Properties

Label 735.4.a.q.1.1
Level $735$
Weight $4$
Character 735.1
Self dual yes
Analytic conductor $43.366$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [735,4,Mod(1,735)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(735, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("735.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 735 = 3 \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 735.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(43.3664038542\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{41}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 10 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 105)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-2.70156\) of defining polynomial
Character \(\chi\) \(=\) 735.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.70156 q^{2} -3.00000 q^{3} -5.10469 q^{4} +5.00000 q^{5} +5.10469 q^{6} +22.2984 q^{8} +9.00000 q^{9} +O(q^{10})\) \(q-1.70156 q^{2} -3.00000 q^{3} -5.10469 q^{4} +5.00000 q^{5} +5.10469 q^{6} +22.2984 q^{8} +9.00000 q^{9} -8.50781 q^{10} +37.4031 q^{11} +15.3141 q^{12} -29.0156 q^{13} -15.0000 q^{15} +2.89531 q^{16} -58.4187 q^{17} -15.3141 q^{18} +54.5969 q^{19} -25.5234 q^{20} -63.6437 q^{22} +161.675 q^{23} -66.8953 q^{24} +25.0000 q^{25} +49.3719 q^{26} -27.0000 q^{27} +137.581 q^{29} +25.5234 q^{30} -154.659 q^{31} -183.314 q^{32} -112.209 q^{33} +99.4031 q^{34} -45.9422 q^{36} -350.125 q^{37} -92.9000 q^{38} +87.0469 q^{39} +111.492 q^{40} -353.769 q^{41} -518.156 q^{43} -190.931 q^{44} +45.0000 q^{45} -275.100 q^{46} +542.219 q^{47} -8.68594 q^{48} -42.5391 q^{50} +175.256 q^{51} +148.116 q^{52} +305.309 q^{53} +45.9422 q^{54} +187.016 q^{55} -163.791 q^{57} -234.103 q^{58} -14.6813 q^{59} +76.5703 q^{60} +171.069 q^{61} +263.163 q^{62} +288.758 q^{64} -145.078 q^{65} +190.931 q^{66} +551.956 q^{67} +298.209 q^{68} -485.025 q^{69} -120.334 q^{71} +200.686 q^{72} -284.659 q^{73} +595.759 q^{74} -75.0000 q^{75} -278.700 q^{76} -148.116 q^{78} +941.612 q^{79} +14.4766 q^{80} +81.0000 q^{81} +601.959 q^{82} -377.150 q^{83} -292.094 q^{85} +881.675 q^{86} -412.744 q^{87} +834.031 q^{88} +677.725 q^{89} -76.5703 q^{90} -825.300 q^{92} +463.978 q^{93} -922.619 q^{94} +272.984 q^{95} +549.942 q^{96} +1225.03 q^{97} +336.628 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 3 q^{2} - 6 q^{3} + 9 q^{4} + 10 q^{5} - 9 q^{6} + 51 q^{8} + 18 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 3 q^{2} - 6 q^{3} + 9 q^{4} + 10 q^{5} - 9 q^{6} + 51 q^{8} + 18 q^{9} + 15 q^{10} + 62 q^{11} - 27 q^{12} + 6 q^{13} - 30 q^{15} + 25 q^{16} - 40 q^{17} + 27 q^{18} + 122 q^{19} + 45 q^{20} + 52 q^{22} + 16 q^{23} - 153 q^{24} + 50 q^{25} + 214 q^{26} - 54 q^{27} + 352 q^{29} - 45 q^{30} - 66 q^{31} - 309 q^{32} - 186 q^{33} + 186 q^{34} + 81 q^{36} - 188 q^{37} + 224 q^{38} - 18 q^{39} + 255 q^{40} - 16 q^{41} - 396 q^{43} + 156 q^{44} + 90 q^{45} - 960 q^{46} + 188 q^{47} - 75 q^{48} + 75 q^{50} + 120 q^{51} + 642 q^{52} + 982 q^{53} - 81 q^{54} + 310 q^{55} - 366 q^{57} + 774 q^{58} - 516 q^{59} - 135 q^{60} + 880 q^{61} + 680 q^{62} - 479 q^{64} + 30 q^{65} - 156 q^{66} - 356 q^{67} + 558 q^{68} - 48 q^{69} + 310 q^{71} + 459 q^{72} - 326 q^{73} + 1358 q^{74} - 150 q^{75} + 672 q^{76} - 642 q^{78} + 1832 q^{79} + 125 q^{80} + 162 q^{81} + 2190 q^{82} + 680 q^{83} - 200 q^{85} + 1456 q^{86} - 1056 q^{87} + 1540 q^{88} - 796 q^{89} + 135 q^{90} - 2880 q^{92} + 198 q^{93} - 2588 q^{94} + 610 q^{95} + 927 q^{96} + 670 q^{97} + 558 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.70156 −0.601593 −0.300797 0.953688i \(-0.597253\pi\)
−0.300797 + 0.953688i \(0.597253\pi\)
\(3\) −3.00000 −0.577350
\(4\) −5.10469 −0.638086
\(5\) 5.00000 0.447214
\(6\) 5.10469 0.347330
\(7\) 0 0
\(8\) 22.2984 0.985461
\(9\) 9.00000 0.333333
\(10\) −8.50781 −0.269041
\(11\) 37.4031 1.02522 0.512612 0.858620i \(-0.328678\pi\)
0.512612 + 0.858620i \(0.328678\pi\)
\(12\) 15.3141 0.368399
\(13\) −29.0156 −0.619037 −0.309519 0.950893i \(-0.600168\pi\)
−0.309519 + 0.950893i \(0.600168\pi\)
\(14\) 0 0
\(15\) −15.0000 −0.258199
\(16\) 2.89531 0.0452393
\(17\) −58.4187 −0.833449 −0.416724 0.909033i \(-0.636822\pi\)
−0.416724 + 0.909033i \(0.636822\pi\)
\(18\) −15.3141 −0.200531
\(19\) 54.5969 0.659231 0.329615 0.944115i \(-0.393081\pi\)
0.329615 + 0.944115i \(0.393081\pi\)
\(20\) −25.5234 −0.285361
\(21\) 0 0
\(22\) −63.6437 −0.616768
\(23\) 161.675 1.46572 0.732860 0.680379i \(-0.238185\pi\)
0.732860 + 0.680379i \(0.238185\pi\)
\(24\) −66.8953 −0.568956
\(25\) 25.0000 0.200000
\(26\) 49.3719 0.372409
\(27\) −27.0000 −0.192450
\(28\) 0 0
\(29\) 137.581 0.880972 0.440486 0.897759i \(-0.354806\pi\)
0.440486 + 0.897759i \(0.354806\pi\)
\(30\) 25.5234 0.155331
\(31\) −154.659 −0.896053 −0.448026 0.894020i \(-0.647873\pi\)
−0.448026 + 0.894020i \(0.647873\pi\)
\(32\) −183.314 −1.01268
\(33\) −112.209 −0.591913
\(34\) 99.4031 0.501397
\(35\) 0 0
\(36\) −45.9422 −0.212695
\(37\) −350.125 −1.55568 −0.777840 0.628462i \(-0.783685\pi\)
−0.777840 + 0.628462i \(0.783685\pi\)
