 q^{13} -15.0000 q^{15} +22.1047 q^{16} +18.4187 q^{17} +42.3141 q^{18} +67.4031 q^{19} +70.5234 q^{20} +115.644 q^{22} -145.675 q^{23} -86.1047 q^{24} +25.0000 q^{25} +164.628 q^{26} -27.0000 q^{27} +214.419 q^{29} -70.5234 q^{30} +88.6594 q^{31} -125.686 q^{32} -73.7906 q^{33} +86.5969 q^{34} +126.942 q^{36} +162.125 q^{37} +316.900 q^{38} -105.047 q^{39} +143.508 q^{40} +337.769 q^{41} +122.156 q^{43} +346.931 q^{44} +45.0000 q^{45} -684.900 q^{46} -354.219 q^{47} -66.3141 q^{48} +117.539 q^{50} -55.2562 q^{51} +493.884 q^{52} +676.691 q^{53} -126.942 q^{54} +122.984 q^{55} -202.209 q^{57} +1008.10 q^{58} -501.319 q^{59} -211.570 q^{60} +708.931 q^{61} +416.837 q^{62} -767.758 q^{64} +175.078 q^{65} -346.931 q^{66} -907.956 q^{67} +259.791 q^{68} +437.025 q^{69} +430.334 q^{71} +258.314 q^{72} -41.3406 q^{73} +762.241 q^{74} -75.0000 q^{75} +950.700 q^{76} -493.884 q^{78} +890.388 q^{79} +110.523 q^{80} +81.0000 q^{81} +1588.04 q^{82} +1057.15 q^{83} +92.0937 q^{85} +574.325 q^{86} -643.256 q^{87} +705.969 q^{88} -1473.72 q^{89} +211.570 q^{90} -2054.70 q^{92} -265.978 q^{93} -1665.38 q^{94} +337.016 q^{95} +377.058 q^{96} -555.034 q^{97} +221.372 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 3 q^{2} - 6 q^{3} + 9 q^{4} + 10 q^{5} - 9 q^{6} + 51 q^{8} + 18 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 3 q^{2} - 6 q^{3} + 9 q^{4} + 10 q^{5} - 9 q^{6} + 51 q^{8} + 18 q^{9} + 15 q^{10} + 62 q^{11} - 27 q^{12} + 6 q^{13} - 30 q^{15} + 25 q^{16} - 40 q^{17} + 27 q^{18} + 122 q^{19} + 45 q^{20} + 52 q^{22} + 16 q^{23} - 153 q^{24} + 50 q^{25} + 214 q^{26} - 54 q^{27} + 352 q^{29} - 45 q^{30} - 66 q^{31} - 309 q^{32} - 186 q^{33} + 186 q^{34} + 81 q^{36} - 188 q^{37} + 224 q^{38} - 18 q^{39} + 255 q^{40} - 16 q^{41} - 396 q^{43} + 156 q^{44} + 90 q^{45} - 960 q^{46} + 188 q^{47} - 75 q^{48} + 75 q^{50} + 120 q^{51} + 642 q^{52} + 982 q^{53} - 81 q^{54} + 310 q^{55} - 366 q^{57} + 774 q^{58} - 516 q^{59} - 135 q^{60} + 880 q^{61} + 680 q^{62} - 479 q^{64} + 30 q^{65} - 156 q^{66} - 356 q^{67} + 558 q^{68} - 48 q^{69} + 310 q^{71} + 459 q^{72} - 326 q^{73} + 1358 q^{74} - 150 q^{75} + 672 q^{76} - 642 q^{78} + 1832 q^{79} + 125 q^{80} + 162 q^{81} + 2190 q^{82} + 680 q^{83} - 200 q^{85} + 1456 q^{86} - 1056 q^{87} + 1540 q^{88} - 796 q^{89} + 135 q^{90} - 2880 q^{92} + 198 q^{93} - 2588 q^{94} + 610 q^{95} + 927 q^{96} + 670 q^{97} + 558 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.70156 1.66225 0.831127 0.556083i \(-0.187696\pi\)
0.831127 + 0.556083i \(0.187696\pi\)
\(3\) −3.00000 −0.577350
\(4\) 14.1047 1.76309
\(5\) 5.00000 0.447214
\(6\) −14.1047 −0.959702
\(7\) 0 0
\(8\) 28.7016 1.26844
\(9\) 9.00000 0.333333
\(10\) 23.5078 0.743382
\(11\) 24.5969 0.674203 0.337102 0.941468i \(-0.390553\pi\)
0.337102 + 0.941468i \(0.390553\pi\)
\(12\) −42.3141 −1.01792
\(13\) 35.0156 0.747045 0.373523 0.927621i \(-0.378150\pi\)
0.373523 + 0.927621i \(0.378150\pi\)
\(14\) 0 0
\(15\) −15.0000 −0.258199
\(16\) 22.1047 0.345386
\(17\) 18.4187 0.262777 0.131388 0.991331i \(-0.458057\pi\)
0.131388 + 0.991331i \(0.458057\pi\)
\(18\) 42.3141 0.554084
\(19\) 67.4031 0.813860 0.406930 0.913459i \(-0.366599\pi\)
0.406930 + 0.913459i \(0.366599\pi\)
\(20\) 70.5234 0.788476
\(21\) 0 0
\(22\) 115.644 1.12070
\(23\) −145.675 −1.32067 −0.660333 0.750973i \(-0.729585\pi\)
−0.660333 + 0.750973i \(0.729585\pi\)
\(24\) −86.1047 −0.732335
\(25\) 25.0000 0.200000
\(26\) 164.628 1.24178
\(27\) −27.0000 −0.192450
\(28\) 0 0
\(29\) 214.419 1.37298 0.686492 0.727137i \(-0.259149\pi\)
0.686492 + 0.727137i \(0.259149\pi\)
\(30\) −70.5234 −0.429192
\(31\) 88.6594 0.513667 0.256834 0.966456i \(-0.417321\pi\)
0.256834 + 0.966456i \(0.417321\pi\)
\(32\) −125.686 −0.694323
\(33\) −73.7906 −0.389251
\(34\) 86.5969 0.436801
\(35\) 0 0
\(36\) 126.942 0.587695
\(37\) 162.125 0.720356 0.360178 0.932884i \(-0.382716\pi\)
0.360178 + 0.932884i \(0.382716\pi\)
\(38\) 316.900 1.35284
\(39\) −105.047 −0.431307
\(40\) 143.508 0.567264
\(41\) 337.769 1.28660 0.643300 0.765614i \(-0.277565\pi\)
0.643300 + 0.765614i \(0.277565\pi\)
\(42\) 0 0
\(43\) 122.156 0.433224 0.216612 0.976258i \(-0.430499\pi\)
0.216612 + 0.976258i \(0.430499\pi\)
\(44\) 346.931 1.18868
\(45\) 45.0000 0.149071
\(46\) −684.900 −2.19528
\(47\) −354.219 −1.09932 −0.549661 0.835388i \(-0.685243\pi\)
−0.549661 + 0.835388i \(0.685243\pi\)
\(48\) −66.3141 −0.199409
\(49\) 0 0
\(50\) 117.539 0.332451
\(51\) −55.2562 −0.151714
\(52\) 493.884 1.31710
\(53\) 676.691 1.75378 0.876892 0.480687i \(-0.159613\pi\)
0.876892 + 0.480687i \(0.159613\pi\)
\(54\) −126.942 −0.319901
\(55\) 122.984 0.301513
\(56\) 0 0
\(57\) −202.209 −0.469882
\(58\) 1008.10 2.28225
\(59\) −501.319 −1.10621 −0.553103 0.833113i \(-0.686556\pi\)
−0.553103 + 0.833113i \(0.686556\pi\)
\(60\) −211.570 −0.455227
\(61\) 708.931 1.48802 0.744011 0.668167i \(-0.232921\pi\)
0.744011 + 0.668167i \(0.232921\pi\)
