Properties

Label 735.2.y.i.263.7
Level $735$
Weight $2$
Character 735.263
Analytic conductor $5.869$
Analytic rank $0$
Dimension $48$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [735,2,Mod(128,735)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("735.128"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(735, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([6, 9, 4])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 735 = 3 \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 735.y (of order \(12\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.86900454856\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(12\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 105)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 263.7
Character \(\chi\) \(=\) 735.263
Dual form 735.2.y.i.422.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.0799329 - 0.298314i) q^{2} +(-0.540759 + 1.64547i) q^{3} +(1.64945 + 0.952310i) q^{4} +(-0.596180 - 2.15513i) q^{5} +(0.447643 + 0.292843i) q^{6} +(0.852694 - 0.852694i) q^{8} +(-2.41516 - 1.77961i) q^{9} +(-0.690558 + 0.00558322i) q^{10} +(0.660315 + 0.381233i) q^{11} +(-2.45895 + 2.19915i) q^{12} +(2.27077 + 2.27077i) q^{13} +(3.86859 + 0.184406i) q^{15} +(1.71841 + 2.97637i) q^{16} +(4.69471 - 1.25794i) q^{17} +(-0.723932 + 0.578226i) q^{18} +(1.41761 - 0.818455i) q^{19} +(1.06898 - 4.12252i) q^{20} +(0.166508 - 0.166508i) q^{22} +(7.39003 + 1.98015i) q^{23} +(0.941983 + 1.86419i) q^{24} +(-4.28914 + 2.56969i) q^{25} +(0.858909 - 0.495891i) q^{26} +(4.23432 - 3.01174i) q^{27} -4.94251 q^{29} +(0.364238 - 1.13931i) q^{30} +(-2.96413 + 5.13403i) q^{31} +(3.35485 - 0.898930i) q^{32} +(-0.984380 + 0.880375i) q^{33} -1.50105i q^{34} +(-2.28894 - 5.23535i) q^{36} +(3.41587 + 0.915280i) q^{37} +(-0.130843 - 0.488313i) q^{38} +(-4.96442 + 2.50855i) q^{39} +(-2.34602 - 1.32930i) q^{40} -4.35963i q^{41} +(2.69037 + 2.69037i) q^{43} +(0.726104 + 1.25765i) q^{44} +(-2.39541 + 6.26594i) q^{45} +(1.18141 - 2.04627i) q^{46} +(-1.10971 + 4.14148i) q^{47} +(-5.82678 + 1.21809i) q^{48} +(0.423730 + 1.48491i) q^{50} +(-0.468795 + 8.40527i) q^{51} +(1.58304 + 5.90798i) q^{52} +(-1.79889 - 6.71354i) q^{53} +(-0.559982 - 1.50389i) q^{54} +(0.427939 - 1.65035i) q^{55} +(0.580162 + 2.77522i) q^{57} +(-0.395069 + 1.47442i) q^{58} +(-3.84501 + 6.65975i) q^{59} +(6.20543 + 3.98826i) q^{60} +(2.19699 + 3.80529i) q^{61} +(1.29462 + 1.29462i) q^{62} +5.80098i q^{64} +(3.54000 - 6.24757i) q^{65} +(0.183944 + 0.364025i) q^{66} +(0.0126297 + 0.0471345i) q^{67} +(8.94164 + 2.39591i) q^{68} +(-7.25451 + 11.0893i) q^{69} -12.4172i q^{71} +(-3.57685 + 0.541931i) q^{72} +(1.34043 - 0.359168i) q^{73} +(0.546081 - 0.945840i) q^{74} +(-1.90896 - 8.44724i) q^{75} +3.11769 q^{76} +(0.351513 + 1.68147i) q^{78} +(3.66808 - 2.11777i) q^{79} +(5.38997 - 5.47784i) q^{80} +(2.66599 + 8.59607i) q^{81} +(-1.30054 - 0.348478i) q^{82} +(5.05351 - 5.05351i) q^{83} +(-5.50993 - 9.36774i) q^{85} +(1.01762 - 0.587525i) q^{86} +(2.67271 - 8.13276i) q^{87} +(0.888122 - 0.237971i) q^{88} +(0.453600 + 0.785658i) q^{89} +(1.67774 + 1.21544i) q^{90} +(10.3038 + 10.3038i) q^{92} +(-6.84502 - 7.65367i) q^{93} +(1.14676 + 0.662081i) q^{94} +(-2.60902 - 2.56717i) q^{95} +(-0.335002 + 6.00642i) q^{96} +(-3.73061 + 3.73061i) q^{97} +(-0.916321 - 2.09584i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 2 q^{3} + 24 q^{6} + 8 q^{10} + 10 q^{12} + 16 q^{13} + 4 q^{15} - 8 q^{16} + 14 q^{18} - 8 q^{22} + 4 q^{25} - 40 q^{27} + 40 q^{30} + 24 q^{31} + 4 q^{33} + 8 q^{36} + 4 q^{37} + 16 q^{40} + 16 q^{43}+ \cdots + 120 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/735\mathbb{Z}\right)^\times\).