\(38\) −92.9000 −0.396589
\(39\) 87.0469 0.357401
\(40\) 111.492 0.440712
\(41\) −353.769 −1.34755 −0.673773 0.738938i \(-0.735327\pi\)
−0.673773 + 0.738938i \(0.735327\pi\)
\(42\) 0 0
\(43\) −518.156 −1.83763 −0.918815 0.394689i \(-0.870852\pi\)
−0.918815 + 0.394689i \(0.870852\pi\)
\(44\) −190.931 −0.654181
\(45\) 45.0000 0.149071
\(46\) −275.100 −0.881767
\(47\) 542.219 1.68278 0.841391 0.540427i \(-0.181737\pi\)
0.841391 + 0.540427i \(0.181737\pi\)
\(48\) −8.68594 −0.0261189
\(49\) 0 0
\(50\) −42.5391 −0.120319
\(51\) 175.256 0.481192
\(52\) 148.116 0.394999
\(53\) 305.309 0.791273 0.395637 0.918407i \(-0.370524\pi\)
0.395637 + 0.918407i \(0.370524\pi\)
\(54\) 45.9422 0.115777
\(55\) 187.016 0.458494
\(56\) 0 0
\(57\) −163.791 −0.380607
\(58\) −234.103 −0.529987
\(59\) −14.6813 −0.0323956 −0.0161978 0.999869i \(-0.505156\pi\)
−0.0161978 + 0.999869i \(0.505156\pi\)
\(60\) 76.5703 0.164753
\(61\) 171.069 0.359067 0.179534 0.983752i \(-0.442541\pi\)
0.179534 + 0.983752i \(0.442541\pi\)
\(62\) 263.163 0.539059
\(63\) 0 0
\(64\) 288.758 0.563980
\(65\) −145.078 −0.276842
\(66\) 190.931 0.356091
\(67\) 551.956 1.00645 0.503225 0.864155i \(-0.332147\pi\)
0.503225 + 0.864155i \(0.332147\pi\)
\(68\) 298.209 0.531812
\(69\) −485.025 −0.846234
\(70\) 0 0
\(71\) −120.334 −0.201142 −0.100571 0.994930i \(-0.532067\pi\)
−0.100571 + 0.994930i \(0.532067\pi\)
\(72\) 200.686 0.328487
\(73\) −284.659 −0.456395 −0.228198 0.973615i \(-0.573283\pi\)
−0.228198 + 0.973615i \(0.573283\pi\)
\(74\) 595.759 0.935887
\(75\) −75.0000 −0.115470
\(76\) −278.700 −0.420646
\(77\) 0 0
\(78\) −148.116 −0.215010
\(79\) 941.612 1.34101 0.670504 0.741906i \(-0.266078\pi\)
0.670504 + 0.741906i \(0.266078\pi\)
\(80\) 14.4766 0.0202316
\(81\) 81.0000 0.111111
\(82\) 601.959 0.810674
\(83\) −377.150 −0.498766 −0.249383 0.968405i \(-0.580228\pi\)
−0.249383 + 0.968405i \(0.580228\pi\)
\(84\) 0 0
\(85\) −292.094 −0.372730
\(86\) 881.675 1.10551
\(87\) −412.744 −0.508630
\(88\) 834.031 1.01032
\(89\) 677.725 0.807176 0.403588 0.914941i \(-0.367763\pi\)
0.403588 + 0.914941i \(0.367763\pi\)
\(90\) −76.5703 −0.0896802
\(91\) 0 0
\(92\) −825.300 −0.935255
\(93\) 463.978 0.517336
\(94\) −922.619 −1.01235
\(95\) 272.984 0.294817
\(96\) 549.942 0.584669
\(97\) 1225.03 1.28230 0.641151 0.767414i \(-0.278457\pi\)
0.641151 + 0.767414i \(0.278457\pi\)
\(98\) 0 0
\(99\) 336.628 0.341741
\(100\) −127.617 −0.127617
\(101\) 338.144 0.333134 0.166567 0.986030i \(-0.446732\pi\)
0.166567 + 0.986030i \(0.446732\pi\)
\(102\) −298.209 −0.289482
\(103\) 566.700 0.542122 0.271061 0.962562i \(-0.412625\pi\)
0.271061 + 0.962562i \(0.412625\pi\)
\(104\) −647.003 −0.610037
\(105\) 0 0
\(106\) −519.503 −0.476024
\(107\) −562.531 −0.508242 −0.254121 0.967172i \(-0.581786\pi\)
−0.254121 + 0.967172i \(0.581786\pi\)
\(108\) 137.827 0.122800
\(109\) 1830.79 1.60879 0.804396 0.594094i \(-0.202489\pi\)
0.804396 + 0.594094i \(0.202489\pi\)
\(110\) −318.219 −0.275827
\(111\) 1050.37 0.898173
\(112\) 0 0
\(113\) −31.8032 −0.0264761 −0.0132380 0.999912i \(-0.504214\pi\)
−0.0132380 + 0.999912i \(0.504214\pi\)
\(114\) 278.700 0.228971
\(115\) 808.375 0.655490
\(116\) −702.309 −0.562136
\(117\) −261.141 −0.206346
\(118\) 24.9811 0.0194890
\(119\) 0 0
\(120\) −334.477 −0.254445
\(121\) 67.9937 0.0510847
\(122\) −291.084 −0.216012
\(123\) 1061.31 0.778006
\(124\) 789.488 0.571759
\(125\) 125.000 0.0894427
\(126\) 0 0
\(127\) 2220.81 1.55169 0.775847 0.630921i \(-0.217323\pi\)
0.775847 + 0.630921i \(0.217323\pi\)
\(128\) 975.173 0.673390
\(129\) 1554.47 1.06096
\(130\) 246.859 0.166546
\(131\) −646.512 −0.431191 −0.215596 0.976483i \(-0.569169\pi\)
−0.215596 + 0.976483i \(0.569169\pi\)
\(132\) 572.794 0.377692
\(133\) 0 0
\(134\) −939.188 −0.605474
\(135\) −135.000 −0.0860663
\(136\) −1302.65 −0.821331
\(137\) −896.009 −0.558768 −0.279384 0.960179i \(-0.590130\pi\)
−0.279384 + 0.960179i \(0.590130\pi\)
\(138\) 825.300 0.509088
\(139\) 2313.61 1.41178 0.705891 0.708320i \(-0.250547\pi\)
0.705891 + 0.708320i \(0.250547\pi\)
\(140\) 0 0
\(141\) −1626.66 −0.971554
\(142\) 204.756 0.121005
\(143\) −1085.27 −0.634652
\(144\) 26.0578 0.0150798
\(145\) 687.906 0.393983
\(146\) 484.366 0.274564
\(147\) 0 0
\(148\) 1787.28 0.992658
\(149\) 819.337 0.450488 0.225244 0.974302i \(-0.427682\pi\)
0.225244 + 0.974302i \(0.427682\pi\)
\(150\) 127.617 0.0694660
\(151\) 534.744 0.288191 0.144095 0.989564i \(-0.453973\pi\)
0.144095 + 0.989564i \(0.453973\pi\)
\(152\) 1217.43 0.649646
\(153\) −525.769 −0.277816
\(154\) 0 0
\(155\) −773.297 −0.400727
\(156\) −444.347 −0.228053
\(157\) −1564.76 −0.795423 −0.397711 0.917511i \(-0.630195\pi\)
−0.397711 + 0.917511i \(0.630195\pi\)
\(158\) −1602.21 −0.806741
\(159\) −915.928 −0.456842
\(160\) −916.570 −0.452883
\(161\) 0 0
\(162\) −137.827 −0.0668437
\(163\) −1114.31 −0.535455 −0.267728 0.963495i \(-0.586273\pi\)
−0.267728 + 0.963495i \(0.586273\pi\)
\(164\) 1805.88 0.859850
\(165\) −561.047 −0.264712
\(166\) 641.744 0.300054
\(167\) 1774.47 0.822231 0.411115 0.911583i \(-0.365139\pi\)