\(62\) 416.837 0.853845
\(63\) 0 0
\(64\) −767.758 −1.49953
\(65\) 175.078 0.334089
\(66\) −346.931 −0.647035
\(67\) −907.956 −1.65559 −0.827795 0.561031i \(-0.810405\pi\)
−0.827795 + 0.561031i \(0.810405\pi\)
\(68\) 259.791 0.463298
\(69\) 437.025 0.762487
\(70\) 0 0
\(71\) 430.334 0.719314 0.359657 0.933085i \(-0.382894\pi\)
0.359657 + 0.933085i \(0.382894\pi\)
\(72\) 258.314 0.422814
\(73\) −41.3406 −0.0662816 −0.0331408 0.999451i \(-0.510551\pi\)
−0.0331408 + 0.999451i \(0.510551\pi\)
\(74\) 762.241 1.19741
\(75\) −75.0000 −0.115470
\(76\) 950.700 1.43490
\(77\) 0 0
\(78\) −493.884 −0.716941
\(79\) 890.388 1.26806 0.634028 0.773310i \(-0.281400\pi\)
0.634028 + 0.773310i \(0.281400\pi\)
\(80\) 110.523 0.154461
\(81\) 81.0000 0.111111
\(82\) 1588.04 2.13866
\(83\) 1057.15 1.39804 0.699020 0.715102i \(-0.253620\pi\)
0.699020 + 0.715102i \(0.253620\pi\)
\(84\) 0 0
\(85\) 92.0937 0.117517
\(86\) 574.325 0.720129
\(87\) −643.256 −0.792693
\(88\) 705.969 0.855188
\(89\) −1473.72 −1.75522 −0.877610 0.479376i \(-0.840863\pi\)
−0.877610 + 0.479376i \(0.840863\pi\)
\(90\) 211.570 0.247794
\(91\) 0 0
\(92\) −2054.70 −2.32845
\(93\) −265.978 −0.296566
\(94\) −1665.38 −1.82735
\(95\) 337.016 0.363969
\(96\) 377.058 0.400868
\(97\) −555.034 −0.580981 −0.290491 0.956878i \(-0.593819\pi\)
−0.290491 + 0.956878i \(0.593819\pi\)
\(98\) 0 0
\(99\) 221.372 0.224734
\(100\) 352.617 0.352617
\(101\) −1890.14 −1.86214 −0.931071 0.364838i \(-0.881124\pi\)
−0.931071 + 0.364838i \(0.881124\pi\)
\(102\) −259.791 −0.252187
\(103\) −662.700 −0.633959 −0.316979 0.948432i \(-0.602669\pi\)
−0.316979 + 0.948432i \(0.602669\pi\)
\(104\) 1005.00 0.947583
\(105\) 0 0
\(106\) 3181.50 2.91523
\(107\) 1614.53 1.45872 0.729358 0.684132i \(-0.239819\pi\)
0.729358 + 0.684132i \(0.239819\pi\)
\(108\) −380.827 −0.339306
\(109\) 217.206 0.190868 0.0954339 0.995436i \(-0.469576\pi\)
0.0954339 + 0.995436i \(0.469576\pi\)
\(110\) 578.219 0.501191
\(111\) −486.375 −0.415898
\(112\) 0 0
\(113\) −1658.20 −1.38044 −0.690221 0.723598i \(-0.742487\pi\)
−0.690221 + 0.723598i \(0.742487\pi\)
\(114\) −950.700 −0.781063
\(115\) −728.375 −0.590620
\(116\) 3024.31 2.42069
\(117\) 315.141 0.249015
\(118\) −2356.98 −1.83879
\(119\) 0 0
\(120\) −430.523 −0.327510
\(121\) −725.994 −0.545450
\(122\) 3333.08 2.47347
\(123\) −1013.31 −0.742819
\(124\) 1250.51 0.905640
\(125\) 125.000 0.0894427
\(126\) 0 0
\(127\) −1108.81 −0.774734 −0.387367 0.921926i \(-0.626615\pi\)
−0.387367 + 0.921926i \(0.626615\pi\)
\(128\) −2604.17 −1.79827
\(129\) −366.469 −0.250122
\(130\) 823.141 0.555340
\(131\) −185.488 −0.123711 −0.0618554 0.998085i \(-0.519702\pi\)
−0.0618554 + 0.998085i \(0.519702\pi\)
\(132\) −1040.79 −0.686284
\(133\) 0 0
\(134\) −4268.81 −2.75201
\(135\) −135.000 −0.0860663
\(136\) 528.647 0.333317
\(137\) −37.9907 −0.0236917 −0.0118458 0.999930i \(-0.503771\pi\)
−0.0118458 + 0.999930i \(0.503771\pi\)
\(138\) 2054.70 1.26745
\(139\) −183.609 −0.112040 −0.0560199 0.998430i \(-0.517841\pi\)
−0.0560199 + 0.998430i \(0.517841\pi\)
\(140\) 0 0
\(141\) 1062.66 0.634694
\(142\) 2023.24 1.19568
\(143\) 861.275 0.503660
\(144\) 198.942 0.115129
\(145\) 1072.09 0.614018
\(146\) −194.366 −0.110177
\(147\) 0 0
\(148\) 2286.72 1.27005
\(149\) −1383.34 −0.760587 −0.380293 0.924866i \(-0.624177\pi\)
−0.380293 + 0.924866i \(0.624177\pi\)
\(150\) −352.617 −0.191940
\(151\) 765.256 0.412422 0.206211 0.978508i \(-0.433887\pi\)
0.206211 + 0.978508i \(0.433887\pi\)
\(152\) 1934.57 1.03233
\(153\) 165.769 0.0875922
\(154\) 0 0
\(155\) 443.297 0.229719
\(156\) −1481.65 −0.760431
\(157\) 2366.76 1.20311 0.601554 0.798832i \(-0.294548\pi\)
0.601554 + 0.798832i \(0.294548\pi\)
\(158\) 4186.21 2.10783
\(159\) −2030.07 −1.01255
\(160\) −628.430 −0.310511
\(161\) 0 0
\(162\) 380.827 0.184695
\(163\) −3137.69 −1.50775 −0.753875 0.657018i \(-0.771817\pi\)
−0.753875 + 0.657018i \(0.771817\pi\)
\(164\) 4764.12 2.26839
\(165\) −368.953 −0.174079
\(166\) 4970.26 2.32390
\(167\) −146.469 −0.0678688 −0.0339344 0.999424i \(-0.510804\pi\)
−0.0339344 + 0.999424i \(0.510804\pi\)
\(168\) 0 0
\(169\) −970.906 −0.441924
\(170\) 432.984 0.195343
\(171\) 606.628 0.271287
\(172\) 1722.98 0.763812
\(173\) 1424.12 0.625860 0.312930 0.949776i \(-0.398689\pi\)
0.312930 + 0.949776i \(0.398689\pi\)
\(174\) −3024.31 −1.31766
\(175\) 0 0
\(176\) 543.706 0.232860
\(177\) 1503.96 0.638668
\(178\) −6928.81 −2.91762
\(179\) 1244.70 0.519737 0.259869 0.965644i \(-0.416321\pi\)
0.259869 + 0.965644i \(0.416321\pi\)
\(180\) 634.711 0.262825
\(181\) 3879.09 1.59299 0.796493 0.604648i \(-0.206686\pi\)
0.796493 + 0.604648i \(0.206686\pi\)
\(182\) 0 0
\(183\) −2126.79 −0.859110
\(184\) −4181.10 −1.67519
\(185\) 810.625 0.322153
\(186\) −1250.51 −0.492968
\(187\) 453.044 0.177165
\(188\) −4996.14 −1.93820
\(189\) 0 0
\(190\) 1584.50 0.605009
\(191\) 1574.90 0.596628 0.298314 0.954468i \(-0.403576\pi\)