\(n\) \(346\) \(442\) \(491\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{3}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.0799329 0.298314i 0.0565211 0.210940i −0.931890 0.362741i \(-0.881841\pi\)
0.988411 + 0.151802i \(0.0485075\pi\)
\(3\) −0.540759 + 1.64547i −0.312207 + 0.950014i
\(4\) 1.64945 + 0.952310i 0.824725 + 0.476155i
\(5\) −0.596180 2.15513i −0.266620 0.963802i
\(6\) 0.447643 + 0.292843i 0.182749 + 0.119553i
\(7\) 0 0
\(8\) 0.852694 0.852694i 0.301473 0.301473i
\(9\) −2.41516 1.77961i −0.805053 0.593203i
\(10\) −0.690558 + 0.00558322i −0.218374 + 0.00176557i
\(11\) 0.660315 + 0.381233i 0.199092 + 0.114946i 0.596232 0.802812i \(-0.296664\pi\)
−0.397140 + 0.917758i \(0.629997\pi\)
\(12\) −2.45895 + 2.19915i −0.709839 + 0.634841i
\(13\) 2.27077 + 2.27077i 0.629797 + 0.629797i 0.948017 0.318220i \(-0.103085\pi\)
−0.318220 + 0.948017i \(0.603085\pi\)
\(14\) 0 0
\(15\) 3.86859 + 0.184406i 0.998866 + 0.0476133i
\(16\) 1.71841 + 2.97637i 0.429602 + 0.744092i
\(17\) 4.69471 1.25794i 1.13864 0.305096i 0.360233 0.932862i \(-0.382697\pi\)
0.778402 + 0.627766i \(0.216030\pi\)
\(18\) −0.723932 + 0.578226i −0.170632 + 0.136289i
\(19\) 1.41761 0.818455i 0.325221 0.187767i −0.328496 0.944505i \(-0.606542\pi\)
0.653717 + 0.756739i \(0.273209\pi\)
\(20\) 1.06898 4.12252i 0.239031 0.921823i
\(21\) 0 0
\(22\) 0.166508 0.166508i 0.0354996 0.0354996i
\(23\) 7.39003 + 1.98015i 1.54093 + 0.412890i 0.926566 0.376133i \(-0.122747\pi\)
0.614363 + 0.789024i \(0.289413\pi\)
\(24\) 0.941983 + 1.86419i 0.192281 + 0.380525i
\(25\) −4.28914 + 2.56969i −0.857828 + 0.513937i
\(26\) 0.858909 0.495891i 0.168446 0.0972523i
\(27\) 4.23432 3.01174i 0.814894 0.579610i
\(28\) 0 0
\(29\) −4.94251 −0.917801 −0.458900 0.888488i \(-0.651757\pi\)
−0.458900 + 0.888488i \(0.651757\pi\)
\(30\) 0.364238 1.13931i 0.0665005 0.208009i
\(31\) −2.96413 + 5.13403i −0.532374 + 0.922099i 0.466911 + 0.884304i \(0.345367\pi\)
−0.999286 + 0.0377949i \(0.987967\pi\)
\(32\) 3.35485 0.898930i 0.593060 0.158910i
\(33\) −0.984380 + 0.880375i −0.171358 + 0.153254i
\(34\) 1.50105i 0.257428i
\(35\) 0 0
\(36\) −2.28894 5.23535i −0.381491 0.872559i
\(37\) 3.41587 + 0.915280i 0.561566 + 0.150471i 0.528426 0.848980i \(-0.322783\pi\)
0.0331401 + 0.999451i \(0.489449\pi\)
\(38\) −0.130843 0.488313i −0.0212255 0.0792148i
\(39\) −4.96442 + 2.50855i −0.794943 + 0.401689i
\(40\) −2.34602 1.32930i −0.370939 0.210181i
\(41\) 4.35963i 0.680860i −0.940270 0.340430i \(-0.889427\pi\)
0.940270 0.340430i \(-0.110573\pi\)
\(42\) 0 0
\(43\) 2.69037 + 2.69037i 0.410277 + 0.410277i 0.881835 0.471558i \(-0.156308\pi\)
−0.471558 + 0.881835i \(0.656308\pi\)
\(44\) 0.726104 + 1.25765i 0.109464 + 0.189598i
\(45\) −2.39541 + 6.26594i −0.357087 + 0.934071i
\(46\) 1.18141 2.04627i 0.174190 0.301706i
\(47\) −1.10971 + 4.14148i −0.161867 + 0.604097i 0.836552 + 0.547888i \(0.184568\pi\)
−0.998419 + 0.0562089i \(0.982099\pi\)
\(48\) −5.82678 + 1.21809i −0.841023 + 0.175817i
\(49\) 0 0
\(50\) 0.423730 + 1.48491i 0.0599244 + 0.209998i
\(51\) −0.468795 + 8.40527i −0.0656444 + 1.17697i
\(52\) 1.58304 + 5.90798i 0.219528 + 0.819290i
\(53\) −1.79889 6.71354i −0.247096 0.922176i −0.972318 0.233661i \(-0.924929\pi\)
0.725222 0.688515i \(-0.241737\pi\)
\(54\) −0.559982 1.50389i −0.0762039 0.204654i
\(55\) 0.427939 1.65035i 0.0577032 0.222533i
\(56\) 0 0
\(57\) 0.580162 + 2.77522i 0.0768444 + 0.367587i
\(58\) −0.395069 + 1.47442i −0.0518751 + 0.193601i
\(59\) −3.84501 + 6.65975i −0.500577 + 0.867026i 0.499422 + 0.866359i \(0.333546\pi\)
−1.00000 0.000666931i \(0.999788\pi\)
\(60\) 6.20543 + 3.98826i 0.801118 + 0.514883i
\(61\) 2.19699 + 3.80529i 0.281295 + 0.487218i 0.971704 0.236202i \(-0.0759026\pi\)
−0.690409 + 0.723420i \(0.742569\pi\)
\(62\) 1.29462 + 1.29462i 0.164417 + 0.164417i
\(63\) 0 0
\(64\) 5.80098i 0.725122i
\(65\) 3.54000 6.24757i 0.439083 0.774916i
\(66\) 0.183944 + 0.364025i 0.0226419 + 0.0448084i
\(67\) 0.0126297 + 0.0471345i 0.00154296 + 0.00575840i 0.966693 0.255939i \(-0.0823845\pi\)
−0.965150 + 0.261697i \(0.915718\pi\)
\(68\) 8.94164 + 2.39591i 1.08433 + 0.290546i
\(69\) −7.25451 + 11.0893i −0.873341 + 1.33500i
\(70\) 0 0
\(71\) 12.4172i 1.47365i −0.676082 0.736826i \(-0.736324\pi\)
0.676082 0.736826i \(-0.263676\pi\)
\(72\) −3.57685 + 0.541931i −0.421536 + 0.0638672i
\(73\) 1.34043 0.359168i 0.156886 0.0420374i −0.179521 0.983754i \(-0.557455\pi\)
0.336407 + 0.941717i \(0.390788\pi\)
\(74\) 0.546081 0.945840i 0.0634806 0.109952i
\(75\) −1.90896 8.44724i −0.220428 0.975403i
\(76\) 3.11769 0.357624
\(77\) 0 0
\(78\) 0.351513 + 1.68147i 0.0398010 + 0.190389i