0.411115 + 0.911583i \(0.365139\pi\)
\(168\) 0 0
\(169\) −1355.09 −0.616793
\(170\) 497.016 0.224232
\(171\) 491.372 0.219744
\(172\) 2645.02 1.17257
\(173\) 4215.88 1.85276 0.926380 0.376590i \(-0.122903\pi\)
0.926380 + 0.376590i \(0.122903\pi\)
\(174\) 702.309 0.305988
\(175\) 0 0
\(176\) 108.294 0.0463804
\(177\) 44.0438 0.0187036
\(178\) −1153.19 −0.485592
\(179\) −2430.70 −1.01497 −0.507483 0.861662i \(-0.669424\pi\)
−0.507483 + 0.861662i \(0.669424\pi\)
\(180\) −229.711 −0.0951202
\(181\) 2700.91 1.10916 0.554578 0.832132i \(-0.312880\pi\)
0.554578 + 0.832132i \(0.312880\pi\)
\(182\) 0 0
\(183\) −513.206 −0.207308
\(184\) 3605.10 1.44441
\(185\) −1750.62 −0.695722
\(186\) −789.488 −0.311226
\(187\) −2185.04 −0.854472
\(188\) −2767.86 −1.07376
\(189\) 0 0
\(190\) −464.500 −0.177360
\(191\) 3611.10 1.36801 0.684005 0.729478i \(-0.260237\pi\)
0.684005 + 0.729478i \(0.260237\pi\)
\(192\) −866.273 −0.325614
\(193\) −4468.33 −1.66651 −0.833257 0.552886i \(-0.813526\pi\)
−0.833257 + 0.552886i \(0.813526\pi\)
\(194\) −2084.47 −0.771425
\(195\) 435.234 0.159835
\(196\) 0 0
\(197\) −434.422 −0.157113 −0.0785566 0.996910i \(-0.525031\pi\)
−0.0785566 + 0.996910i \(0.525031\pi\)
\(198\) −572.794 −0.205589
\(199\) 468.915 0.167038 0.0835189 0.996506i \(-0.473384\pi\)
0.0835189 + 0.996506i \(0.473384\pi\)
\(200\) 557.461 0.197092
\(201\) −1655.87 −0.581074
\(202\) −575.372 −0.200411
\(203\) 0 0
\(204\) −894.628 −0.307042
\(205\) −1768.84 −0.602641
\(206\) −964.275 −0.326137
\(207\) 1455.07 0.488573
\(208\) −84.0093 −0.0280048
\(209\) 2042.09 0.675859
\(210\) 0 0
\(211\) 3735.51 1.21878 0.609392 0.792869i \(-0.291414\pi\)
0.609392 + 0.792869i \(0.291414\pi\)
\(212\) −1558.51 −0.504900
\(213\) 361.003 0.116129
\(214\) 957.182 0.305755
\(215\) −2590.78 −0.821813
\(216\) −602.058 −0.189652
\(217\) 0 0
\(218\) −3115.21 −0.967838
\(219\) 853.978 0.263500
\(220\) −954.656 −0.292559
\(221\) 1695.06 0.515936
\(222\) −1787.28 −0.540334
\(223\) −842.806 −0.253087 −0.126544 0.991961i \(-0.540388\pi\)
−0.126544 + 0.991961i \(0.540388\pi\)
\(224\) 0 0
\(225\) 225.000 0.0666667
\(226\) 54.1152 0.0159278
\(227\) −992.150 −0.290094 −0.145047 0.989425i \(-0.546333\pi\)
−0.145047 + 0.989425i \(0.546333\pi\)
\(228\) 836.100 0.242860
\(229\) 6411.39 1.85012 0.925059 0.379825i \(-0.124016\pi\)
0.925059 + 0.379825i \(0.124016\pi\)
\(230\) −1375.50 −0.394338
\(231\) 0 0
\(232\) 3067.85 0.868164
\(233\) −2274.35 −0.639476 −0.319738 0.947506i \(-0.603595\pi\)
−0.319738 + 0.947506i \(0.603595\pi\)
\(234\) 444.347 0.124136
\(235\) 2711.09 0.752563
\(236\) 74.9433 0.0206712
\(237\) −2824.84 −0.774232
\(238\) 0 0
\(239\) 2863.12 0.774893 0.387447 0.921892i \(-0.373357\pi\)
0.387447 + 0.921892i \(0.373357\pi\)
\(240\) −43.4297 −0.0116807
\(241\) 5364.23 1.43378 0.716889 0.697187i \(-0.245565\pi\)
0.716889 + 0.697187i \(0.245565\pi\)
\(242\) −115.696 −0.0307322
\(243\) −243.000 −0.0641500
\(244\) −873.252 −0.229116
\(245\) 0 0
\(246\) −1805.88 −0.468043
\(247\) −1584.16 −0.408088
\(248\) −3448.66 −0.883025
\(249\) 1131.45 0.287963
\(250\) −212.695 −0.0538081
\(251\) −5569.81 −1.40065 −0.700325 0.713824i \(-0.746961\pi\)
−0.700325 + 0.713824i \(0.746961\pi\)
\(252\) 0 0
\(253\) 6047.15 1.50269
\(254\) −3778.85 −0.933489
\(255\) 876.281 0.215196
\(256\) −3969.38 −0.969087
\(257\) −2095.36 −0.508580 −0.254290 0.967128i \(-0.581842\pi\)
−0.254290 + 0.967128i \(0.581842\pi\)
\(258\) −2645.02 −0.638264
\(259\) 0 0
\(260\) 740.578 0.176649
\(261\) 1238.23 0.293657
\(262\) 1100.08 0.259402
\(263\) −7465.88 −1.75044 −0.875220 0.483724i \(-0.839284\pi\)
−0.875220 + 0.483724i \(0.839284\pi\)
\(264\) −2502.09 −0.583308
\(265\) 1526.55 0.353868
\(266\) 0 0
\(267\) −2033.17 −0.466023
\(268\) −2817.56 −0.642202
\(269\) 6521.38 1.47812 0.739062 0.673637i \(-0.235269\pi\)
0.739062 + 0.673637i \(0.235269\pi\)
\(270\) 229.711 0.0517769
\(271\) −2409.70 −0.540144 −0.270072 0.962840i \(-0.587048\pi\)
−0.270072 + 0.962840i \(0.587048\pi\)
\(272\) −169.141 −0.0377046
\(273\) 0 0
\(274\) 1524.62 0.336151
\(275\) 935.078 0.205045
\(276\) 2475.90 0.539970
\(277\) −2219.83 −0.481503 −0.240752 0.970587i \(-0.577394\pi\)
−0.240752 + 0.970587i \(0.577394\pi\)
\(278\) −3936.75 −0.849319
\(279\) −1391.93 −0.298684
\(280\) 0 0
\(281\) 5838.56 1.23950 0.619749 0.784800i \(-0.287234\pi\)
0.619749 + 0.784800i \(0.287234\pi\)
\(282\) 2767.86 0.584480
\(283\) 3645.04 0.765636 0.382818 0.923824i \(-0.374954\pi\)
0.382818 + 0.923824i \(0.374954\pi\)
\(284\) 614.269 0.128346
\(285\) −818.953 −0.170213
\(286\) 1846.66 0.381802
\(287\) 0 0
\(288\) −1649.83 −0.337559
\(289\) −1500.25 −0.305363
\(290\) −1170.52 −0.237017
\(291\) −3675.10 −0.740338
\(292\) 1453.10 0.291219
\(293\) −3777.91 −0.753268 −0.376634 0.926362i \(-0.622919\pi\)
−0.376634 + 0.926362i \(0.622919\pi\)
\(294\) 0 0
\(295\) −73.4064 −0.0144877
\(296\) −7807.24 −1.53306
\(297\) −1009.88 −0.197304
\(298\) −1394.15 −0.271011
\(299\) −4691.10 −0.907336
\(300\) 382.851 0.0736798
\(301\) 0 0
\(302\) −909.900 −0.173374
\(303\) −1014.43 −0.192335
\(304\) 158.075 0.0298231