0.298314 + 0.954468i \(0.403576\pi\)
\(192\) 2303.27 0.865752
\(193\) −4775.67 −1.78114 −0.890572 0.454843i \(-0.849695\pi\)
−0.890572 + 0.454843i \(0.849695\pi\)
\(194\) −2609.53 −0.965738
\(195\) −525.234 −0.192886
\(196\) 0 0
\(197\) −2803.58 −1.01394 −0.506971 0.861963i \(-0.669235\pi\)
−0.506971 + 0.861963i \(0.669235\pi\)
\(198\) 1040.79 0.373566
\(199\) −4102.92 −1.46155 −0.730774 0.682620i \(-0.760841\pi\)
−0.730774 + 0.682620i \(0.760841\pi\)
\(200\) 717.539 0.253688
\(201\) 2723.87 0.955855
\(202\) −8886.63 −3.09535
\(203\) 0 0
\(204\) −779.372 −0.267485
\(205\) 1688.84 0.575385
\(206\) −3115.72 −1.05380
\(207\) −1311.07 −0.440222
\(208\) 774.009 0.258019
\(209\) 1657.91 0.548707
\(210\) 0 0
\(211\) −823.512 −0.268687 −0.134343 0.990935i \(-0.542893\pi\)
−0.134343 + 0.990935i \(0.542893\pi\)
\(212\) 9544.51 3.09207
\(213\) −1291.00 −0.415296
\(214\) 7590.82 2.42476
\(215\) 610.781 0.193744
\(216\) −774.942 −0.244112
\(217\) 0 0
\(218\) 1021.21 0.317271
\(219\) 124.022 0.0382677
\(220\) 1734.66 0.531593
\(221\) 644.944 0.196306
\(222\) −2286.72 −0.691328
\(223\) −817.194 −0.245396 −0.122698 0.992444i \(-0.539155\pi\)
−0.122698 + 0.992444i \(0.539155\pi\)
\(224\) 0 0
\(225\) 225.000 0.0666667
\(226\) −7796.12 −2.29465
\(227\) −3655.85 −1.06893 −0.534465 0.845190i \(-0.679487\pi\)
−0.534465 + 0.845190i \(0.679487\pi\)
\(228\) −2852.10 −0.828443
\(229\) −939.393 −0.271078 −0.135539 0.990772i \(-0.543277\pi\)
−0.135539 + 0.990772i \(0.543277\pi\)
\(230\) −3424.50 −0.981760
\(231\) 0 0
\(232\) 6154.15 1.74155
\(233\) −7.64701 −0.00215010 −0.00107505 0.999999i \(-0.500342\pi\)
−0.00107505 + 0.999999i \(0.500342\pi\)
\(234\) 1481.65 0.413926
\(235\) −1771.09 −0.491631
\(236\) −7070.94 −1.95034
\(237\) −2671.16 −0.732112
\(238\) 0 0
\(239\) −889.115 −0.240636 −0.120318 0.992735i \(-0.538391\pi\)
−0.120318 + 0.992735i \(0.538391\pi\)
\(240\) −331.570 −0.0891782
\(241\) −2140.23 −0.572051 −0.286026 0.958222i \(-0.592334\pi\)
−0.286026 + 0.958222i \(0.592334\pi\)
\(242\) −3413.30 −0.906676
\(243\) −243.000 −0.0641500
\(244\) 9999.25 2.62351
\(245\) 0 0
\(246\) −4764.12 −1.23475
\(247\) 2360.16 0.607990
\(248\) 2544.66 0.651557
\(249\) −3171.45 −0.807158
\(250\) 587.695 0.148676
\(251\) 6749.81 1.69739 0.848693 0.528886i \(-0.177390\pi\)
0.848693 + 0.528886i \(0.177390\pi\)
\(252\) 0 0
\(253\) −3583.15 −0.890398
\(254\) −5213.15 −1.28780
\(255\) −276.281 −0.0678486
\(256\) −6101.62 −1.48965
\(257\) −3068.64 −0.744811 −0.372405 0.928070i \(-0.621467\pi\)
−0.372405 + 0.928070i \(0.621467\pi\)
\(258\) −1722.98 −0.415766
\(259\) 0 0
\(260\) 2469.42 0.589027
\(261\) 1929.77 0.457662
\(262\) −872.081 −0.205639
\(263\) −4674.12 −1.09589 −0.547944 0.836515i \(-0.684589\pi\)
−0.547944 + 0.836515i \(0.684589\pi\)
\(264\) −2117.91 −0.493743
\(265\) 3383.45 0.784316
\(266\) 0 0
\(267\) 4421.17 1.01338
\(268\) −12806.4 −2.91895
\(269\) −2417.38 −0.547919 −0.273960 0.961741i \(-0.588333\pi\)
−0.273960 + 0.961741i \(0.588333\pi\)
\(270\) −634.711 −0.143064
\(271\) −7724.30 −1.73143 −0.865715 0.500537i \(-0.833136\pi\)
−0.865715 + 0.500537i \(0.833136\pi\)
\(272\) 407.141 0.0907593
\(273\) 0 0
\(274\) −178.616 −0.0393816
\(275\) 614.922 0.134841
\(276\) 6164.10 1.34433
\(277\) −4576.17 −0.992620 −0.496310 0.868145i \(-0.665312\pi\)
−0.496310 + 0.868145i \(0.665312\pi\)
\(278\) −863.250 −0.186239
\(279\) 797.934 0.171222
\(280\) 0 0
\(281\) −1358.56 −0.288415 −0.144208 0.989547i \(-0.546063\pi\)
−0.144208 + 0.989547i \(0.546063\pi\)
\(282\) 4996.14 1.05502
\(283\) −3885.04 −0.816048 −0.408024 0.912971i \(-0.633782\pi\)
−0.408024 + 0.912971i \(0.633782\pi\)
\(284\) 6069.73 1.26821
\(285\) −1011.05 −0.210138
\(286\) 4049.34 0.837211
\(287\) 0 0
\(288\) −1131.17 −0.231441
\(289\) −4573.75 −0.930948
\(290\) 5040.52 1.02065
\(291\) 1665.10 0.335430
\(292\) −583.097 −0.116860
\(293\) 4033.91 0.804312 0.402156 0.915571i \(-0.368261\pi\)
0.402156 + 0.915571i \(0.368261\pi\)
\(294\) 0 0
\(295\) −2506.59 −0.494710
\(296\) 4653.24 0.913730
\(297\) −664.116 −0.129750
\(298\) −6503.85 −1.26429
\(299\) −5100.90 −0.986598
\(300\) −1057.85 −0.203584
\(301\) 0 0
\(302\) 3597.90 0.685549
\(303\) 5670.43 1.07511
\(304\) 1489.92 0.281096
\(305\) 3544.66 0.665464
\(306\) 779.372 0.145600
\(307\) 4620.36 0.858950 0.429475 0.903079i \(-0.358699\pi\)
0.429475 + 0.903079i \(0.358699\pi\)
\(308\) 0 0
\(309\) 1988.10 0.366016
\(310\) 2084.19 0.381851
\(311\) −6675.89 −1.21722 −0.608609 0.793470i \(-0.708272\pi\)
−0.608609 + 0.793470i \(0.708272\pi\)
\(312\) −3015.01 −0.547087
\(313\) −2836.78 −0.512283 −0.256141 0.966639i \(-0.582451\pi\)
−0.256141 + 0.966639i \(0.582451\pi\)
\(314\) 11127.5 1.99987
\(315\) 0 0
\(316\) 12558.6 2.23569
\(317\) 4010.63 0.710597 0.355299 0.934753i \(-0.384379\pi\)
0.355299 + 0.934753i \(0.384379\pi\)
\(318\) −9544.51 −1.68311
\(319\) 5274.03 0.925671
\(320\) −3838.79 −0.670609
