Properties

Label 735.4.a.p
Level $735$
Weight $4$
Character orbit 735.a
Self dual yes
Analytic conductor $43.366$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [735,4,Mod(1,735)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(735, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("735.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 735 = 3 \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 735.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(43.3664038542\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{65}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 105)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{65})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta q^{2} - 3 q^{3} + (\beta + 8) q^{4} - 5 q^{5} - 3 \beta q^{6} + (\beta + 16) q^{8} + 9 q^{9} +O(q^{10}) \) Copy content Toggle raw display \( q + \beta q^{2} - 3 q^{3} + (\beta + 8) q^{4} - 5 q^{5} - 3 \beta q^{6} + (\beta + 16) q^{8} + 9 q^{9} - 5 \beta q^{10} + ( - 2 \beta - 10) q^{11} + ( - 3 \beta - 24) q^{12} + ( - 2 \beta + 12) q^{13} + 15 q^{15} + (9 \beta - 48) q^{16} + (16 \beta - 66) q^{17} + 9 \beta q^{18} + (14 \beta - 58) q^{19} + ( - 5 \beta - 40) q^{20} + ( - 12 \beta - 32) q^{22} + ( - 20 \beta + 140) q^{23} + ( - 3 \beta - 48) q^{24} + 25 q^{25} + (10 \beta - 32) q^{26} - 27 q^{27} + ( - 48 \beta - 74) q^{29} + 15 \beta q^{30} + ( - 42 \beta - 54) q^{31} + ( - 47 \beta + 16) q^{32} + (6 \beta + 30) q^{33} + ( - 50 \beta + 256) q^{34} + (9 \beta + 72) q^{36} + ( - 36 \beta - 30) q^{37} + ( - 44 \beta + 224) q^{38} + (6 \beta - 36) q^{39} + ( - 5 \beta - 80) q^{40} + ( - 100 \beta + 138) q^{41} + ( - 32 \beta - 156) q^{43} + ( - 28 \beta - 112) q^{44} - 45 q^{45} + (120 \beta - 320) q^{46} + (48 \beta - 304) q^{47} + ( - 27 \beta + 144) q^{48} + 25 \beta q^{50} + ( - 48 \beta + 198) q^{51} + ( - 6 \beta + 64) q^{52} + (86 \beta + 120) q^{53} - 27 \beta q^{54} + (10 \beta + 50) q^{55} + ( - 42 \beta + 174) q^{57} + ( - 122 \beta - 768) q^{58} + ( - 84 \beta + 464) q^{59} + (15 \beta + 120) q^{60} + ( - 24 \beta + 114) q^{61} + ( - 96 \beta - 672) q^{62} + ( - 103 \beta - 368) q^{64} + (10 \beta - 60) q^{65} + (36 \beta + 96) q^{66} + (64 \beta - 84) q^{67} + (78 \beta - 272) q^{68} + (60 \beta - 420) q^{69} + (42 \beta + 814) q^{71} + (9 \beta + 144) q^{72} + (202 \beta + 92) q^{73} + ( - 66 \beta - 576) q^{74} - 75 q^{75} + (68 \beta - 240) q^{76} + ( - 30 \beta + 96) q^{78} + ( - 104 \beta - 392) q^{79} + ( - 45 \beta + 240) q^{80} + 81 q^{81} + (38 \beta - 1600) q^{82} + ( - 216 \beta - 356) q^{83} + ( - 80 \beta + 330) q^{85} + ( - 188 \beta - 512) q^{86} + (144 \beta + 222) q^{87} + ( - 44 \beta - 192) q^{88} + ( - 8 \beta - 290) q^{89} - 45 \beta q^{90} + ( - 40 \beta + 800) q^{92} + (126 \beta + 162) q^{93} + ( - 256 \beta + 768) q^{94} + ( - 70 \beta + 290) q^{95} + (141 \beta - 48) q^{96} + ( - 314 \beta - 104) q^{97} + ( - 18 \beta - 90) q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{2} - 6 q^{3} + 17 q^{4} - 10 q^{5} - 3 q^{6} + 33 q^{8} + 18 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + q^{2} - 6 q^{3} + 17 q^{4} - 10 q^{5} - 3 q^{6} + 33 q^{8} + 18 q^{9} - 5 q^{10} - 22 q^{11} - 51 q^{12} + 22 q^{13} + 30 q^{15} - 87 q^{16} - 116 q^{17} + 9 q^{18} - 102 q^{19} - 85 q^{20} - 76 q^{22} + 260 q^{23} - 99 q^{24} + 50 q^{25} - 54 q^{26} - 54 q^{27} - 196 