\(305\) 855.344 0.160580
\(306\) 894.628 0.167132
\(307\) 4799.64 0.892281 0.446140 0.894963i \(-0.352798\pi\)
0.446140 + 0.894963i \(0.352798\pi\)
\(308\) 0 0
\(309\) −1700.10 −0.312994
\(310\) 1315.81 0.241075
\(311\) −580.113 −0.105772 −0.0528861 0.998601i \(-0.516842\pi\)
−0.0528861 + 0.998601i \(0.516842\pi\)
\(312\) 1941.01 0.352205
\(313\) 6114.78 1.10424 0.552121 0.833764i \(-0.313818\pi\)
0.552121 + 0.833764i \(0.313818\pi\)
\(314\) 2662.53 0.478521
\(315\) 0 0
\(316\) −4806.64 −0.855679
\(317\) −4300.63 −0.761979 −0.380989 0.924579i \(-0.624417\pi\)
−0.380989 + 0.924579i \(0.624417\pi\)
\(318\) 1558.51 0.274833
\(319\) 5145.97 0.903194
\(320\) 1443.79 0.252220
\(321\) 1687.59 0.293434
\(322\) 0 0
\(323\) −3189.48 −0.549435
\(324\) −413.480 −0.0708984
\(325\) −725.391 −0.123807
\(326\) 1896.06 0.322126
\(327\) −5492.38 −0.928836
\(328\) −7888.49 −1.32795
\(329\) 0 0
\(330\) 954.656 0.159249
\(331\) −6687.54 −1.11051 −0.555257 0.831679i \(-0.687380\pi\)
−0.555257 + 0.831679i \(0.687380\pi\)
\(332\) 1925.23 0.318256
\(333\) −3151.12 −0.518560
\(334\) −3019.37 −0.494648
\(335\) 2759.78 0.450098
\(336\) 0 0
\(337\) 5869.28 0.948723 0.474362 0.880330i \(-0.342679\pi\)
0.474362 + 0.880330i \(0.342679\pi\)
\(338\) 2305.78 0.371058
\(339\) 95.4097 0.0152860
\(340\) 1491.05 0.237833
\(341\) −5784.74 −0.918655
\(342\) −836.100 −0.132196
\(343\) 0 0
\(344\) −11554.1 −1.81091
\(345\) −2425.12 −0.378447
\(346\) −7173.58 −1.11461
\(347\) 1937.22 0.299699 0.149850 0.988709i \(-0.452121\pi\)
0.149850 + 0.988709i \(0.452121\pi\)
\(348\) 2106.93 0.324549
\(349\) 9748.82 1.49525 0.747625 0.664121i \(-0.231194\pi\)
0.747625 + 0.664121i \(0.231194\pi\)
\(350\) 0 0
\(351\) 783.422 0.119134
\(352\) −6856.52 −1.03822
\(353\) 4576.61 0.690052 0.345026 0.938593i \(-0.387870\pi\)
0.345026 + 0.938593i \(0.387870\pi\)
\(354\) −74.9433 −0.0112520
\(355\) −601.672 −0.0899533
\(356\) −3459.57 −0.515048
\(357\) 0 0
\(358\) 4135.98 0.610596
\(359\) 10849.9 1.59509 0.797546 0.603258i \(-0.206131\pi\)
0.797546 + 0.603258i \(0.206131\pi\)
\(360\) 1003.43 0.146904
\(361\) −3878.18 −0.565415
\(362\) −4595.77 −0.667261
\(363\) −203.981 −0.0294938
\(364\) 0 0
\(365\) −1423.30 −0.204106
\(366\) 873.252 0.124715
\(367\) −11467.7 −1.63108 −0.815541 0.578699i \(-0.803561\pi\)
−0.815541 + 0.578699i \(0.803561\pi\)
\(368\) 468.100 0.0663081
\(369\) −3183.92 −0.449182
\(370\) 2978.80 0.418541
\(371\) 0 0
\(372\) −2368.46 −0.330105
\(373\) 539.982 0.0749576 0.0374788 0.999297i \(-0.488067\pi\)
0.0374788 + 0.999297i \(0.488067\pi\)
\(374\) 3717.99 0.514044
\(375\) −375.000 −0.0516398
\(376\) 12090.6 1.65832
\(377\) −3992.01 −0.545355
\(378\) 0 0
\(379\) 8577.57 1.16253 0.581267 0.813713i \(-0.302557\pi\)
0.581267 + 0.813713i \(0.302557\pi\)
\(380\) −1393.50 −0.188118
\(381\) −6662.44 −0.895871
\(382\) −6144.51 −0.822985
\(383\) −8627.96 −1.15109 −0.575546 0.817770i \(-0.695210\pi\)
−0.575546 + 0.817770i \(0.695210\pi\)
\(384\) −2925.52 −0.388782
\(385\) 0 0
\(386\) 7603.13 1.00256
\(387\) −4663.41 −0.612543
\(388\) −6253.42 −0.818219
\(389\) 9234.06 1.20356 0.601781 0.798661i \(-0.294458\pi\)
0.601781 + 0.798661i \(0.294458\pi\)
\(390\) −740.578 −0.0961555
\(391\) −9444.85 −1.22160
\(392\) 0 0
\(393\) 1939.54 0.248948
\(394\) 739.196 0.0945182
\(395\) 4708.06 0.599717
\(396\) −1718.38 −0.218060
\(397\) −11618.0 −1.46874 −0.734372 0.678747i \(-0.762523\pi\)
−0.734372 + 0.678747i \(0.762523\pi\)
\(398\) −797.889 −0.100489
\(399\) 0 0
\(400\) 72.3828 0.00904786
\(401\) 11157.1 1.38942 0.694711 0.719289i \(-0.255532\pi\)
0.694711 + 0.719289i \(0.255532\pi\)
\(402\) 2817.56 0.349570
\(403\) 4487.54 0.554690
\(404\) −1726.12 −0.212568
\(405\) 405.000 0.0496904
\(406\) 0 0
\(407\) −13095.8 −1.59492
\(408\) 3907.94 0.474196
\(409\) 7428.08 0.898031 0.449015 0.893524i \(-0.351775\pi\)
0.449015 + 0.893524i \(0.351775\pi\)
\(410\) 3009.80 0.362545
\(411\) 2688.03 0.322605
\(412\) −2892.83 −0.345921
\(413\) 0 0
\(414\) −2475.90 −0.293922
\(415\) −1885.75 −0.223055
\(416\) 5318.97 0.626885
\(417\) −6940.83 −0.815093
\(418\) −3474.75 −0.406592
\(419\) −9644.74 −1.12453 −0.562263 0.826959i \(-0.690069\pi\)
−0.562263 + 0.826959i \(0.690069\pi\)
\(420\) 0 0
\(421\) 9918.18 1.14818 0.574088 0.818793i \(-0.305357\pi\)
0.574088 + 0.818793i \(0.305357\pi\)
\(422\) −6356.21 −0.733212
\(423\) 4879.97 0.560927
\(424\) 6807.92 0.779769
\(425\) −1460.47 −0.166690
\(426\) −614.269 −0.0698625
\(427\) 0 0
\(428\) 2871.54 0.324302
\(429\) 3255.82 0.366417
\(430\) 4408.37 0.494397
\(431\) −16324.1 −1.82437 −0.912185 0.409779i \(-0.865606\pi\)
−0.912185 + 0.409779i \(0.865606\pi\)
\(432\) −78.1735 −0.00870630
\(433\) 5168.75 0.573659 0.286829 0.957982i \(-0.407399\pi\)
0.286829 + 0.957982i \(0.407399\pi\)
\(434\) 0 0
\(435\) −2063.72 −0.227466
\(436\) −9345.63 −1.02655
\(437\) 8826.95 0.966248
\(438\) −1453.10 −0.158520
\(439\) −18339.0 −1.99378 −0.996892 0.0787782i \(-0.974898\pi\)
−0.996892 + 0.0787782i \(0.974898\pi\)
\(440\) 4170.16 0.451828
\(441\) 0 0
\(442\) −2884.24 −0.310383