\(321\) −4843.59 −0.842190
\(322\) 0 0
\(323\) 1241.48 0.213863
\(324\) 1142.48 0.195898
\(325\) 875.391 0.149409
\(326\) −14752.1 −2.50626
\(327\) −651.619 −0.110198
\(328\) 9694.49 1.63198
\(329\) 0 0
\(330\) −1734.66 −0.289363
\(331\) 11087.5 1.84117 0.920583 0.390546i \(-0.127714\pi\)
0.920583 + 0.390546i \(0.127714\pi\)
\(332\) 14910.8 2.46486
\(333\) 1459.12 0.240119
\(334\) −688.631 −0.112815
\(335\) −4539.78 −0.740402
\(336\) 0 0
\(337\) 12118.7 1.95890 0.979450 0.201689i \(-0.0646431\pi\)
0.979450 + 0.201689i \(0.0646431\pi\)
\(338\) −4564.78 −0.734589
\(339\) 4974.59 0.796999
\(340\) 1298.95 0.207193
\(341\) 2180.74 0.346316
\(342\) 2852.10 0.450947
\(343\) 0 0
\(344\) 3506.07 0.549520
\(345\) 2185.12 0.340995
\(346\) 6695.58 1.04034
\(347\) −6361.22 −0.984116 −0.492058 0.870562i \(-0.663755\pi\)
−0.492058 + 0.870562i \(0.663755\pi\)
\(348\) −9072.93 −1.39759
\(349\) 3115.18 0.477799 0.238899 0.971044i \(-0.423213\pi\)
0.238899 + 0.971044i \(0.423213\pi\)
\(350\) 0 0
\(351\) −945.422 −0.143769
\(352\) −3091.48 −0.468115
\(353\) 11927.4 1.79839 0.899194 0.437550i \(-0.144154\pi\)
0.899194 + 0.437550i \(0.144154\pi\)
\(354\) 7070.94 1.06163
\(355\) 2151.67 0.321687
\(356\) −20786.4 −3.09460
\(357\) 0 0
\(358\) 5852.02 0.863935
\(359\) −6143.95 −0.903245 −0.451623 0.892209i \(-0.649155\pi\)
−0.451623 + 0.892209i \(0.649155\pi\)
\(360\) 1291.57 0.189088
\(361\) −2315.82 −0.337632
\(362\) 18237.8 2.64794
\(363\) 2177.98 0.314916
\(364\) 0 0
\(365\) −206.703 −0.0296420
\(366\) −9999.25 −1.42806
\(367\) 1927.67 0.274178 0.137089 0.990559i \(-0.456225\pi\)
0.137089 + 0.990559i \(0.456225\pi\)
\(368\) −3220.10 −0.456139
\(369\) 3039.92 0.428867
\(370\) 3811.20 0.535500
\(371\) 0 0
\(372\) −3751.54 −0.522871
\(373\) 10452.0 1.45090 0.725449 0.688276i \(-0.241632\pi\)
0.725449 + 0.688276i \(0.241632\pi\)
\(374\) 2130.01 0.294493
\(375\) −375.000 −0.0516398
\(376\) −10166.6 −1.39443
\(377\) 7508.01 1.02568
\(378\) 0 0
\(379\) 7066.43 0.957726 0.478863 0.877890i \(-0.341049\pi\)
0.478863 + 0.877890i \(0.341049\pi\)
\(380\) 4753.50 0.641709
\(381\) 3326.44 0.447293
\(382\) 7404.51 0.991747
\(383\) −7168.04 −0.956318 −0.478159 0.878273i \(-0.658696\pi\)
−0.478159 + 0.878273i \(0.658696\pi\)
\(384\) 7812.52 1.03823
\(385\) 0 0
\(386\) −22453.1 −2.96071
\(387\) 1099.41 0.144408
\(388\) −7828.58 −1.02432
\(389\) −7414.06 −0.966344 −0.483172 0.875525i \(-0.660515\pi\)
−0.483172 + 0.875525i \(0.660515\pi\)
\(390\) −2469.42 −0.320626
\(391\) −2683.15 −0.347040
\(392\) 0 0
\(393\) 556.463 0.0714245
\(394\) −13181.2 −1.68543
\(395\) 4451.94 0.567092
\(396\) 3122.38 0.396226
\(397\) 8936.01 1.12969 0.564843 0.825198i \(-0.308937\pi\)
0.564843 + 0.825198i \(0.308937\pi\)
\(398\) −19290.1 −2.42946
\(399\) 0 0
\(400\) 552.617 0.0690771
\(401\) 1782.91 0.222031 0.111015 0.993819i \(-0.464590\pi\)
0.111015 + 0.993819i \(0.464590\pi\)
\(402\) 12806.4 1.58887
\(403\) 3104.46 0.383733
\(404\) −26659.9 −3.28312
\(405\) 405.000 0.0496904
\(406\) 0 0
\(407\) 3987.77 0.485667
\(408\) −1585.94 −0.192441
\(409\) 8759.92 1.05905 0.529524 0.848295i \(-0.322371\pi\)
0.529524 + 0.848295i \(0.322371\pi\)
\(410\) 7940.20 0.956436
\(411\) 113.972 0.0136784
\(412\) −9347.17 −1.11772
\(413\) 0 0
\(414\) −6164.10 −0.731761
\(415\) 5285.75 0.625222
\(416\) −4400.97 −0.518691
\(417\) 550.828 0.0646862
\(418\) 7794.75 0.912090
\(419\) 3212.74 0.374588 0.187294 0.982304i \(-0.440028\pi\)
0.187294 + 0.982304i \(0.440028\pi\)
\(420\) 0 0
\(421\) 15757.8 1.82420 0.912101 0.409965i \(-0.134459\pi\)
0.912101 + 0.409965i \(0.134459\pi\)
\(422\) −3871.79 −0.446626
\(423\) −3187.97 −0.366440
\(424\) 19422.1 2.22457
\(425\) 460.469 0.0525553
\(426\) −6069.73 −0.690327
\(427\) 0 0
\(428\) 22772.5 2.57184
\(429\) −2583.82 −0.290788
\(430\) 2871.63 0.322051
\(431\) −405.917 −0.0453650 −0.0226825 0.999743i \(-0.507221\pi\)
−0.0226825 + 0.999743i \(0.507221\pi\)
\(432\) −596.827 −0.0664695
\(433\) 7845.25 0.870713 0.435357 0.900258i \(-0.356622\pi\)
0.435357 + 0.900258i \(0.356622\pi\)
\(434\) 0 0
\(435\) −3216.28 −0.354503
\(436\) 3063.63 0.336516
\(437\) −9818.95 −1.07484
\(438\) 583.097 0.0636106
\(439\) −423.029 −0.0459911 −0.0229955 0.999736i \(-0.507320\pi\)
−0.0229955 + 0.999736i \(0.507320\pi\)
\(440\) 3529.84 0.382452
\(441\) 0 0
\(442\) 3032.24 0.326310
\(443\) −16058.7 −1.72229 −0.861143 0.508362i \(-0.830251\pi\)
−0.861143 + 0.508362i \(0.830251\pi\)
\(444\) −6860.17 −0.733264
\(445\) −7368.62 −0.784958
\(446\) −3842.09 −0.407911
\(447\) 4150.01 0.439125
\(448\) 0 0
\(449\) 2186.75 0.229842 0.114921 0.993375i \(-0.463338\pi\)
0.114921 + 0.993375i \(0.463338\pi\)
\(450\) 1057.85 0.110817
\(451\) 8308.05 0.867430
\(452\) −23388.3 −2.43384
\(453\) −2295.77 −0.238112
\(454\) −17188.2 −1.77683
\(455\) 0 0
\(456\) −5803.72 −0.596018
\(457\) −5799.22 −0.593602 −0.296801 0.954939i \(-0.595920\pi\)
−0.296801 + 0.954939i \(0.595920\pi\)