\(79\) 3.66808 2.11777i 0.412692 0.238268i −0.279254 0.960217i \(-0.590087\pi\)
0.691946 + 0.721950i \(0.256754\pi\)
\(80\) 5.38997 5.47784i 0.602617 0.612441i
\(81\) 2.66599 + 8.59607i 0.296221 + 0.955119i
\(82\) −1.30054 0.348478i −0.143620 0.0384830i
\(83\) 5.05351 5.05351i 0.554695 0.554695i −0.373097 0.927792i \(-0.621704\pi\)
0.927792 + 0.373097i \(0.121704\pi\)
\(84\) 0 0
\(85\) −5.50993 9.36774i −0.597635 1.01607i
\(86\) 1.01762 0.587525i 0.109733 0.0633544i
\(87\) 2.67271 8.13276i 0.286544 0.871924i
\(88\) 0.888122 0.237971i 0.0946741 0.0253678i
\(89\) 0.453600 + 0.785658i 0.0480815 + 0.0832796i 0.889065 0.457782i \(-0.151356\pi\)
−0.840983 + 0.541061i \(0.818023\pi\)
\(90\) 1.67774 + 1.21544i 0.176850 + 0.128118i
\(91\) 0 0
\(92\) 10.3038 + 10.3038i 1.07424 + 1.07424i
\(93\) −6.84502 7.65367i −0.709796 0.793649i
\(94\) 1.14676 + 0.662081i 0.118279 + 0.0682884i
\(95\) −2.60902 2.56717i −0.267680 0.263386i
\(96\) −0.335002 + 6.00642i −0.0341910 + 0.613028i
\(97\) −3.73061 + 3.73061i −0.378786 + 0.378786i −0.870664 0.491878i \(-0.836311\pi\)
0.491878 + 0.870664i \(0.336311\pi\)
\(98\) 0 0
\(99\) −0.916321 2.09584i −0.0920937 0.210640i
\(100\) −9.52185 + 0.153980i −0.952185 + 0.0153980i
\(101\) −16.4444 9.49420i −1.63628 0.944708i −0.982098 0.188373i \(-0.939679\pi\)
−0.654185 0.756335i \(-0.726988\pi\)
\(102\) 2.46993 + 0.811705i 0.244560 + 0.0803708i
\(103\) 3.26921 12.2009i 0.322125 1.20219i −0.595046 0.803692i \(-0.702866\pi\)
0.917171 0.398494i \(-0.130467\pi\)
\(104\) 3.87254 0.379733
\(105\) 0 0
\(106\) −2.14653 −0.208490
\(107\) −0.564395 + 2.10635i −0.0545621 + 0.203629i −0.987826 0.155563i \(-0.950281\pi\)
0.933264 + 0.359192i \(0.116948\pi\)
\(108\) 9.85240 0.935331i 0.948047 0.0900023i
\(109\) −2.04357 1.17986i −0.195739 0.113010i 0.398928 0.916982i \(-0.369382\pi\)
−0.594666 + 0.803973i \(0.702716\pi\)
\(110\) −0.458114 0.259577i −0.0436795 0.0247497i
\(111\) −3.35323 + 5.12578i −0.318275 + 0.486517i
\(112\) 0 0
\(113\) −11.9386 + 11.9386i −1.12309 + 1.12309i −0.131814 + 0.991274i \(0.542080\pi\)
−0.991274 + 0.131814i \(0.957920\pi\)
\(114\) 0.874260 + 0.0487609i 0.0818819 + 0.00456688i
\(115\) −0.138311 17.1070i −0.0128976 1.59523i
\(116\) −8.15242 4.70680i −0.756933 0.437015i
\(117\) −1.44319 9.52533i −0.133423 0.880617i
\(118\) 1.67935 + 1.67935i 0.154597 + 0.154597i
\(119\) 0 0
\(120\) 3.45597 3.14148i 0.315485 0.286777i
\(121\) −5.20932 9.02281i −0.473575 0.820256i
\(122\) 1.31078 0.351223i 0.118673 0.0317983i
\(123\) 7.17366 + 2.35751i 0.646827 + 0.212570i
\(124\) −9.77837 + 5.64555i −0.878124 + 0.506985i
\(125\) 8.09510 + 7.71164i 0.724048 + 0.689750i
\(126\) 0 0
\(127\) 4.46126 4.46126i 0.395873 0.395873i −0.480901 0.876775i \(-0.659691\pi\)
0.876775 + 0.480901i \(0.159691\pi\)
\(128\) 8.44022 + 2.26155i 0.746017 + 0.199895i
\(129\) −5.88177 + 2.97209i −0.517861 + 0.261678i
\(130\) −1.58077 1.55542i −0.138643 0.136419i
\(131\) −1.86149 + 1.07473i −0.162639 + 0.0938999i −0.579111 0.815249i \(-0.696600\pi\)
0.416471 + 0.909149i \(0.363267\pi\)
\(132\) −2.46207 + 0.514699i −0.214296 + 0.0447988i
\(133\) 0 0
\(134\) 0.0150704 0.00130188
\(135\) −9.01509 7.32994i −0.775896 0.630861i
\(136\) 2.93051 5.07580i 0.251289 0.435246i
\(137\) −8.51678 + 2.28207i −0.727638 + 0.194970i −0.603577 0.797305i \(-0.706258\pi\)
−0.124061 + 0.992275i \(0.539592\pi\)
\(138\) 2.72822 + 3.05052i 0.232241 + 0.259678i
\(139\) 10.3626i 0.878941i −0.898257 0.439471i \(-0.855166\pi\)
0.898257 0.439471i \(-0.144834\pi\)
\(140\) 0 0
\(141\) −6.21461 4.06553i −0.523364 0.342380i
\(142\) −3.70423 0.992544i −0.310852 0.0832925i
\(143\) 0.633730 + 2.36511i 0.0529951 + 0.197780i
\(144\) 1.14654 10.2465i 0.0955452 0.853875i
\(145\) 2.94663 + 10.6517i 0.244704 + 0.884578i
\(146\) 0.428578i 0.0354694i
\(147\) 0 0
\(148\) 4.76267 + 4.76267i 0.391489 + 0.391489i
\(149\) 8.72716 + 15.1159i 0.714957 + 1.23834i 0.962976 + 0.269586i \(0.0868870\pi\)
−0.248019 + 0.968755i \(0.579780\pi\)
\(150\) −2.67252 0.105744i −0.218210 0.00863393i
\(151\) 7.60786 13.1772i 0.619119 1.07235i −0.370528 0.928821i \(-0.620823\pi\)
0.989647 0.143524i \(-0.0458434\pi\)
\(152\) 0.510892 1.90668i 0.0414388 0.154652i
\(153\) −13.5771 5.31661i −1.09765 0.429823i
\(154\) 0 0
\(155\) 12.8316 + 3.32727i 1.03066 + 0.267253i
\(156\) −10.5775 0.589947i −0.846875 0.0472336i
\(157\) −2.36469 8.82516i −0.188723 0.704324i −0.993803 0.111158i \(-0.964544\pi\)
0.805080 0.593167i \(-0.202122\pi\)
\(158\) −0.338559 1.26352i −0.0269343 0.100520i
\(159\) 12.0197 + 0.670387i 0.953225 + 0.0531652i
\(160\) −3.93740 6.69421i −0.311279 0.529223i
\(161\) 0 0
\(162\) 2.77743 0.108192i 0.218215 0.00850040i