\(443\) −1613.28 −0.173023 −0.0865113 0.996251i \(-0.527572\pi\)
−0.0865113 + 0.996251i \(0.527572\pi\)
\(444\) −5361.83 −0.573111
\(445\) 3388.62 0.360980
\(446\) 1434.09 0.152256
\(447\) −2458.01 −0.260089
\(448\) 0 0
\(449\) −886.750 −0.0932034 −0.0466017 0.998914i \(-0.514839\pi\)
−0.0466017 + 0.998914i \(0.514839\pi\)
\(450\) −382.851 −0.0401062
\(451\) −13232.1 −1.38154
\(452\) 162.345 0.0168940
\(453\) −1604.23 −0.166387
\(454\) 1688.21 0.174518
\(455\) 0 0
\(456\) −3652.28 −0.375073
\(457\) 7391.22 0.756557 0.378279 0.925692i \(-0.376516\pi\)
0.378279 + 0.925692i \(0.376516\pi\)
\(458\) −10909.4 −1.11302
\(459\) 1577.31 0.160397
\(460\) −4126.50 −0.418259
\(461\) 7133.35 0.720679 0.360340 0.932821i \(-0.382661\pi\)
0.360340 + 0.932821i \(0.382661\pi\)
\(462\) 0 0
\(463\) 14461.8 1.45162 0.725808 0.687897i \(-0.241466\pi\)
0.725808 + 0.687897i \(0.241466\pi\)
\(464\) 398.341 0.0398546
\(465\) 2319.89 0.231360
\(466\) 3869.95 0.384704
\(467\) 16393.5 1.62441 0.812206 0.583370i \(-0.198266\pi\)
0.812206 + 0.583370i \(0.198266\pi\)
\(468\) 1333.04 0.131666
\(469\) 0 0
\(470\) −4613.09 −0.452737
\(471\) 4694.28 0.459238
\(472\) −327.370 −0.0319246
\(473\) −19380.7 −1.88398
\(474\) 4806.64 0.465772
\(475\) 1364.92 0.131846
\(476\) 0 0
\(477\) 2747.78 0.263758
\(478\) −4871.77 −0.466171
\(479\) 12991.4 1.23923 0.619617 0.784904i \(-0.287288\pi\)
0.619617 + 0.784904i \(0.287288\pi\)
\(480\) 2749.71 0.261472
\(481\) 10159.1 0.963025
\(482\) −9127.57 −0.862551
\(483\) 0 0
\(484\) −347.087 −0.0325964
\(485\) 6125.17 0.573463
\(486\) 413.480 0.0385922
\(487\) −12863.5 −1.19692 −0.598461 0.801152i \(-0.704221\pi\)
−0.598461 + 0.801152i \(0.704221\pi\)
\(488\) 3814.57 0.353847
\(489\) 3342.92 0.309145
\(490\) 0 0
\(491\) −4898.10 −0.450200 −0.225100 0.974336i \(-0.572271\pi\)
−0.225100 + 0.974336i \(0.572271\pi\)
\(492\) −5417.63 −0.496435
\(493\) −8037.32 −0.734245
\(494\) 2695.55 0.245503
\(495\) 1683.14 0.152831
\(496\) −447.787 −0.0405368
\(497\) 0 0
\(498\) −1925.23 −0.173236
\(499\) 10308.0 0.924746 0.462373 0.886686i \(-0.346998\pi\)
0.462373 + 0.886686i \(0.346998\pi\)
\(500\) −638.086 −0.0570721
\(501\) −5323.41 −0.474715
\(502\) 9477.37 0.842621
\(503\) 15119.6 1.34026 0.670130 0.742244i \(-0.266238\pi\)
0.670130 + 0.742244i \(0.266238\pi\)
\(504\) 0 0
\(505\) 1690.72 0.148982
\(506\) −10289.6 −0.904009
\(507\) 4065.28 0.356105
\(508\) −11336.6 −0.990114
\(509\) −14183.8 −1.23514 −0.617571 0.786515i \(-0.711883\pi\)
−0.617571 + 0.786515i \(0.711883\pi\)
\(510\) −1491.05 −0.129460
\(511\) 0 0
\(512\) −1047.24 −0.0903943
\(513\) −1474.12 −0.126869
\(514\) 3565.39 0.305958
\(515\) 2833.50 0.242444
\(516\) −7935.07 −0.676981
\(517\) 20280.7 1.72523
\(518\) 0 0
\(519\) −12647.6 −1.06969
\(520\) −3235.02 −0.272817
\(521\) 7464.08 0.627653 0.313827 0.949480i \(-0.398389\pi\)
0.313827 + 0.949480i \(0.398389\pi\)
\(522\) −2106.93 −0.176662
\(523\) 16642.9 1.39148 0.695739 0.718295i \(-0.255077\pi\)
0.695739 + 0.718295i \(0.255077\pi\)
\(524\) 3300.24 0.275137
\(525\) 0 0
\(526\) 12703.7 1.05305
\(527\) 9035.01 0.746814
\(528\) −324.881 −0.0267777
\(529\) 13971.8 1.14834
\(530\) −2597.51 −0.212885
\(531\) −132.132 −0.0107985
\(532\) 0 0
\(533\) 10264.8 0.834181
\(534\) 3459.57 0.280356
\(535\) −2812.66 −0.227293
\(536\) 12307.8 0.991818
\(537\) 7292.09 0.585991
\(538\) −11096.5 −0.889230
\(539\) 0 0
\(540\) 689.133 0.0549177
\(541\) 67.8755 0.00539408 0.00269704 0.999996i \(-0.499142\pi\)
0.00269704 + 0.999996i \(0.499142\pi\)
\(542\) 4100.26 0.324947
\(543\) −8102.74 −0.640372
\(544\) 10709.0 0.844014
\(545\) 9153.97 0.719473
\(546\) 0 0
\(547\) −9212.91 −0.720138 −0.360069 0.932926i \(-0.617247\pi\)
−0.360069 + 0.932926i \(0.617247\pi\)
\(548\) 4573.85 0.356542
\(549\) 1539.62 0.119689
\(550\) −1591.09 −0.123354
\(551\) 7511.51 0.580764
\(552\) −10815.3 −0.833931
\(553\) 0 0
\(554\) 3777.17 0.289669
\(555\) 5251.87 0.401675
\(556\) −11810.2 −0.900838
\(557\) 16699.6 1.27035 0.635173 0.772370i \(-0.280929\pi\)
0.635173 + 0.772370i \(0.280929\pi\)
\(558\) 2368.46 0.179686
\(559\) 15034.6 1.13756
\(560\) 0 0
\(561\) 6555.13 0.493329
\(562\) −9934.67 −0.745674
\(563\) −14772.8 −1.10586 −0.552931 0.833227i \(-0.686491\pi\)
−0.552931 + 0.833227i \(0.686491\pi\)
\(564\) 8303.57 0.619935
\(565\) −159.016 −0.0118405
\(566\) −6202.26 −0.460601
\(567\) 0 0
\(568\) −2683.27 −0.198217
\(569\) 5663.76 0.417289 0.208644 0.977992i \(-0.433095\pi\)
0.208644 + 0.977992i \(0.433095\pi\)
\(570\) 1393.50 0.102399
\(571\) 5579.58 0.408929 0.204464 0.978874i \(-0.434455\pi\)
0.204464 + 0.978874i \(0.434455\pi\)
\(572\) 5539.99 0.404962
\(573\) −10833.3 −0.789821
\(574\) 0 0
\(575\) 4041.87 0.293144
\(576\) 2598.82 0.187993
\(577\) 2301.23 0.166034 0.0830170 0.996548i \(-0.473544\pi\)
0.0830170 + 0.996548i \(0.473544\pi\)
\(578\) 2552.77 0.183704
\(579\) 13405.0 0.962162
\(580\) −3511.55 −0.251395
\(581\) 0 0
\(582\) 6253.42 0.445382
\(583\) 11419.5 0.811232
\(584\) −6347.46 −0.449760
\(585\) −1305.70 −0.0922806
\(586\) 6428.34 0.453161
\(587\) 16470.4 1.15810 0.579052 0.815291i \(-0.303423\pi\)