\(458\) −4416.62 −0.450600
\(459\) −497.306 −0.0505714
\(460\) −10273.5 −1.04131
\(461\) −9873.35 −0.997500 −0.498750 0.866746i \(-0.666207\pi\)
−0.498750 + 0.866746i \(0.666207\pi\)
\(462\) 0 0
\(463\) −6181.84 −0.620506 −0.310253 0.950654i \(-0.600414\pi\)
−0.310253 + 0.950654i \(0.600414\pi\)
\(464\) 4739.66 0.474209
\(465\) −1329.89 −0.132628
\(466\) −35.9529 −0.00357400
\(467\) −6145.50 −0.608950 −0.304475 0.952520i \(-0.598481\pi\)
−0.304475 + 0.952520i \(0.598481\pi\)
\(468\) 4444.96 0.439035
\(469\) 0 0
\(470\) −8326.91 −0.817216
\(471\) −7100.28 −0.694615
\(472\) −14388.6 −1.40316
\(473\) 3004.66 0.292081
\(474\) −12558.6 −1.21696
\(475\) 1685.08 0.162772
\(476\) 0 0
\(477\) 6090.22 0.584595
\(478\) −4180.23 −0.399999
\(479\) −10879.4 −1.03777 −0.518887 0.854843i \(-0.673653\pi\)
−0.518887 + 0.854843i \(0.673653\pi\)
\(480\) 1885.29 0.179274
\(481\) 5676.91 0.538139
\(482\) −10062.4 −0.950894
\(483\) 0 0
\(484\) −10239.9 −0.961675
\(485\) −2775.17 −0.259823
\(486\) −1142.48 −0.106634
\(487\) 8087.51 0.752526 0.376263 0.926513i \(-0.377209\pi\)
0.376263 + 0.926513i \(0.377209\pi\)
\(488\) 20347.4 1.88747
\(489\) 9413.08 0.870499
\(490\) 0 0
\(491\) −6959.90 −0.639707 −0.319853 0.947467i \(-0.603634\pi\)
−0.319853 + 0.947467i \(0.603634\pi\)
\(492\) −14292.4 −1.30965
\(493\) 3949.32 0.360788
\(494\) 11096.4 1.01063
\(495\) 1106.86 0.100504
\(496\) 1959.79 0.177413
\(497\) 0 0
\(498\) −14910.8 −1.34170
\(499\) 18632.0 1.67151 0.835756 0.549101i \(-0.185030\pi\)
0.835756 + 0.549101i \(0.185030\pi\)
\(500\) 1763.09 0.157695
\(501\) 439.406 0.0391840
\(502\) 31734.6 2.82149
\(503\) −4627.62 −0.410209 −0.205105 0.978740i \(-0.565753\pi\)
−0.205105 + 0.978740i \(0.565753\pi\)
\(504\) 0 0
\(505\) −9450.72 −0.832775
\(506\) −16846.4 −1.48007
\(507\) 2912.72 0.255145
\(508\) −15639.4 −1.36592
\(509\) 11351.8 0.988528 0.494264 0.869312i \(-0.335438\pi\)
0.494264 + 0.869312i \(0.335438\pi\)
\(510\) −1298.95 −0.112782
\(511\) 0 0
\(512\) −7853.76 −0.677911
\(513\) −1819.88 −0.156627
\(514\) −14427.4 −1.23806
\(515\) −3313.50 −0.283515
\(516\) −5168.93 −0.440987
\(517\) −8712.67 −0.741166
\(518\) 0 0
\(519\) −4272.36 −0.361340
\(520\) 5025.02 0.423772
\(521\) −19096.1 −1.60579 −0.802893 0.596123i \(-0.796707\pi\)
−0.802893 + 0.596123i \(0.796707\pi\)
\(522\) 9072.93 0.760750
\(523\) 3145.11 0.262956 0.131478 0.991319i \(-0.458028\pi\)
0.131478 + 0.991319i \(0.458028\pi\)
\(524\) −2616.24 −0.218113
\(525\) 0 0
\(526\) −21975.7 −1.82164
\(527\) 1632.99 0.134980
\(528\) −1631.12 −0.134442
\(529\) 9054.20 0.744160
\(530\) 15907.5 1.30373
\(531\) −4511.87 −0.368735
\(532\) 0 0
\(533\) 11827.2 0.961148
\(534\) 20786.4 1.68449
\(535\) 8072.66 0.652358
\(536\) −26059.8 −2.10002
\(537\) −3734.09 −0.300071
\(538\) −11365.5 −0.910781
\(539\) 0 0
\(540\) −1904.13 −0.151742
\(541\) 8776.12 0.697440 0.348720 0.937227i \(-0.386616\pi\)
0.348720 + 0.937227i \(0.386616\pi\)
\(542\) −36316.3 −2.87808
\(543\) −11637.3 −0.919710
\(544\) −2314.98 −0.182452
\(545\) 1086.03 0.0853587
\(546\) 0 0
\(547\) −13695.1 −1.07049 −0.535247 0.844696i \(-0.679781\pi\)
−0.535247 + 0.844696i \(0.679781\pi\)
\(548\) −535.847 −0.0417705
\(549\) 6380.38 0.496007
\(550\) 2891.09 0.224139
\(551\) 14452.5 1.11742
\(552\) 12543.3 0.967171
\(553\) 0 0
\(554\) −21515.2 −1.64999
\(555\) −2431.87 −0.185995
\(556\) −2589.75 −0.197536
\(557\) 7850.44 0.597188 0.298594 0.954380i \(-0.403482\pi\)
0.298594 + 0.954380i \(0.403482\pi\)
\(558\) 3751.54 0.284615
\(559\) 4277.38 0.323638
\(560\) 0 0
\(561\) −1359.13 −0.102286
\(562\) −6387.33 −0.479419
\(563\) 4948.81 0.370457 0.185229 0.982695i \(-0.440697\pi\)
0.185229 + 0.982695i \(0.440697\pi\)
\(564\) 14988.4 1.11902
\(565\) −8290.98 −0.617353
\(566\) −18265.7 −1.35648
\(567\) 0 0
\(568\) 12351.3 0.912408
\(569\) −8115.76 −0.597945 −0.298972 0.954262i \(-0.596644\pi\)
−0.298972 + 0.954262i \(0.596644\pi\)
\(570\) −4753.50 −0.349302
\(571\) 5656.42 0.414560 0.207280 0.978282i \(-0.433539\pi\)
0.207280 + 0.978282i \(0.433539\pi\)
\(572\) 12148.0 0.887996
\(573\) −4724.71 −0.344463
\(574\) 0 0
\(575\) −3641.87 −0.264133
\(576\) −6909.82 −0.499842
\(577\) 9536.77 0.688078 0.344039 0.938955i \(-0.388205\pi\)
0.344039 + 0.938955i \(0.388205\pi\)
\(578\) −21503.8 −1.54747
\(579\) 14327.0 1.02834
\(580\) 15121.5 1.08257
\(581\) 0 0
\(582\) 7828.58 0.557569
\(583\) 16644.5 1.18241
\(584\) −1186.54 −0.0840743
\(585\) 1575.70 0.111363
\(586\) 18965.7 1.33697
\(587\) 13089.6 0.920383 0.460191 0.887820i \(-0.347781\pi\)
0.460191 + 0.887820i \(0.347781\pi\)
\(588\) 0 0
\(589\) 5975.92 0.418053
\(590\) −11784.9 −0.822334
\(591\) 8410.73 0.585400
\(592\) 3583.72 0.248801
\(593\) −4281.96 −0.296524 −0.148262 0.988948i \(-0.547368\pi\)
−0.148262 + 0.988948i \(0.547368\pi\)
\(594\) −3122.38 −0.215678
\(595\) 0 0
\(596\) −19511.5 −1.34098
\(597\) 12308.7 0.843825
\(598\) −23982.2 −1.63997