\(163\) 0.700710 2.61508i 0.0548838 0.204829i −0.933039 0.359775i \(-0.882854\pi\)
0.987923 + 0.154946i \(0.0495202\pi\)
\(164\) 4.15172 7.19099i 0.324195 0.561522i
\(165\) 2.48419 + 1.59660i 0.193394 + 0.124295i
\(166\) −1.10359 1.91147i −0.0856551 0.148359i
\(167\) −3.85551 3.85551i −0.298348 0.298348i 0.542018 0.840367i \(-0.317660\pi\)
−0.840367 + 0.542018i \(0.817660\pi\)
\(168\) 0 0
\(169\) 2.68725i 0.206712i
\(170\) −3.23495 + 0.894896i −0.248109 + 0.0686354i
\(171\) −4.88027 0.546083i −0.373204 0.0417600i
\(172\) 1.87556 + 6.99969i 0.143010 + 0.533721i
\(173\) −1.27815 0.342481i −0.0971763 0.0260383i 0.209903 0.977722i \(-0.432685\pi\)
−0.307080 + 0.951684i \(0.599352\pi\)
\(174\) −2.21248 1.44738i −0.167727 0.109726i
\(175\) 0 0
\(176\) 2.62045i 0.197524i
\(177\) −8.87921 9.92818i −0.667403 0.746247i
\(178\) 0.270630 0.0725151i 0.0202846 0.00543524i
\(179\) 0.120836 0.209294i 0.00903168 0.0156433i −0.861474 0.507801i \(-0.830458\pi\)
0.870506 + 0.492158i \(0.163792\pi\)
\(180\) −9.91822 + 8.05418i −0.739261 + 0.600323i
\(181\) −18.6864 −1.38895 −0.694475 0.719517i \(-0.744363\pi\)
−0.694475 + 0.719517i \(0.744363\pi\)
\(182\) 0 0
\(183\) −7.44955 + 1.55734i −0.550686 + 0.115122i
\(184\) 7.98990 4.61297i 0.589023 0.340073i
\(185\) −0.0639312 7.90730i −0.00470032 0.581357i
\(186\) −2.83034 + 1.43018i −0.207530 + 0.104866i
\(187\) 3.57956 + 0.959140i 0.261763 + 0.0701393i
\(188\) −5.77437 + 5.77437i −0.421140 + 0.421140i
\(189\) 0 0
\(190\) −0.974370 + 0.573106i −0.0706882 + 0.0415775i
\(191\) −12.3330 + 7.12049i −0.892388 + 0.515220i −0.874723 0.484624i \(-0.838957\pi\)
−0.0176651 + 0.999844i \(0.505623\pi\)
\(192\) −9.54535 3.13693i −0.688876 0.226388i
\(193\) −6.58385 + 1.76414i −0.473916 + 0.126985i −0.487868 0.872917i \(-0.662225\pi\)
0.0139523 + 0.999903i \(0.495559\pi\)
\(194\) 0.814694 + 1.41109i 0.0584916 + 0.101310i
\(195\) 8.36592 + 9.20340i 0.599096 + 0.659069i
\(196\) 0 0
\(197\) −7.65626 7.65626i −0.545486 0.545486i 0.379646 0.925132i \(-0.376046\pi\)
−0.925132 + 0.379646i \(0.876046\pi\)
\(198\) −0.698462 + 0.105824i −0.0496375 + 0.00752061i
\(199\) 14.1855 + 8.19000i 1.00558 + 0.580573i 0.909895 0.414838i \(-0.136162\pi\)
0.0956874 + 0.995411i \(0.469495\pi\)
\(200\) −1.46617 + 5.84848i −0.103674 + 0.413550i
\(201\) −0.0843881 0.00470666i −0.00595228 0.000331982i
\(202\) −4.14670 + 4.14670i −0.291761 + 0.291761i
\(203\) 0 0
\(204\) −8.77767 + 13.4176i −0.614560 + 0.939421i
\(205\) −9.39556 + 2.59913i −0.656214 + 0.181531i
\(206\) −3.37836 1.95050i −0.235382 0.135898i
\(207\) −14.3242 17.9337i −0.995601 1.24648i
\(208\) −2.85654 + 10.6607i −0.198065 + 0.739189i
\(209\) 1.24809 0.0863321
\(210\) 0 0
\(211\) −25.5028 −1.75568 −0.877842 0.478950i \(-0.841018\pi\)
−0.877842 + 0.478950i \(0.841018\pi\)
\(212\) 3.42620 12.7867i 0.235312 0.878197i
\(213\) 20.4322 + 6.71472i 1.39999 + 0.460085i
\(214\) 0.583239 + 0.336733i 0.0398694 + 0.0230186i
\(215\) 4.19414 7.40203i 0.286038 0.504814i
\(216\) 1.04248 6.17867i 0.0709320 0.420405i
\(217\) 0 0
\(218\) −0.515316 + 0.515316i −0.0349016 + 0.0349016i
\(219\) −0.133850 + 2.39987i −0.00904475 + 0.162168i
\(220\) 2.27750 2.31463i 0.153549 0.156052i
\(221\) 13.5171 + 7.80410i 0.909258 + 0.524960i
\(222\) 1.26106 + 1.41003i 0.0846365 + 0.0946352i
\(223\) 15.4546 + 15.4546i 1.03491 + 1.03491i 0.999368 + 0.0355465i \(0.0113172\pi\)
0.0355465 + 0.999368i \(0.488683\pi\)
\(224\) 0 0
\(225\) 14.9320 + 1.42678i 0.995466 + 0.0951186i
\(226\) 2.60716 + 4.51573i 0.173426 + 0.300382i
\(227\) −12.4101 + 3.32527i −0.823686 + 0.220706i −0.645957 0.763374i \(-0.723542\pi\)
−0.177728 + 0.984080i \(0.556875\pi\)
\(228\) −1.68592 + 5.13008i −0.111653 + 0.339748i
\(229\) 13.2508 7.65038i 0.875641 0.505551i 0.00642204 0.999979i \(-0.497956\pi\)
0.869219 + 0.494428i \(0.164622\pi\)
\(230\) −5.11430 1.32615i −0.337227 0.0874438i
\(231\) 0 0
\(232\) −4.21445 + 4.21445i −0.276692 + 0.276692i
\(233\) −6.62761 1.77586i −0.434189 0.116341i 0.0351029 0.999384i \(-0.488824\pi\)
−0.469292 + 0.883043i \(0.655491\pi\)
\(234\) −2.95690 0.330865i −0.193298 0.0216293i
\(235\) 9.58699 0.0775117i 0.625387 0.00505630i
\(236\) −12.6843 + 7.32328i −0.825677 + 0.476705i
\(237\) 1.50118 + 7.18093i 0.0975122 + 0.466452i
\(238\) 0 0
\(239\) −18.7082 −1.21013 −0.605067 0.796174i \(-0.706854\pi\)
−0.605067 + 0.796174i \(0.706854\pi\)
\(240\) 6.09896 + 11.8312i 0.393686 + 0.763703i
\(241\) −0.986063 + 1.70791i −0.0635179 + 0.110016i −0.896036 0.443982i \(-0.853565\pi\)
0.832518 + 0.553998i \(0.186899\pi\)
\(242\) −3.10802 + 0.832793i −0.199791 + 0.0535339i
\(243\) −15.5863 0.261589i −0.999859 0.0167810i