0.579052 + 0.815291i \(0.303423\pi\)
\(588\) 0 0
\(589\) −8443.92 −0.590706
\(590\) 124.906 0.00871573
\(591\) 1303.27 0.0907093
\(592\) −1013.72 −0.0703779
\(593\) 13570.0 0.939715 0.469858 0.882742i \(-0.344305\pi\)
0.469858 + 0.882742i \(0.344305\pi\)
\(594\) 1718.38 0.118697
\(595\) 0 0
\(596\) −4182.46 −0.287450
\(597\) −1406.75 −0.0964393
\(598\) 7982.20 0.545847
\(599\) 27814.1 1.89725 0.948625 0.316403i \(-0.102475\pi\)
0.948625 + 0.316403i \(0.102475\pi\)
\(600\) −1672.38 −0.113791
\(601\) −20646.1 −1.40128 −0.700641 0.713514i \(-0.747102\pi\)
−0.700641 + 0.713514i \(0.747102\pi\)
\(602\) 0 0
\(603\) 4967.61 0.335483
\(604\) −2729.70 −0.183891
\(605\) 339.969 0.0228458
\(606\) 1726.12 0.115707
\(607\) −3315.28 −0.221686 −0.110843 0.993838i \(-0.535355\pi\)
−0.110843 + 0.993838i \(0.535355\pi\)
\(608\) −10008.4 −0.667588
\(609\) 0 0
\(610\) −1455.42 −0.0966037
\(611\) −15732.8 −1.04170
\(612\) 2683.88 0.177271
\(613\) −11113.9 −0.732278 −0.366139 0.930560i \(-0.619320\pi\)
−0.366139 + 0.930560i \(0.619320\pi\)
\(614\) −8166.89 −0.536790
\(615\) 5306.53 0.347935
\(616\) 0 0
\(617\) 7871.34 0.513595 0.256797 0.966465i \(-0.417333\pi\)
0.256797 + 0.966465i \(0.417333\pi\)
\(618\) 2892.83 0.188295
\(619\) 19107.1 1.24068 0.620339 0.784334i \(-0.286995\pi\)
0.620339 + 0.784334i \(0.286995\pi\)
\(620\) 3947.44 0.255698
\(621\) −4365.22 −0.282078
\(622\) 987.098 0.0636319
\(623\) 0 0
\(624\) 252.028 0.0161686
\(625\) 625.000 0.0400000
\(626\) −10404.7 −0.664305
\(627\) −6126.28 −0.390208
\(628\) 7987.60 0.507548
\(629\) 20453.9 1.29658
\(630\) 0 0
\(631\) −25769.9 −1.62580 −0.812902 0.582401i \(-0.802113\pi\)
−0.812902 + 0.582401i \(0.802113\pi\)
\(632\) 20996.5 1.32151
\(633\) −11206.5 −0.703665
\(634\) 7317.79 0.458401
\(635\) 11104.1 0.693939
\(636\) 4675.53 0.291504
\(637\) 0 0
\(638\) −8756.19 −0.543355
\(639\) −1083.01 −0.0670472
\(640\) 4875.87 0.301149
\(641\) −1954.61 −0.120440 −0.0602202 0.998185i \(-0.519180\pi\)
−0.0602202 + 0.998185i \(0.519180\pi\)
\(642\) −2871.54 −0.176528
\(643\) 19396.5 1.18961 0.594807 0.803868i \(-0.297228\pi\)
0.594807 + 0.803868i \(0.297228\pi\)
\(644\) 0 0
\(645\) 7772.34 0.474474
\(646\) 5427.10 0.330536
\(647\) −31264.3 −1.89973 −0.949865 0.312661i \(-0.898780\pi\)
−0.949865 + 0.312661i \(0.898780\pi\)
\(648\) 1806.17 0.109496
\(649\) −549.126 −0.0332127
\(650\) 1234.30 0.0744817
\(651\) 0 0
\(652\) 5688.18 0.341666
\(653\) 6442.75 0.386102 0.193051 0.981189i \(-0.438162\pi\)
0.193051 + 0.981189i \(0.438162\pi\)
\(654\) 9345.63 0.558781
\(655\) −3232.56 −0.192835
\(656\) −1024.27 −0.0609620
\(657\) −2561.93 −0.152132
\(658\) 0 0
\(659\) −3584.70 −0.211897 −0.105949 0.994372i \(-0.533788\pi\)
−0.105949 + 0.994372i \(0.533788\pi\)
\(660\) 2863.97 0.168909
\(661\) −6294.43 −0.370386 −0.185193 0.982702i \(-0.559291\pi\)
−0.185193 + 0.982702i \(0.559291\pi\)
\(662\) 11379.3 0.668078
\(663\) −5085.17 −0.297876
\(664\) −8409.85 −0.491514
\(665\) 0 0
\(666\) 5361.83 0.311962
\(667\) 22243.4 1.29126
\(668\) −9058.11 −0.524654
\(669\) 2528.42 0.146120
\(670\) −4695.94 −0.270776
\(671\) 6398.51 0.368125
\(672\) 0 0
\(673\) −10233.9 −0.586162 −0.293081 0.956088i \(-0.594681\pi\)
−0.293081 + 0.956088i \(0.594681\pi\)
\(674\) −9986.94 −0.570745
\(675\) −675.000 −0.0384900
\(676\) 6917.33 0.393567
\(677\) 7100.75 0.403108 0.201554 0.979477i \(-0.435401\pi\)
0.201554 + 0.979477i \(0.435401\pi\)
\(678\) −162.345 −0.00919593
\(679\) 0 0
\(680\) −6513.23 −0.367310
\(681\) 2976.45 0.167486
\(682\) 9843.10 0.552657
\(683\) −35274.6 −1.97620 −0.988100 0.153813i \(-0.950845\pi\)
−0.988100 + 0.153813i \(0.950845\pi\)
\(684\) −2508.30 −0.140215
\(685\) −4480.05 −0.249889
\(686\) 0 0
\(687\) −19234.2 −1.06817
\(688\) −1500.22 −0.0831330
\(689\) −8858.74 −0.489828
\(690\) 4126.50 0.227671
\(691\) −4945.12 −0.272245 −0.136122 0.990692i \(-0.543464\pi\)
−0.136122 + 0.990692i \(0.543464\pi\)
\(692\) −21520.8 −1.18222
\(693\) 0 0
\(694\) −3296.31 −0.180297
\(695\) 11568.0 0.631368
\(696\) −9203.54 −0.501235
\(697\) 20666.7 1.12311
\(698\) −16588.2 −0.899532
\(699\) 6823.06 0.369201
\(700\) 0 0
\(701\) −15300.4 −0.824379 −0.412190 0.911098i \(-0.635236\pi\)
−0.412190 + 0.911098i \(0.635236\pi\)
\(702\) −1333.04 −0.0716701
\(703\) −19115.7 −1.02555
\(704\) 10800.4 0.578206
\(705\) −8133.28 −0.434492
\(706\) −7787.38 −0.415130
\(707\) 0 0
\(708\) −224.830 −0.0119345
\(709\) −28297.4 −1.49892 −0.749458 0.662052i \(-0.769686\pi\)
−0.749458 + 0.662052i \(0.769686\pi\)
\(710\) 1023.78 0.0541153
\(711\) 8474.51 0.447003
\(712\) 15112.2 0.795441
\(713\) −25004.5 −1.31336
\(714\) 0 0
\(715\) −5426.37 −0.283825
\(716\) 12407.9 0.647635
\(717\) −8589.35 −0.447385
\(718\) −18461.9 −0.959597
\(719\) −8548.96 −0.443425 −0.221712 0.975112i \(-0.571165\pi\)
−0.221712 + 0.975112i \(0.571165\pi\)
\(720\) 130.289 0.00674387
\(721\) 0 0
\(722\) 6598.97 0.340150
\(723\) −16092.7 −0.827792
\(724\) −13787.3 −0.707737
\(725\) 3439.53 0.176194
\(726\) 347.087 0.0177432
\(727\) −14345.3 −0.731827 −0.365913 0.930649i \(-0.619243\pi\)