\(599\) 3699.92 0.252378 0.126189 0.992006i \(-0.459725\pi\)
0.126189 + 0.992006i \(0.459725\pi\)
\(600\) −2152.62 −0.146467
\(601\) 17286.1 1.17323 0.586616 0.809865i \(-0.300460\pi\)
0.586616 + 0.809865i \(0.300460\pi\)
\(602\) 0 0
\(603\) −8171.61 −0.551863
\(604\) 10793.7 0.727135
\(605\) −3629.97 −0.243933
\(606\) 26659.9 1.78710
\(607\) −14456.7 −0.966689 −0.483344 0.875430i \(-0.660578\pi\)
−0.483344 + 0.875430i \(0.660578\pi\)
\(608\) −8471.63 −0.565082
\(609\) 0 0
\(610\) 16665.4 1.10617
\(611\) −12403.2 −0.821243
\(612\) 2338.12 0.154433
\(613\) 17981.9 1.18480 0.592400 0.805644i \(-0.298181\pi\)
0.592400 + 0.805644i \(0.298181\pi\)
\(614\) 21722.9 1.42779
\(615\) −5066.53 −0.332199
\(616\) 0 0
\(617\) 19614.7 1.27983 0.639916 0.768445i \(-0.278969\pi\)
0.639916 + 0.768445i \(0.278969\pi\)
\(618\) 9347.17 0.608412
\(619\) 10462.9 0.679385 0.339692 0.940537i \(-0.389677\pi\)
0.339692 + 0.940537i \(0.389677\pi\)
\(620\) 6252.56 0.405014
\(621\) 3933.22 0.254162
\(622\) −31387.1 −2.02332
\(623\) 0 0
\(624\) −2322.03 −0.148967
\(625\) 625.000 0.0400000
\(626\) −13337.3 −0.851544
\(627\) −4973.72 −0.316796
\(628\) 33382.4 2.12118
\(629\) 2986.14 0.189293
\(630\) 0 0
\(631\) 24481.9 1.54454 0.772272 0.635292i \(-0.219120\pi\)
0.772272 + 0.635292i \(0.219120\pi\)
\(632\) 25555.5 1.60846
\(633\) 2470.54 0.155126
\(634\) 18856.2 1.18119
\(635\) −5544.06 −0.346471
\(636\) −28633.5 −1.78521
\(637\) 0 0
\(638\) 24796.2 1.53870
\(639\) 3873.01 0.239771
\(640\) −13020.9 −0.804211
\(641\) −1109.39 −0.0683595 −0.0341797 0.999416i \(-0.510882\pi\)
−0.0341797 + 0.999416i \(0.510882\pi\)
\(642\) −22772.5 −1.39993
\(643\) −30112.5 −1.84684 −0.923422 0.383787i \(-0.874620\pi\)
−0.923422 + 0.383787i \(0.874620\pi\)
\(644\) 0 0
\(645\) −1832.34 −0.111858
\(646\) 5836.90 0.355495
\(647\) 4260.27 0.258869 0.129435 0.991588i \(-0.458684\pi\)
0.129435 + 0.991588i \(0.458684\pi\)
\(648\) 2324.83 0.140938
\(649\) −12330.9 −0.745808
\(650\) 4115.70 0.248356
\(651\) 0 0
\(652\) −44256.2 −2.65829
\(653\) −10576.8 −0.633844 −0.316922 0.948452i \(-0.602649\pi\)
−0.316922 + 0.948452i \(0.602649\pi\)
\(654\) −3063.63 −0.183176
\(655\) −927.438 −0.0553252
\(656\) 7466.27 0.444373
\(657\) −372.066 −0.0220939
\(658\) 0 0
\(659\) 3394.70 0.200666 0.100333 0.994954i \(-0.468009\pi\)
0.100333 + 0.994954i \(0.468009\pi\)
\(660\) −5203.97 −0.306915
\(661\) 33174.4 1.95210 0.976048 0.217554i \(-0.0698079\pi\)
0.976048 + 0.217554i \(0.0698079\pi\)
\(662\) 52128.7 3.06048
\(663\) −1934.83 −0.113337
\(664\) 30341.9 1.77333
\(665\) 0 0
\(666\) 6860.17 0.399138
\(667\) −31235.4 −1.81326
\(668\) −2065.89 −0.119658
\(669\) 2451.58 0.141680
\(670\) −21344.1 −1.23074
\(671\) 17437.5 1.00323
\(672\) 0 0
\(673\) 753.881 0.0431797 0.0215899 0.999767i \(-0.493127\pi\)
0.0215899 + 0.999767i \(0.493127\pi\)
\(674\) 56976.9 3.25619
\(675\) −675.000 −0.0384900
\(676\) −13694.3 −0.779149
\(677\) −15668.8 −0.889511 −0.444756 0.895652i \(-0.646709\pi\)
−0.444756 + 0.895652i \(0.646709\pi\)
\(678\) 23388.3 1.32481
\(679\) 0 0
\(680\) 2643.23 0.149064
\(681\) 10967.5 0.617147
\(682\) 10252.9 0.575665
\(683\) −11557.4 −0.647485 −0.323742 0.946145i \(-0.604941\pi\)
−0.323742 + 0.946145i \(0.604941\pi\)
\(684\) 8556.30 0.478302
\(685\) −189.953 −0.0105952
\(686\) 0 0
\(687\) 2818.18 0.156507
\(688\) 2700.22 0.149630
\(689\) 23694.7 1.31016
\(690\) 10273.5 0.566819
\(691\) 18503.1 1.01866 0.509328 0.860572i \(-0.329894\pi\)
0.509328 + 0.860572i \(0.329894\pi\)
\(692\) 20086.8 1.10344
\(693\) 0 0
\(694\) −29907.7 −1.63585
\(695\) −918.046 −0.0501057
\(696\) −18462.5 −1.00549
\(697\) 6221.28 0.338088
\(698\) 14646.2 0.794223
\(699\) 22.9410 0.00124136
\(700\) 0 0
\(701\) 22580.4 1.21662 0.608311 0.793699i \(-0.291847\pi\)
0.608311 + 0.793699i \(0.291847\pi\)
\(702\) −4444.96 −0.238980
\(703\) 10927.7 0.586269
\(704\) −18884.4 −1.01099
\(705\) 5313.28 0.283844
\(706\) 56077.4 2.98938
\(707\) 0 0
\(708\) 21212.8 1.12603
\(709\) −27426.6 −1.45279 −0.726394 0.687278i \(-0.758805\pi\)
−0.726394 + 0.687278i \(0.758805\pi\)
\(710\) 10116.2 0.534725
\(711\) 8013.49 0.422685
\(712\) −42298.2 −2.22639
\(713\) −12915.5 −0.678383
\(714\) 0 0
\(715\) 4306.37 0.225244
\(716\) 17556.1 0.916342
\(717\) 2667.35 0.138931
\(718\) −28886.1 −1.50142
\(719\) −19383.0 −1.00538 −0.502688 0.864468i \(-0.667656\pi\)
−0.502688 + 0.864468i \(0.667656\pi\)
\(720\) 994.711 0.0514871
\(721\) 0 0
\(722\) −10888.0 −0.561230
\(723\) 6420.69 0.330274
\(724\) 54713.3 2.80857
\(725\) 5360.47 0.274597
\(726\) 10239.9 0.523469
\(727\) 12317.3 0.628368 0.314184 0.949362i \(-0.398269\pi\)
0.314184 + 0.949362i \(0.398269\pi\)
\(728\) 0 0
\(729\) 729.000 0.0370370
\(730\) −971.828 −0.0492726
\(731\) 2249.96 0.113841
\(732\) −29997.8 −1.51468
\(733\) −1234.02 −0.0621822 −0.0310911 0.999517i \(-0.509898\pi\)
−0.0310911 + 0.999517i \(0.509898\pi\)
\(734\) 9063.05 0.455754
\(735\) 0 0
\(736\) 18309.3 0.916970