\(244\) 8.36885i 0.535761i
\(245\) 0 0
\(246\) 1.27669 1.95156i 0.0813987 0.124427i
\(247\) 5.07757 + 1.36053i 0.323078 + 0.0865685i
\(248\) 1.85026 + 6.90525i 0.117491 + 0.438484i
\(249\) 5.58268 + 11.0481i 0.353788 + 0.700148i
\(250\) 2.94755 1.79847i 0.186420 0.113745i
\(251\) 17.9016i 1.12994i −0.825112 0.564970i \(-0.808888\pi\)
0.825112 0.564970i \(-0.191112\pi\)
\(252\) 0 0
\(253\) 4.12485 + 4.12485i 0.259327 + 0.259327i
\(254\) −0.974254 1.68746i −0.0611301 0.105881i
\(255\) 18.3939 4.00074i 1.15187 0.250536i
\(256\) −4.45168 + 7.71053i −0.278230 + 0.481908i
\(257\) 5.10358 19.0468i 0.318353 1.18811i −0.602475 0.798138i \(-0.705819\pi\)
0.920827 0.389971i \(-0.127515\pi\)
\(258\) 0.416467 + 1.99218i 0.0259281 + 0.124028i
\(259\) 0 0
\(260\) 11.7887 6.93387i 0.731102 0.430021i
\(261\) 11.9369 + 8.79573i 0.738879 + 0.544442i
\(262\) 0.171813 + 0.641215i 0.0106147 + 0.0396144i
\(263\) −1.43607 5.35948i −0.0885517 0.330480i 0.907411 0.420244i \(-0.138055\pi\)
−0.995963 + 0.0897640i \(0.971389\pi\)
\(264\) −0.0886842 + 1.59006i −0.00545813 + 0.0978617i
\(265\) −13.3961 + 7.87931i −0.822914 + 0.484022i
\(266\) 0 0
\(267\) −1.53807 + 0.321534i −0.0941281 + 0.0196776i
\(268\) −0.0240547 + 0.0897733i −0.00146937 + 0.00548378i
\(269\) −5.02321 + 8.70045i −0.306270 + 0.530476i −0.977543 0.210734i \(-0.932414\pi\)
0.671273 + 0.741210i \(0.265748\pi\)
\(270\) −2.90723 + 2.10342i −0.176928 + 0.128010i
\(271\) −2.82028 4.88486i −0.171320 0.296734i 0.767562 0.640975i \(-0.221470\pi\)
−0.938881 + 0.344241i \(0.888136\pi\)
\(272\) 11.8115 + 11.8115i 0.716180 + 0.716180i
\(273\) 0 0
\(274\) 2.72309i 0.164508i
\(275\) −3.81183 + 0.0616420i −0.229862 + 0.00371715i
\(276\) −22.5264 + 11.3827i −1.35593 + 0.685158i
\(277\) 2.91038 + 10.8617i 0.174868 + 0.652615i 0.996574 + 0.0827040i \(0.0263556\pi\)
−0.821707 + 0.569911i \(0.806978\pi\)
\(278\) −3.09130 0.828310i −0.185404 0.0496787i
\(279\) 16.2954 7.12451i 0.975581 0.426533i
\(280\) 0 0
\(281\) 1.92831i 0.115033i −0.998345 0.0575167i \(-0.981682\pi\)
0.998345 0.0575167i \(-0.0183183\pi\)
\(282\) −1.70956 + 1.52893i −0.101803 + 0.0910466i
\(283\) −25.4667 + 6.82379i −1.51384 + 0.405632i −0.917709 0.397254i \(-0.869963\pi\)
−0.596132 + 0.802887i \(0.703296\pi\)
\(284\) 11.8250 20.4816i 0.701687 1.21536i
\(285\) 5.63507 2.90485i 0.333793 0.172069i
\(286\) 0.756201 0.0447151
\(287\) 0 0
\(288\) −9.70225 3.79926i −0.571710 0.223874i
\(289\) 5.73548 3.31138i 0.337381 0.194787i
\(290\) 3.41309 0.0275951i 0.200424 0.00162044i
\(291\) −4.12126 8.15598i −0.241592 0.478112i
\(292\) 2.55301 + 0.684078i 0.149404 + 0.0400326i
\(293\) −7.83332 + 7.83332i −0.457627 + 0.457627i −0.897876 0.440249i \(-0.854890\pi\)
0.440249 + 0.897876i \(0.354890\pi\)
\(294\) 0 0
\(295\) 16.6449 + 4.31607i 0.969105 + 0.251291i
\(296\) 3.69315 2.13224i 0.214660 0.123934i
\(297\) 3.94416 0.374436i 0.228863 0.0217270i
\(298\) 5.20686 1.39517i 0.301625 0.0808203i
\(299\) 12.2846 + 21.2775i 0.710435 + 1.23051i
\(300\) 4.89566 15.7512i 0.282651 0.909397i
\(301\) 0 0
\(302\) −3.32282 3.32282i −0.191207 0.191207i
\(303\) 24.5149 21.9248i 1.40835 1.25955i
\(304\) 4.87205 + 2.81288i 0.279431 + 0.161330i
\(305\) 6.89109 7.00343i 0.394583 0.401015i
\(306\) −2.67128 + 3.62527i −0.152707 + 0.207243i
\(307\) 17.0769 17.0769i 0.974628 0.974628i −0.0250576 0.999686i \(-0.507977\pi\)
0.999686 + 0.0250576i \(0.00797691\pi\)
\(308\) 0 0
\(309\) 18.3083 + 11.9771i 1.04152 + 0.681354i
\(310\) 2.01824 3.56190i 0.114628 0.202302i
\(311\) 20.4797 + 11.8240i 1.16130 + 0.670475i 0.951615 0.307294i \(-0.0994235\pi\)
0.209683 + 0.977769i \(0.432757\pi\)
\(312\) −2.09411 + 6.37215i −0.118556 + 0.360752i
\(313\) 3.20409 11.9578i 0.181106 0.675895i −0.814325 0.580409i \(-0.802893\pi\)
0.995431 0.0954864i \(-0.0304406\pi\)
\(314\) −2.82168 −0.159237
\(315\) 0 0
\(316\) 8.06709 0.453809
\(317\) 1.13684 4.24276i 0.0638515 0.238297i −0.926623 0.375991i \(-0.877302\pi\)
0.990475 + 0.137694i \(0.0439691\pi\)
\(318\) 1.16076 3.53206i 0.0650920 0.198068i
\(319\) −3.26361 1.88425i −0.182727 0.105498i
\(320\) 12.5018 3.45843i 0.698874 0.193332i
\(321\) −3.16074 2.06772i −0.176415 0.115409i
\(322\) 0 0
\(323\) 5.62568 5.62568i 0.313021 0.313021i
\(324\) −3.78871 + 16.7176i −0.210484 + 0.928758i
\(325\) −15.5748 3.90447i −0.863933 0.216581i
\(326\) −0.724106 0.418063i −0.0401045 0.0231543i
\(327\) 3.04650 2.72462i 0.168472 0.150672i
\(328\) −3.71743 3.71743i −0.205261 0.205261i
\(329\) 0 0
\(330\) 0.674856 0.613446i 0.0371496 0.0337691i
\(331\) 3.10933 + 5.38552i 0.170904 + 0.296015i 0.938736 0.344636i \(-0.111998\pi\)
−0.767832 + 0.640651i \(0.778664\pi\)