−0.365913 + 0.930649i \(0.619243\pi\)
\(728\) 0 0
\(729\) 729.000 0.0370370
\(730\) 2421.83 0.122789
\(731\) 30270.0 1.53157
\(732\) 2619.76 0.132280
\(733\) 22624.0 1.14002 0.570012 0.821637i \(-0.306939\pi\)
0.570012 + 0.821637i \(0.306939\pi\)
\(734\) 19512.9 0.981248
\(735\) 0 0
\(736\) −29637.3 −1.48430
\(737\) 20644.9 1.03184
\(738\) 5417.63 0.270225
\(739\) 14837.3 0.738566 0.369283 0.929317i \(-0.379603\pi\)
0.369283 + 0.929317i \(0.379603\pi\)
\(740\) 8936.39 0.443930
\(741\) 4752.49 0.235610
\(742\) 0 0
\(743\) 13073.1 0.645497 0.322749 0.946485i \(-0.395393\pi\)
0.322749 + 0.946485i \(0.395393\pi\)
\(744\) 10346.0 0.509815
\(745\) 4096.69 0.201464
\(746\) −918.813 −0.0450940
\(747\) −3394.35 −0.166255
\(748\) 11154.0 0.545226
\(749\) 0 0
\(750\) 638.086 0.0310661
\(751\) 16213.3 0.787791 0.393895 0.919155i \(-0.371127\pi\)
0.393895 + 0.919155i \(0.371127\pi\)
\(752\) 1569.89 0.0761278
\(753\) 16709.4 0.808665
\(754\) 6792.65 0.328082
\(755\) 2673.72 0.128883
\(756\) 0 0
\(757\) 19903.9 0.955642 0.477821 0.878457i \(-0.341427\pi\)
0.477821 + 0.878457i \(0.341427\pi\)
\(758\) −14595.3 −0.699372
\(759\) −18141.4 −0.867580
\(760\) 6087.13 0.290531
\(761\) 30125.5 1.43502 0.717509 0.696549i \(-0.245282\pi\)
0.717509 + 0.696549i \(0.245282\pi\)
\(762\) 11336.6 0.538950
\(763\) 0 0
\(764\) −18433.5 −0.872907
\(765\) −2628.84 −0.124243
\(766\) 14681.0 0.692489
\(767\) 425.986 0.0200541
\(768\) 11908.1 0.559503
\(769\) 36049.1 1.69046 0.845230 0.534402i \(-0.179463\pi\)
0.845230 + 0.534402i \(0.179463\pi\)
\(770\) 0 0
\(771\) 6286.09 0.293629
\(772\) 22809.4 1.06338
\(773\) 9644.77 0.448769 0.224384 0.974501i \(-0.427963\pi\)
0.224384 + 0.974501i \(0.427963\pi\)
\(774\) 7935.07 0.368502
\(775\) −3866.48 −0.179211
\(776\) 27316.4 1.26366
\(777\) 0 0
\(778\) −15712.3 −0.724054
\(779\) −19314.7 −0.888344
\(780\) −2221.73 −0.101988
\(781\) −4500.88 −0.206215
\(782\) 16071.0 0.734908
\(783\) −3714.69 −0.169543
\(784\) 0 0
\(785\) −7823.80 −0.355724
\(786\) −3300.24 −0.149766
\(787\) 25218.6 1.14224 0.571122 0.820865i \(-0.306508\pi\)
0.571122 + 0.820865i \(0.306508\pi\)
\(788\) 2217.59 0.100252
\(789\) 22397.6 1.01062
\(790\) −8011.06 −0.360786
\(791\) 0 0
\(792\) 7506.28 0.336773
\(793\) −4963.67 −0.222276
\(794\) 19768.8 0.883586
\(795\) −4579.64 −0.204306
\(796\) −2393.67 −0.106584
\(797\) −32042.3 −1.42409 −0.712044 0.702135i \(-0.752230\pi\)
−0.712044 + 0.702135i \(0.752230\pi\)
\(798\) 0 0
\(799\) −31675.7 −1.40251
\(800\) −4582.85 −0.202535
\(801\) 6099.52 0.269059
\(802\) −18984.5 −0.835867
\(803\) −10647.1 −0.467908
\(804\) 8452.69 0.370775
\(805\) 0 0
\(806\) −7635.82 −0.333698
\(807\) −19564.1 −0.853396
\(808\) 7540.07 0.328291
\(809\) 3427.90 0.148972 0.0744860 0.997222i \(-0.476268\pi\)
0.0744860 + 0.997222i \(0.476268\pi\)
\(810\) −689.133 −0.0298934
\(811\) −23094.4 −0.999943 −0.499972 0.866042i \(-0.666656\pi\)
−0.499972 + 0.866042i \(0.666656\pi\)
\(812\) 0 0
\(813\) 7229.11 0.311852
\(814\) 22283.3 0.959494
\(815\) −5571.53 −0.239463
\(816\) 507.422 0.0217688
\(817\) −28289.7 −1.21142
\(818\) −12639.3 −0.540249
\(819\) 0 0
\(820\) 9029.39 0.384537
\(821\) 474.741 0.0201810 0.0100905 0.999949i \(-0.496788\pi\)
0.0100905 + 0.999949i \(0.496788\pi\)
\(822\) −4573.85 −0.194077
\(823\) 24159.8 1.02328 0.511638 0.859201i \(-0.329039\pi\)
0.511638 + 0.859201i \(0.329039\pi\)
\(824\) 12636.5 0.534240
\(825\) −2805.23 −0.118383
\(826\) 0 0
\(827\) −7566.35 −0.318147 −0.159074 0.987267i \(-0.550851\pi\)
−0.159074 + 0.987267i \(0.550851\pi\)
\(828\) −7427.70 −0.311752
\(829\) 10580.9 0.443295 0.221648 0.975127i \(-0.428857\pi\)
0.221648 + 0.975127i \(0.428857\pi\)
\(830\) 3208.72 0.134188
\(831\) 6659.48 0.277996
\(832\) −8378.49 −0.349125
\(833\) 0 0
\(834\) 11810.2 0.490354
\(835\) 8872.34 0.367713
\(836\) −10424.2 −0.431256
\(837\) 4175.80 0.172445
\(838\) 16411.1 0.676507
\(839\) −15315.6 −0.630218 −0.315109 0.949055i \(-0.602041\pi\)
−0.315109 + 0.949055i \(0.602041\pi\)
\(840\) 0 0
\(841\) −5460.40 −0.223888
\(842\) −16876.4 −0.690735
\(843\) −17515.7 −0.715625
\(844\) −19068.6 −0.777688
\(845\) −6775.47 −0.275838
\(846\) −8303.57 −0.337450
\(847\) 0 0
\(848\) 883.966 0.0357966
\(849\) −10935.1 −0.442040
\(850\) 2485.08 0.100279
\(851\) −56606.4 −2.28019
\(852\) −1842.81 −0.0741004
\(853\) −18598.2 −0.746528 −0.373264 0.927725i \(-0.621761\pi\)
−0.373264 + 0.927725i \(0.621761\pi\)
\(854\) 0 0
\(855\) 2456.86 0.0982723
\(856\) −12543.6 −0.500853
\(857\) −41775.3 −1.66513 −0.832566 0.553926i \(-0.813129\pi\)
−0.832566 + 0.553926i \(0.813129\pi\)
\(858\) −5539.99 −0.220434
\(859\) −32414.7 −1.28752 −0.643758 0.765229i \(-0.722626\pi\)
−0.643758 + 0.765229i \(0.722626\pi\)
\(860\) 13225.1 0.524387
\(861\) 0 0
\(862\) 27776.4 1.09753
\(863\) −31299.7 −1.23459 −0.617297 0.786730i \(-0.711772\pi\)
−0.617297 + 0.786730i \(0.711772\pi\)
\(864\) 4949.48 0.194890
\(865\) 21079.4 0.828580
\(866\) −8794.94 −0.345109
\(867\) 4500.75 0.176302
\(868\) 0 0
\(869\) 35219.2 1.37483
\(870\) 3511.55 0.136842
\(871\) −16015.4 −0.623030
\(872\) 40823.8 1.58540