\(737\) −22332.9 −1.11620
\(738\) 14292.4 0.712885
\(739\) −15257.3 −0.759473 −0.379736 0.925095i \(-0.623985\pi\)
−0.379736 + 0.925095i \(0.623985\pi\)
\(740\) 11433.6 0.567984
\(741\) −7080.49 −0.351023
\(742\) 0 0
\(743\) −35565.1 −1.75606 −0.878032 0.478602i \(-0.841144\pi\)
−0.878032 + 0.478602i \(0.841144\pi\)
\(744\) −7633.99 −0.376177
\(745\) −6916.69 −0.340145
\(746\) 49140.8 2.41176
\(747\) 9514.35 0.466013
\(748\) 6390.04 0.312357
\(749\) 0 0
\(750\) −1763.09 −0.0858384
\(751\) 14266.7 0.693209 0.346605 0.938011i \(-0.387335\pi\)
0.346605 + 0.938011i \(0.387335\pi\)
\(752\) −7829.89 −0.379690
\(753\) −20249.4 −0.979986
\(754\) 35299.4 1.70494
\(755\) 3826.28 0.184441
\(756\) 0 0
\(757\) −15927.9 −0.764744 −0.382372 0.924009i \(-0.624893\pi\)
−0.382372 + 0.924009i \(0.624893\pi\)
\(758\) 33223.3 1.59198
\(759\) 10749.4 0.514071
\(760\) 9672.87 0.461674
\(761\) 2566.48 0.122253 0.0611266 0.998130i \(-0.480531\pi\)
0.0611266 + 0.998130i \(0.480531\pi\)
\(762\) 15639.4 0.743514
\(763\) 0 0
\(764\) 22213.5 1.05191
\(765\) 828.844 0.0391724
\(766\) −33701.0 −1.58964
\(767\) −17554.0 −0.826386
\(768\) 18304.9 0.860052
\(769\) −14433.1 −0.676816 −0.338408 0.940999i \(-0.609888\pi\)
−0.338408 + 0.940999i \(0.609888\pi\)
\(770\) 0 0
\(771\) 9205.91 0.430017
\(772\) −67359.4 −3.14031
\(773\) 29443.2 1.36999 0.684993 0.728550i \(-0.259805\pi\)
0.684993 + 0.728550i \(0.259805\pi\)
\(774\) 5168.93 0.240043
\(775\) 2216.48 0.102733
\(776\) −15930.4 −0.736941
\(777\) 0 0
\(778\) −34857.7 −1.60631
\(779\) 22766.7 1.04711
\(780\) −7408.27 −0.340075
\(781\) 10584.9 0.484964
\(782\) −12615.0 −0.576869
\(783\) −5789.31 −0.264231
\(784\) 0 0
\(785\) 11833.8 0.538046
\(786\) 2616.24 0.118726
\(787\) −26390.6 −1.19533 −0.597664 0.801747i \(-0.703904\pi\)
−0.597664 + 0.801747i \(0.703904\pi\)
\(788\) −39543.6 −1.78767
\(789\) 14022.4 0.632711
\(790\) 20931.1 0.942650
\(791\) 0 0
\(792\) 6353.72 0.285063
\(793\) 24823.7 1.11162
\(794\) 42013.2 1.87783
\(795\) −10150.4 −0.452825
\(796\) −57870.3 −2.57683
\(797\) 3738.33 0.166146 0.0830730 0.996543i \(-0.473527\pi\)
0.0830730 + 0.996543i \(0.473527\pi\)
\(798\) 0 0
\(799\) −6524.26 −0.288876
\(800\) −3142.15 −0.138865
\(801\) −13263.5 −0.585073
\(802\) 8382.48 0.369072
\(803\) −1016.85 −0.0446873
\(804\) 38419.3 1.68525
\(805\) 0 0
\(806\) 14595.8 0.637861
\(807\) 7252.14 0.316341
\(808\) −54250.1 −2.36202
\(809\) 43204.1 1.87760 0.938798 0.344468i \(-0.111941\pi\)
0.938798 + 0.344468i \(0.111941\pi\)
\(810\) 1904.13 0.0825980
\(811\) 30192.4 1.30727 0.653637 0.756809i \(-0.273242\pi\)
0.653637 + 0.756809i \(0.273242\pi\)
\(812\) 0 0
\(813\) 23172.9 0.999642
\(814\) 18748.7 0.807301
\(815\) −15688.5 −0.674286
\(816\) −1221.42 −0.0523999
\(817\) 8233.71 0.352584
\(818\) 41185.3 1.76041
\(819\) 0 0
\(820\) 23820.6 1.01445
\(821\) −40274.7 −1.71206 −0.856028 0.516929i \(-0.827075\pi\)
−0.856028 + 0.516929i \(0.827075\pi\)
\(822\) 535.847 0.0227370
\(823\) 25184.2 1.06667 0.533334 0.845905i \(-0.320939\pi\)
0.533334 + 0.845905i \(0.320939\pi\)
\(824\) −19020.5 −0.804140
\(825\) −1844.77 −0.0778503
\(826\) 0 0
\(827\) −38941.7 −1.63741 −0.818703 0.574218i \(-0.805306\pi\)
−0.818703 + 0.574218i \(0.805306\pi\)
\(828\) −18492.3 −0.776150
\(829\) 8327.05 0.348867 0.174433 0.984669i \(-0.444191\pi\)
0.174433 + 0.984669i \(0.444191\pi\)
\(830\) 24851.3 1.03928
\(831\) 13728.5 0.573089
\(832\) −26883.5 −1.12021
\(833\) 0 0
\(834\) 2589.75 0.107525
\(835\) −732.343 −0.0303518
\(836\) 23384.2 0.967418
\(837\) −2393.80 −0.0988553
\(838\) 15104.9 0.622660
\(839\) −8784.41 −0.361468 −0.180734 0.983532i \(-0.557847\pi\)
−0.180734 + 0.983532i \(0.557847\pi\)
\(840\) 0 0
\(841\) 21586.4 0.885087
\(842\) 74086.4 3.03229
\(843\) 4075.67 0.166517
\(844\) −11615.4 −0.473718
\(845\) −4854.53 −0.197634
\(846\) −14988.4 −0.609117
\(847\) 0 0
\(848\) 14958.0 0.605732
\(849\) 11655.1 0.471145
\(850\) 2164.92 0.0873602
\(851\) −23617.6 −0.951350
\(852\) −18209.2 −0.732203
\(853\) 9076.15 0.364316 0.182158 0.983269i \(-0.441692\pi\)
0.182158 + 0.983269i \(0.441692\pi\)
\(854\) 0 0
\(855\) 3033.14 0.121323
\(856\) 46339.6 1.85030
\(857\) −36396.7 −1.45074 −0.725372 0.688357i \(-0.758332\pi\)
−0.725372 + 0.688357i \(0.758332\pi\)
\(858\) −12148.0 −0.483364
\(859\) −8915.27 −0.354115 −0.177058 0.984200i \(-0.556658\pi\)
−0.177058 + 0.984200i \(0.556658\pi\)
\(860\) 8614.88 0.341587
\(861\) 0 0
\(862\) −1908.44 −0.0754081
\(863\) −6148.26 −0.242514 −0.121257 0.992621i \(-0.538692\pi\)
−0.121257 + 0.992621i \(0.538692\pi\)
\(864\) 3393.52 0.133623
\(865\) 7120.59 0.279893
\(866\) 36884.9 1.44735
\(867\) 13721.2 0.537483
\(868\) 0 0
\(869\) 21900.8 0.854928
\(870\) −15121.5 −0.589274
\(871\) −31792.6 −1.23680
\(872\) 6234.16 0.242105
\(873\) −4995.31 −0.193660
\(874\) −46164.4 −1.78665
\(875\) 0 0
\(876\) 1749.29 0.0674692
\(877\) −14287.0 −0.550101 −0.275050 0.961430i \(-0.588694\pi\)