\(332\) 13.1480 3.52300i 0.721591 0.193350i
\(333\) −6.62103 8.28946i −0.362830 0.454259i
\(334\) −1.45833 + 0.841970i −0.0797965 + 0.0460705i
\(335\) 0.0940513 0.0553192i 0.00513857 0.00302241i
\(336\) 0 0
\(337\) 15.0501 15.0501i 0.819833 0.819833i −0.166250 0.986084i \(-0.553166\pi\)
0.986084 + 0.166250i \(0.0531659\pi\)
\(338\) −0.801644 0.214800i −0.0436037 0.0116836i
\(339\) −13.1887 26.1005i −0.716313 1.41759i
\(340\) −0.167351 20.6988i −0.00907590 1.12255i
\(341\) −3.91452 + 2.26005i −0.211983 + 0.122389i
\(342\) −0.552999 + 1.41220i −0.0299027 + 0.0763632i
\(343\) 0 0
\(344\) 4.58812 0.247375
\(345\) 28.2239 + 9.02317i 1.51952 + 0.485791i
\(346\) −0.204333 + 0.353916i −0.0109850 + 0.0190266i
\(347\) 18.6057 4.98539i 0.998808 0.267630i 0.277862 0.960621i \(-0.410374\pi\)
0.720946 + 0.692991i \(0.243708\pi\)
\(348\) 12.1534 10.8693i 0.651491 0.582657i
\(349\) 9.24369i 0.494803i −0.968913 0.247402i \(-0.920423\pi\)
0.968913 0.247402i \(-0.0795767\pi\)
\(350\) 0 0
\(351\) 16.4541 + 2.77618i 0.878254 + 0.148182i
\(352\) 2.55796 + 0.685404i 0.136340 + 0.0365321i
\(353\) 3.05649 + 11.4070i 0.162681 + 0.607132i 0.998325 + 0.0578609i \(0.0184280\pi\)
−0.835644 + 0.549271i \(0.814905\pi\)
\(354\) −3.67145 + 1.85520i −0.195135 + 0.0986029i
\(355\) −26.7607 + 7.40290i −1.42031 + 0.392905i
\(356\) 1.72787i 0.0915769i
\(357\) 0 0
\(358\) −0.0527764 0.0527764i −0.00278932 0.00278932i
\(359\) −6.98129 12.0920i −0.368459 0.638189i 0.620866 0.783917i \(-0.286781\pi\)
−0.989325 + 0.145728i \(0.953448\pi\)
\(360\) 3.30038 + 7.38548i 0.173945 + 0.389249i
\(361\) −8.16026 + 14.1340i −0.429487 + 0.743894i
\(362\) −1.49366 + 5.57441i −0.0785050 + 0.292985i
\(363\) 17.6638 3.69263i 0.927108 0.193813i
\(364\) 0 0
\(365\) −1.57319 2.67467i −0.0823446 0.139999i
\(366\) −0.130889 + 2.34678i −0.00684170 + 0.122668i
\(367\) 3.90370 + 14.5688i 0.203771 + 0.760485i 0.989821 + 0.142321i \(0.0454565\pi\)
−0.786049 + 0.618164i \(0.787877\pi\)
\(368\) 6.80542 + 25.3982i 0.354757 + 1.32397i
\(369\) −7.75844 + 10.5292i −0.403888 + 0.548129i
\(370\) −2.36397 0.612982i −0.122897 0.0318674i
\(371\) 0 0
\(372\) −4.00185 19.1429i −0.207486 0.992515i
\(373\) −9.01635 + 33.6495i −0.466849 + 1.74230i 0.183837 + 0.982957i \(0.441148\pi\)
−0.650686 + 0.759347i \(0.725519\pi\)
\(374\) 0.572249 0.991165i 0.0295903 0.0512519i
\(375\) −17.0668 + 9.15013i −0.881325 + 0.472511i
\(376\) 2.58517 + 4.47765i 0.133320 + 0.230917i
\(377\) −11.2233 11.2233i −0.578028 0.578028i
\(378\) 0 0
\(379\) 19.0602i 0.979056i −0.871988 0.489528i \(-0.837169\pi\)
0.871988 0.489528i \(-0.162831\pi\)
\(380\) −1.85871 6.71902i −0.0953496 0.344678i
\(381\) 4.92842 + 9.75335i 0.252491 + 0.499680i
\(382\) 1.13832 + 4.24828i 0.0582417 + 0.217361i
\(383\) −9.81007 2.62860i −0.501271 0.134315i −0.000681261 1.00000i \(-0.500217\pi\)
−0.500590 + 0.865685i \(0.666884\pi\)
\(384\) −8.28544 + 12.6652i −0.422815 + 0.646318i
\(385\) 0 0
\(386\) 2.10507i 0.107145i
\(387\) −1.70987 11.2855i −0.0869174 0.573672i
\(388\) −9.70615 + 2.60076i −0.492755 + 0.132033i
\(389\) −18.6290 + 32.2664i −0.944528 + 1.63597i −0.187835 + 0.982201i \(0.560147\pi\)
−0.756693 + 0.653770i \(0.773186\pi\)
\(390\) 3.41421 1.76001i 0.172885 0.0891218i
\(391\) 37.1850 1.88053
\(392\) 0 0
\(393\) −0.761825 3.64421i −0.0384290 0.183826i
\(394\) −2.89595 + 1.67198i −0.145896 + 0.0842331i
\(395\) −6.75090 6.64261i −0.339675 0.334226i
\(396\) 0.484465 4.32960i 0.0243453 0.217571i
\(397\) −8.58658 2.30077i −0.430948 0.115472i 0.0368231 0.999322i \(-0.488276\pi\)
−0.467771 + 0.883850i \(0.654943\pi\)
\(398\) 3.57708 3.57708i 0.179303 0.179303i
\(399\) 0 0
\(400\) −15.0188 8.35029i −0.750941 0.417514i
\(401\) −4.02832 + 2.32575i −0.201165 + 0.116142i −0.597199 0.802093i \(-0.703720\pi\)
0.396034 + 0.918236i \(0.370386\pi\)
\(402\) −0.00814945 + 0.0247979i −0.000406458 + 0.00123681i
\(403\) −18.3890 + 4.92733i −0.916023 + 0.245448i
\(404\) −18.0828 31.3204i −0.899655 1.55825i
\(405\) 16.9362 10.8704i 0.841567 0.540152i
\(406\) 0 0
\(407\) 1.90662 + 1.90662i 0.0945074 + 0.0945074i
\(408\) 6.76738 + 7.56686i 0.335035 + 0.374615i
\(409\) 23.0006 + 13.2794i 1.13731 + 0.656626i 0.945763 0.324858i \(-0.105317\pi\)
0.191546 + 0.981484i \(0.438650\pi\)
\(410\) 0.0243408 + 3.01058i 0.00120211 + 0.148682i
\(411\) 0.850451 15.2482i 0.0419497 0.752137i
\(412\) 17.0114 17.0114i 0.838091 0.838091i
\(413\) 0 0
\(414\) −6.49486 + 2.83961i −0.319205 + 0.139559i
\(415\) −13.9038 7.87815i −0.682508 0.386723i
\(416\) 9.65934 + 5.57682i 0.473588 + 0.273426i
\(417\) 17.0513 + 5.60365i 0.835007 + 0.274412i
\(418\) 0.0997634 0.372322i 0.00487959 0.0182109i