q^{29} + 15 q^{30} - 150 q^{31} - 15 q^{32} + 66 q^{33} + 462 q^{34} + 153 q^{36} - 96 q^{37} + 404 q^{38} - 66 q^{39} - 165 q^{40} + 176 q^{41} - 344 q^{43} - 252 q^{44} - 90 q^{45} - 520 q^{46} - 560 q^{47} + 261 q^{48} + 25 q^{50} + 348 q^{51} + 122 q^{52} + 326 q^{53} - 27 q^{54} + 110 q^{55} + 306 q^{57} - 1658 q^{58} + 844 q^{59} + 255 q^{60} + 204 q^{61} - 1440 q^{62} - 839 q^{64} - 110 q^{65} + 228 q^{66} - 104 q^{67} - 466 q^{68} - 780 q^{69} + 1670 q^{71} + 297 q^{72} + 386 q^{73} - 1218 q^{74} - 150 q^{75} - 412 q^{76} + 162 q^{78} - 888 q^{79} + 435 q^{80} + 162 q^{81} - 3162 q^{82} - 928 q^{83} + 580 q^{85} - 1212 q^{86} + 588 q^{87} - 428 q^{88} - 588 q^{89} - 45 q^{90} + 1560 q^{92} + 450 q^{93} + 1280 q^{94} + 510 q^{95} + 45 q^{96} - 522 q^{97} - 198 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−3.53113
4.53113
−3.53113 −3.00000 4.46887 −5.00000 10.5934 0 12.4689 9.00000 17.6556
1.2 4.53113 −3.00000 12.5311 −5.00000 −13.5934 0 20.5311 9.00000 −22.6556
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)
\(5\) \( +1 \)
\(7\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 735.4.a.p 2
3.b odd 2 1 2205.4.a.z 2
7.b odd 2 1 105.4.a.f 2
21.c even 2 1 315.4.a.i 2
28.d even 2 1 1680.4.a.bg 2
35.c odd 2 1 525.4.a.k 2
35.f even 4 2 525.4.d.h 4
105.g even 2 1 1575.4.a.w 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
105.4.a.f 2 7.b odd 2 1
315.4.a.i 2 21.c even 2 1
525.4.a.k 2 35.c odd 2 1
525.4.d.h 4 35.f even 4 2
735.4.a.p 2 1.a even 1 1 trivial
1575.4.a.w 2 105.g even 2 1
1680.4.a.bg 2 28.d even 2 1
2205.4.a.z 2 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(735))\):

\( T_{2}^{2} - T_{2} - 16 \) Copy content Toggle raw display
\( T_{11}^{2} + 22T_{11} + 56 \) Copy content Toggle raw display
\( T_{13}^{2} - 22T_{13} + 56 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} - T - 16 \) Copy content Toggle raw display
$3$ \( (T + 3)^{2} \) Copy content Toggle raw display
$5$ \( (T + 5)^{2} \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( T^{2} + 22T + 56 \) Copy content Toggle raw display
$13$ \( T^{2} - 22T + 56 \) Copy content Toggle raw display
$17$ \( T^{2} + 116T - 796 \) Copy content Toggle raw display
$19$ \( T^{2} + 102T - 584 \) Copy content Toggle raw display
$23$ \( T^{2} - 260T + 10400 \) Copy content Toggle raw display
$29$ \( T^{2} + 196T - 27836 \) Copy content Toggle raw display
$31$ \( T^{2} + 150T - 23040 \) Copy content Toggle raw display
$37$ \( T^{2} + 96T - 18756 \) Copy content Toggle raw display
$41$ \( T^{2} - 176T - 154756 \) Copy content Toggle raw display
$43$ \( T^{2} + 344T + 12944 \) Copy content Toggle raw display
$47$ \( T^{2} + 560T + 40960 \) Copy content Toggle raw display
$53$ \( T^{2} - 326T - 93616 \) Copy content Toggle raw display
$59$ \( T^{2} - 844T + 63424 \) Copy content Toggle raw display
$61$ \( T^{2} - 204T + 1044 \) Copy content Toggle raw display
$67$ \( T^{2} + 104T - 63856 \) Copy content Toggle raw display
$71$ \( T^{2} - 1670 T + 668560 \) Copy content Toggle raw display
$73$ \( T^{2} - 386T - 625816 \) Copy content Toggle raw display
$79$ \( T^{2} + 888T + 21376 \) Copy content Toggle raw display
$83$ \( T^{2} + 928T - 542864 \) Copy content Toggle raw display
$89$ \( T^{2} + 588T + 85396 \) Copy content Toggle raw display
$97$ \( T^{2} + 522 T - 1534064 \) Copy content Toggle raw display
show more
show less