−0.275050 + 0.961430i \(0.588694\pi\)
\(878\) −1988.90 −0.0764488
\(879\) −12101.7 −0.464370
\(880\) 2718.53 0.104138
\(881\) 13315.9 0.509221 0.254610 0.967044i \(-0.418053\pi\)
0.254610 + 0.967044i \(0.418053\pi\)
\(882\) 0 0
\(883\) −5271.78 −0.200917 −0.100458 0.994941i \(-0.532031\pi\)
−0.100458 + 0.994941i \(0.532031\pi\)
\(884\) 9096.73 0.346104
\(885\) 7519.78 0.285621
\(886\) −75501.1 −2.86288
\(887\) −2606.07 −0.0986507 −0.0493253 0.998783i \(-0.515707\pi\)
−0.0493253 + 0.998783i \(0.515707\pi\)
\(888\) −13959.7 −0.527542
\(889\) 0 0
\(890\) −34644.0 −1.30480
\(891\) 1992.35 0.0749115
\(892\) −11526.3 −0.432654
\(893\) −23875.4 −0.894694
\(894\) 19511.5 0.729937
\(895\) 6223.48 0.232434
\(896\) 0 0
\(897\) 15302.7 0.569612
\(898\) 10281.1 0.382056
\(899\) 19010.2 0.705258
\(900\) 3173.55 0.117539
\(901\) 12463.8 0.460854
\(902\) 39060.8 1.44189
\(903\) 0 0
\(904\) −47592.8 −1.75101
\(905\) 19395.4 0.712405
\(906\) −10793.7 −0.395802
\(907\) 18610.6 0.681317 0.340659 0.940187i \(-0.389350\pi\)
0.340659 + 0.940187i \(0.389350\pi\)
\(908\) −51564.6 −1.88462
\(909\) −17011.3 −0.620714
\(910\) 0 0
\(911\) 41091.7 1.49443 0.747216 0.664581i \(-0.231390\pi\)
0.747216 + 0.664581i \(0.231390\pi\)
\(912\) −4469.77 −0.162291
\(913\) 26002.6 0.942563
\(914\) −27265.4 −0.986716
\(915\) −10634.0 −0.384206
\(916\) −13249.8 −0.477934
\(917\) 0 0
\(918\) −2338.12 −0.0840624
\(919\) 38891.3 1.39598 0.697990 0.716107i \(-0.254078\pi\)
0.697990 + 0.716107i \(0.254078\pi\)
\(920\) −20905.5 −0.749167
\(921\) −13861.1 −0.495915
\(922\) −46420.2 −1.65810
\(923\) 15068.4 0.537360
\(924\) 0 0
\(925\) 4053.12 0.144071
\(926\) −29064.3 −1.03144
\(927\) −5964.30 −0.211320
\(928\) −26949.4 −0.953295
\(929\) −18699.4 −0.660396 −0.330198 0.943912i \(-0.607115\pi\)
−0.330198 + 0.943912i \(0.607115\pi\)
\(930\) −6252.56 −0.220462
\(931\) 0 0
\(932\) −107.859 −0.00379080
\(933\) 20027.7 0.702761
\(934\) −28893.4 −1.01223
\(935\) 2265.22 0.0792305
\(936\) 9045.03 0.315861
\(937\) −21509.6 −0.749933 −0.374967 0.927038i \(-0.622346\pi\)
−0.374967 + 0.927038i \(0.622346\pi\)
\(938\) 0 0
\(939\) 8510.35 0.295767
\(940\) −24980.7 −0.866788
\(941\) 11241.7 0.389448 0.194724 0.980858i \(-0.437619\pi\)
0.194724 + 0.980858i \(0.437619\pi\)
\(942\) −33382.4 −1.15463
\(943\) −49204.5 −1.69917
\(944\) −11081.5 −0.382068
\(945\) 0 0
\(946\) 14126.6 0.485513
\(947\) −36556.3 −1.25441 −0.627203 0.778856i \(-0.715800\pi\)
−0.627203 + 0.778856i \(0.715800\pi\)
\(948\) −37675.9 −1.29078
\(949\) −1447.57 −0.0495153
\(950\) 7922.50 0.270568
\(951\) −12031.9 −0.410263
\(952\) 0 0
\(953\) −36633.4 −1.24520 −0.622598 0.782542i \(-0.713923\pi\)
−0.622598 + 0.782542i \(0.713923\pi\)
\(954\) 28633.5 0.971745
\(955\) 7874.52 0.266820
\(956\) −12540.7 −0.424263
\(957\) −15822.1 −0.534436
\(958\) −51150.3 −1.72504
\(959\) 0 0
\(960\) 11516.4 0.387176
\(961\) −21930.5 −0.736146
\(962\) 26690.3 0.894523
\(963\) 14530.8 0.486239
\(964\) −30187.3 −1.00858
\(965\) −23878.4 −0.796551
\(966\) 0 0
\(967\) −35515.8 −1.18109 −0.590544 0.807006i \(-0.701087\pi\)
−0.590544 + 0.807006i \(0.701087\pi\)
\(968\) −20837.2 −0.691871
\(969\) −3724.44 −0.123474
\(970\) −13047.6 −0.431891
\(971\) 39661.0 1.31080 0.655398 0.755283i \(-0.272501\pi\)
0.655398 + 0.755283i \(0.272501\pi\)
\(972\) −3427.44 −0.113102
\(973\) 0 0
\(974\) 38023.9 1.25089
\(975\) −2626.17 −0.0862613
\(976\) 15670.7 0.513942
\(977\) 50325.3 1.64795 0.823977 0.566624i \(-0.191751\pi\)
0.823977 + 0.566624i \(0.191751\pi\)
\(978\) 44256.2 1.44699
\(979\) −36249.0 −1.18337
\(980\) 0 0
\(981\) 1954.86 0.0636226
\(982\) −32722.4 −1.06335
\(983\) −51189.0 −1.66091 −0.830456 0.557084i \(-0.811920\pi\)
−0.830456 + 0.557084i \(0.811920\pi\)
\(984\) −29083.5 −0.942223
\(985\) −14017.9 −0.453449
\(986\) 18568.0 0.599721
\(987\) 0 0
\(988\) 33289.3 1.07194
\(989\) −17795.1 −0.572145
\(990\) 5203.97 0.167064
\(991\) −55137.3 −1.76740 −0.883700 0.468054i \(-0.844955\pi\)
−0.883700 + 0.468054i \(0.844955\pi\)
\(992\) −11143.2 −0.356651
\(993\) −33262.6 −1.06300
\(994\) 0 0
\(995\) −20514.6 −0.653624
\(996\) −44732.3 −1.42309
\(997\) −41606.5 −1.32166 −0.660828 0.750537i \(-0.729795\pi\)
−0.660828 + 0.750537i \(0.729795\pi\)
\(998\) 87599.6 2.77848
\(999\) −4377.37 −0.138633
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 735.4.a.q.1.2 2
3.2 odd 2 2205.4.a.v.1.1 2
7.6 odd 2 105.4.a.g.1.2 2
21.20 even 2 315.4.a.g.1.1 2
28.27 even 2 1680.4.a.y.1.2 2
35.13 even 4 525.4.d.j.274.1 4
35.27 even 4 525.4.d.j.274.4 4
35.34 odd 2 525.4.a.i.1.1 2
105.104 even 2 1575.4.a.y.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
105.4.a.g.1.2 2 7.6 odd 2
315.4.a.g.1.1 2 21.20 even 2
525.4.a.i.1.1 2 35.34 odd 2
525.4.d.j.274.1 4 35.13 even 4
525.4.d.j.274.4 4 35.27 even 4
735.4.a.q.1.2 2 1.1 even 1 trivial
1575.4.a.y.1.2 2 105.104 even 2
1680.4.a.y.1.2 2 28.27 even 2
2205.4.a.v.1.1 2 3.2 odd 2