\(419\) −25.8278 −1.26177 −0.630885 0.775876i \(-0.717308\pi\)
−0.630885 + 0.775876i \(0.717308\pi\)
\(420\) 0 0
\(421\) 0.432430 0.0210753 0.0105377 0.999944i \(-0.496646\pi\)
0.0105377 + 0.999944i \(0.496646\pi\)
\(422\) −2.03851 + 7.60783i −0.0992332 + 0.370343i
\(423\) 10.0503 8.02749i 0.488664 0.390310i
\(424\) −7.25850 4.19070i −0.352504 0.203518i
\(425\) −16.9038 + 17.4594i −0.819952 + 0.846908i
\(426\) 3.63630 5.55847i 0.176179 0.269309i
\(427\) 0 0
\(428\) −2.93684 + 2.93684i −0.141957 + 0.141957i
\(429\) −4.23442 0.236170i −0.204440 0.0114024i
\(430\) −1.87288 1.84283i −0.0903181 0.0888694i
\(431\) 14.1264 + 8.15586i 0.680443 + 0.392854i 0.800022 0.599971i \(-0.204821\pi\)
−0.119579 + 0.992825i \(0.538154\pi\)
\(432\) 16.2403 + 7.42749i 0.781363 + 0.357355i
\(433\) 0.514238 + 0.514238i 0.0247127 + 0.0247127i 0.719355 0.694642i \(-0.244437\pi\)
−0.694642 + 0.719355i \(0.744437\pi\)
\(434\) 0 0
\(435\) −19.1205 0.911426i −0.916760 0.0436995i
\(436\) −2.24718 3.89223i −0.107620 0.186404i
\(437\) 12.0968 3.24133i 0.578669 0.155054i
\(438\) 0.705214 + 0.231758i 0.0336964 + 0.0110738i
\(439\) −13.2487 + 7.64917i −0.632328 + 0.365075i −0.781653 0.623713i \(-0.785623\pi\)
0.149325 + 0.988788i \(0.452290\pi\)
\(440\) −1.04234 1.77214i −0.0496916 0.0844835i
\(441\) 0 0
\(442\) 3.40853 3.40853i 0.162127 0.162127i
\(443\) −8.81439 2.36181i −0.418784 0.112213i 0.0432723 0.999063i \(-0.486222\pi\)
−0.462057 + 0.886850i \(0.652888\pi\)
\(444\) −10.4123 + 5.26139i −0.494146 + 0.249695i
\(445\) 1.42276 1.44596i 0.0674455 0.0685450i
\(446\) 5.84564 3.37498i 0.276799 0.159810i
\(447\) −29.5921 + 6.18625i −1.39966 + 0.292600i
\(448\) 0 0
\(449\) 9.40891 0.444034 0.222017 0.975043i \(-0.428736\pi\)
0.222017 + 0.975043i \(0.428736\pi\)
\(450\) 1.61919 4.34037i 0.0763291 0.204607i
\(451\) 1.66204 2.87873i 0.0782622 0.135554i
\(452\) −31.0613 + 8.32286i −1.46100 + 0.391474i
\(453\) 17.5687 + 19.6442i 0.825450 + 0.922966i
\(454\) 3.96789i 0.186222i
\(455\) 0 0
\(456\) 2.86111 + 1.87171i 0.133984 + 0.0876509i
\(457\) 33.3520 + 8.93665i 1.56014 + 0.418039i 0.932708 0.360631i \(-0.117439\pi\)
0.627434 + 0.778670i \(0.284105\pi\)
\(458\) −1.22303 4.56443i −0.0571486 0.213282i
\(459\) 16.0903 19.4658i 0.751031 0.908585i
\(460\) 16.0630 28.3488i 0.748942 1.32177i
\(461\) 36.9326i 1.72012i 0.510192 + 0.860061i \(0.329574\pi\)
−0.510192 + 0.860061i \(0.670426\pi\)
\(462\) 0 0
\(463\) 26.3687 + 26.3687i 1.22546 + 1.22546i 0.965664 + 0.259794i \(0.0836548\pi\)
0.259794 + 0.965664i \(0.416345\pi\)
\(464\) −8.49325 14.7107i −0.394289 0.682929i
\(465\) −12.4138 + 19.3149i −0.575675 + 0.895705i
\(466\) −1.05953 + 1.83516i −0.0490817 + 0.0850120i
\(467\) −2.63979 + 9.85183i −0.122155 + 0.455888i −0.999722 0.0235650i \(-0.992498\pi\)
0.877567 + 0.479453i \(0.159165\pi\)
\(468\) 6.69060 17.0859i 0.309273 0.789797i
\(469\) 0 0
\(470\) 0.743194 2.86613i 0.0342810 0.132205i
\(471\) 15.8003 + 0.881244i 0.728039 + 0.0406056i
\(472\) 2.40011 + 8.95734i 0.110474 + 0.412295i
\(473\) 0.750833 + 2.80215i 0.0345233 + 0.128843i
\(474\) 2.26216 + 0.126170i 0.103905 + 0.00579517i
\(475\) −3.97713 + 7.15327i −0.182483 + 0.328215i
\(476\) 0 0
\(477\) −7.60287 + 19.4156i −0.348112 + 0.888979i
\(478\) −1.49540 + 5.58092i −0.0683981 + 0.255265i
\(479\) −6.85350 + 11.8706i −0.313144 + 0.542382i −0.979041 0.203662i \(-0.934716\pi\)
0.665897 + 0.746044i \(0.268049\pi\)
\(480\) 13.1443 2.85894i 0.599953 0.130492i
\(481\) 5.67825 + 9.83503i 0.258906 + 0.448439i
\(482\) 0.430674 + 0.430674i 0.0196167 + 0.0196167i
\(483\) 0 0
\(484\) 19.8436i 0.901980i
\(485\) 10.2641 + 5.81582i 0.466067 + 0.264083i
\(486\) −1.32389 + 4.62869i −0.0600529 + 0.209961i
\(487\) −5.91662 22.0811i −0.268108 1.00059i −0.960321 0.278898i \(-0.910031\pi\)
0.692213 0.721693i \(-0.256636\pi\)
\(488\) 5.11811 + 1.37139i 0.231686 + 0.0620800i
\(489\) 3.92413 + 2.56713i 0.177455 + 0.116090i
\(490\) 0 0
\(491\) 23.7476i 1.07172i −0.844308 0.535858i \(-0.819988\pi\)
0.844308 0.535858i \(-0.180012\pi\)
\(492\) 9.58750 + 10.7201i 0.432238 + 0.483301i
\(493\) −23.2037 + 6.21740i −1.04504 + 0.280018i
\(494\) 0.811730 1.40596i 0.0365215 0.0632570i
\(495\) −3.97051 + 3.22429i −0.178461 + 0.144921i
\(496\) −20.3744 −0.914836
\(497\) 0 0
\(498\) 3.74205 0.782280i 0.167685 0.0350548i
\(499\) −2.80187 + 1.61766i −0.125429 + 0.0724165i −0.561402 0.827543i \(-0.689738\pi\)
0.435973 + 0.899960i \(0.356404\pi\)
\(500\) 6.00859 + 20.4290i 0.268712 + 0.913612i
\(501\) 8.42904 4.25924i 0.376582 0.190289i
\(502\) −5.34029 1.43093i −0.238349 0.0638654i
\(503\) 2.62851 2.62851i 0.117199 0.117199i −0.646075 0.763274i \(-0.723591\pi\)