\(873\) 11025.3 0.427434
\(874\) −15019.6 −0.581288
\(875\) 0 0
\(876\) −4359.29 −0.168136
\(877\) −19973.0 −0.769031 −0.384515 0.923119i \(-0.625631\pi\)
−0.384515 + 0.923119i \(0.625631\pi\)
\(878\) 31204.9 1.19945
\(879\) 11333.7 0.434900
\(880\) 541.469 0.0207419
\(881\) −17367.9 −0.664176 −0.332088 0.943248i \(-0.607753\pi\)
−0.332088 + 0.943248i \(0.607753\pi\)
\(882\) 0 0
\(883\) −14364.2 −0.547446 −0.273723 0.961809i \(-0.588255\pi\)
−0.273723 + 0.961809i \(0.588255\pi\)
\(884\) −8652.73 −0.329211
\(885\) 220.219 0.00836450
\(886\) 2745.09 0.104089
\(887\) 33738.1 1.27713 0.638564 0.769568i \(-0.279529\pi\)
0.638564 + 0.769568i \(0.279529\pi\)
\(888\) 23421.7 0.885114
\(889\) 0 0
\(890\) −5765.95 −0.217163
\(891\) 3029.65 0.113914
\(892\) 4302.26 0.161491
\(893\) 29603.4 1.10934
\(894\) 4182.46 0.156468
\(895\) −12153.5 −0.453906
\(896\) 0 0
\(897\) 14073.3 0.523850
\(898\) 1508.86 0.0560705
\(899\) −21278.2 −0.789398
\(900\) −1148.55 −0.0425391
\(901\) −17835.8 −0.659485
\(902\) 22515.2 0.831123
\(903\) 0 0
\(904\) −709.162 −0.0260911
\(905\) 13504.6 0.496030
\(906\) 2729.70 0.100097
\(907\) −32998.6 −1.20805 −0.604024 0.796966i \(-0.706437\pi\)
−0.604024 + 0.796966i \(0.706437\pi\)
\(908\) 5064.62 0.185105
\(909\) 3043.29 0.111045
\(910\) 0 0
\(911\) 33446.3 1.21638 0.608192 0.793790i \(-0.291895\pi\)
0.608192 + 0.793790i \(0.291895\pi\)
\(912\) −474.225 −0.0172184
\(913\) −14106.6 −0.511347
\(914\) −12576.6 −0.455139
\(915\) −2566.03 −0.0927108
\(916\) −32728.2 −1.18053
\(917\) 0 0
\(918\) −2683.88 −0.0964939
\(919\) 41708.7 1.49711 0.748554 0.663074i \(-0.230748\pi\)
0.748554 + 0.663074i \(0.230748\pi\)
\(920\) 18025.5 0.645960
\(921\) −14398.9 −0.515158
\(922\) −12137.8 −0.433556
\(923\) 3491.58 0.124514
\(924\) 0 0
\(925\) −8753.12 −0.311136
\(926\) −24607.7 −0.873283
\(927\) 5100.30 0.180707
\(928\) −25220.6 −0.892140
\(929\) −49024.6 −1.73137 −0.865686 0.500587i \(-0.833117\pi\)
−0.865686 + 0.500587i \(0.833117\pi\)
\(930\) −3947.44 −0.139184
\(931\) 0 0
\(932\) 11609.9 0.408040
\(933\) 1740.34 0.0610677
\(934\) −27894.6 −0.977235
\(935\) −10925.2 −0.382131
\(936\) −5823.03 −0.203346
\(937\) 5447.58 0.189930 0.0949651 0.995481i \(-0.469726\pi\)
0.0949651 + 0.995481i \(0.469726\pi\)
\(938\) 0 0
\(939\) −18344.4 −0.637535
\(940\) −13839.3 −0.480200
\(941\) −4125.75 −0.142928 −0.0714642 0.997443i \(-0.522767\pi\)
−0.0714642 + 0.997443i \(0.522767\pi\)
\(942\) −7987.60 −0.276274
\(943\) −57195.5 −1.97513
\(944\) −42.5069 −0.00146555
\(945\) 0 0
\(946\) 32977.4 1.13339
\(947\) 17332.3 0.594747 0.297374 0.954761i \(-0.403889\pi\)
0.297374 + 0.954761i \(0.403889\pi\)
\(948\) 14419.9 0.494026
\(949\) 8259.57 0.282526
\(950\) −2322.50 −0.0793177
\(951\) 12901.9 0.439929
\(952\) 0 0
\(953\) 56839.4 1.93201 0.966007 0.258517i \(-0.0832337\pi\)
0.966007 + 0.258517i \(0.0832337\pi\)
\(954\) −4675.53 −0.158675
\(955\) 18055.5 0.611792
\(956\) −14615.3 −0.494449
\(957\) −15437.9 −0.521459
\(958\) −22105.7 −0.745515
\(959\) 0 0
\(960\) −4331.37 −0.145619
\(961\) −5871.48 −0.197089
\(962\) −17286.3 −0.579349
\(963\) −5062.78 −0.169414
\(964\) −27382.7 −0.914873
\(965\) −22341.6 −0.745287
\(966\) 0 0
\(967\) −13284.2 −0.441769 −0.220884 0.975300i \(-0.570894\pi\)
−0.220884 + 0.975300i \(0.570894\pi\)
\(968\) 1516.15 0.0503420
\(969\) 9568.44 0.317216
\(970\) −10422.4 −0.344992
\(971\) −12153.0 −0.401658 −0.200829 0.979626i \(-0.564364\pi\)
−0.200829 + 0.979626i \(0.564364\pi\)
\(972\) 1240.44 0.0409332
\(973\) 0 0
\(974\) 21888.1 0.720060
\(975\) 2176.17 0.0714803
\(976\) 495.298 0.0162440
\(977\) −37999.3 −1.24433 −0.622163 0.782888i \(-0.713746\pi\)
−0.622163 + 0.782888i \(0.713746\pi\)
\(978\) −5688.18 −0.185980
\(979\) 25349.0 0.827537
\(980\) 0 0
\(981\) 16477.1 0.536264
\(982\) 8334.42 0.270837
\(983\) −22375.0 −0.725993 −0.362996 0.931791i \(-0.618246\pi\)
−0.362996 + 0.931791i \(0.618246\pi\)
\(984\) 23665.5 0.766695
\(985\) −2172.11 −0.0702631
\(986\) 13676.0 0.441717
\(987\) 0 0
\(988\) 8086.65 0.260395
\(989\) −83772.9 −2.69345
\(990\) −2863.97 −0.0919423
\(991\) 18985.3 0.608564 0.304282 0.952582i \(-0.401583\pi\)
0.304282 + 0.952582i \(0.401583\pi\)
\(992\) 28351.2 0.907412
\(993\) 20062.6 0.641156
\(994\) 0 0
\(995\) 2344.58 0.0747016
\(996\) −5775.70 −0.183745
\(997\) 56476.5 1.79401 0.897006 0.442019i \(-0.145738\pi\)
0.897006 + 0.442019i \(0.145738\pi\)
\(998\) −17539.6 −0.556321
\(999\) 9453.37 0.299391
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 735.4.a.q.1.1 2
3.2 odd 2 2205.4.a.v.1.2 2
7.6 odd 2 105.4.a.g.1.1 2
21.20 even 2 315.4.a.g.1.2 2
28.27 even 2 1680.4.a.y.1.1 2
35.13 even 4 525.4.d.j.274.3 4
35.27 even 4 525.4.d.j.274.2 4
35.34 odd 2 525.4.a.i.1.2 2
105.104 even 2 1575.4.a.y.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
105.4.a.g.1.1 2 7.6 odd 2
315.4.a.g.1.2 2 21.20 even 2
525.4.a.i.1.2 2 35.34 odd 2
525.4.d.j.274.2 4 35.27 even 4
525.4.d.j.274.3 4 35.13 even 4
735.4.a.q.1.1 2 1.1 even 1 trivial
1575.4.a.y.1.1 2 105.104 even 2
1680.4.a.y.1.1 2 28.27 even 2
2205.4.a.v.1.2 2 3.2 odd 2