0.763274 + 0.646075i \(0.223591\pi\)
\(504\) 0 0
\(505\) −10.6573 + 41.1001i −0.474246 + 1.82893i
\(506\) 1.56021 0.900788i 0.0693598 0.0400449i
\(507\) 4.42180 + 1.45316i 0.196379 + 0.0645369i
\(508\) 11.6071 3.11012i 0.514983 0.137989i
\(509\) −6.91189 11.9717i −0.306364 0.530638i 0.671200 0.741276i \(-0.265779\pi\)
−0.977564 + 0.210638i \(0.932446\pi\)
\(510\) 0.276802 5.80694i 0.0122570 0.257136i
\(511\) 0 0
\(512\) 14.3017 + 14.3017i 0.632050 + 0.632050i
\(513\) 3.53762 7.73506i 0.156190 0.341511i
\(514\) −5.27399 3.04494i −0.232626 0.134306i
\(515\) −28.2434 + 0.228350i −1.24455 + 0.0100623i
\(516\) −12.5320 0.698960i −0.551691 0.0307700i
\(517\) −2.31162 + 2.31162i −0.101665 + 0.101665i
\(518\) 0 0
\(519\) 1.25472 1.91797i 0.0550759 0.0841895i
\(520\) −2.30873 8.34580i −0.101244 0.365988i
\(521\) −9.49156 5.47996i −0.415833 0.240081i 0.277460 0.960737i \(-0.410507\pi\)
−0.693293 + 0.720656i \(0.743841\pi\)
\(522\) 3.57804 2.85789i 0.156607 0.125086i
\(523\) −3.54814 + 13.2418i −0.155149 + 0.579026i 0.843943 + 0.536433i \(0.180229\pi\)
−0.999093 + 0.0425929i \(0.986438\pi\)
\(524\) −4.09392 −0.178844
\(525\) 0 0
\(526\) −1.71360 −0.0747163
\(527\) −7.45743 + 27.8315i −0.324851 + 1.21236i
\(528\) −4.31189 1.41703i −0.187651 0.0616685i
\(529\) 30.7730 + 17.7668i 1.33796 + 0.772469i
\(530\) 1.27972 + 4.62605i 0.0555875 + 0.200943i
\(531\) 21.1381 9.24175i 0.917313 0.401058i
\(532\) 0 0
\(533\) 9.89970 9.89970i 0.428804 0.428804i
\(534\) −0.0270240 + 0.484527i −0.00116944 + 0.0209676i
\(535\) 4.87593 0.0394223i 0.210805 0.00170438i
\(536\) 0.0509605 + 0.0294221i 0.00220116 + 0.00127084i
\(537\) 0.279044 + 0.312009i 0.0120416 + 0.0134642i
\(538\) 2.19394 + 2.19394i 0.0945876 + 0.0945876i
\(539\) 0 0
\(540\) −7.88956 20.6755i −0.339513 0.889733i
\(541\) −3.53276 6.11892i −0.151885 0.263073i 0.780035 0.625735i \(-0.215201\pi\)
−0.931920 + 0.362663i \(0.881868\pi\)
\(542\) −1.68265 + 0.450866i −0.0722762 + 0.0193663i
\(543\) 10.1048 30.7480i 0.433640 1.31952i
\(544\) 14.6193 8.44044i 0.626796 0.361881i
\(545\) −1.32440 + 5.10756i −0.0567312 + 0.218784i
\(546\) 0 0
\(547\) −19.7665 + 19.7665i −0.845154 + 0.845154i −0.989524 0.144370i \(-0.953885\pi\)
0.144370 + 0.989524i \(0.453885\pi\)
\(548\) −16.2212 4.34647i −0.692937 0.185672i
\(549\) 1.46586 13.1002i 0.0625612 0.559101i
\(550\) −0.286302 + 1.14205i −0.0122080 + 0.0486971i
\(551\) −7.00653 + 4.04522i −0.298488 + 0.172332i
\(552\) 3.26991 + 15.6417i 0.139176 + 0.665753i
\(553\) 0 0
\(554\) 3.47282 0.147546
\(555\) 13.0458 + 4.17075i 0.553764 + 0.177038i
\(556\) 9.86837 17.0925i 0.418512 0.724884i
\(557\) 42.2902 11.3316i 1.79189 0.480137i 0.799228 0.601028i \(-0.205242\pi\)
0.992666 + 0.120891i \(0.0385751\pi\)
\(558\) −0.822798 5.43063i −0.0348318 0.229897i
\(559\) 12.2184i 0.516783i
\(560\) 0 0
\(561\) −3.51392 + 5.37140i −0.148358 + 0.226781i
\(562\) −0.575242 0.154136i −0.0242651 0.00650182i
\(563\) −2.87110 10.7151i −0.121002 0.451587i 0.878663 0.477442i \(-0.158436\pi\)
−0.999666 + 0.0258549i \(0.991769\pi\)
\(564\) −6.37903 12.6241i −0.268606 0.531571i
\(565\) 32.8467 + 18.6116i 1.38187 + 0.782997i
\(566\) 8.14252i 0.342256i
\(567\) 0 0
\(568\) −10.5881 10.5881i −0.444266 0.444266i
\(569\) −6.90318 11.9567i −0.289396 0.501249i 0.684269 0.729229i \(-0.260121\pi\)
−0.973666 + 0.227980i \(0.926788\pi\)
\(570\) −0.416131 1.91321i −0.0174298 0.0801356i
\(571\) 6.56260 11.3668i 0.274636 0.475684i −0.695407 0.718616i \(-0.744776\pi\)
0.970043 + 0.242932i \(0.0781092\pi\)
\(572\) −1.20701 + 4.50464i −0.0504678 + 0.188348i
\(573\) −5.04736 24.1442i −0.210857 1.00864i
\(574\) 0 0
\(575\) −36.7852 + 10.4969i −1.53405 + 0.437752i
\(576\) 10.3235 14.0103i 0.430144 0.583762i
\(577\) 3.94772 + 14.7331i 0.164346 + 0.613347i 0.998123 + 0.0612453i \(0.0195072\pi\)
−0.833777 + 0.552101i \(0.813826\pi\)
\(578\) −0.529377 1.97566i −0.0220192 0.0821767i
\(579\) 0.657437 11.7875i 0.0273221 0.489873i
\(580\) −5.28344 + 20.3756i −0.219383 + 0.846050i
\(581\) 0 0
\(582\) −2.76247 + 0.577496i −0.114508 + 0.0239380i
\(583\) 1.37159 5.11885i 0.0568055 0.212001i
\(584\) 0.836718 1.44924i 0.0346236 0.0599699i
\(585\) −19.6679 + 8.78907i −0.813167 + 0.363383i
\(586\) 1.71065 + 2.96293i 0.0706662 + 0.122397i
\(587\) 5.54217 + 5.54217i 0.228750 + 0.228750i 0.812170 0.583421i \(-0.198286\pi\)
−0.583421 + 0.812170i \(0.698286\pi\)
\(588\) 0 0
\(589\) 9.70404i 0.399848i
\(590\) 2.61802 4.62041i 0.107782 0.190219i
\(591\) 16.7384 8.45798i 0.688524 0.347915i
\(592\) 3.14565 + 11.7397i 0.129285 + 0.482499i
\(593\) 8.37814 + 2.24492i 0.344049 + 0.0921877i 0.426706 0.904390i \(-0.359674\pi\)
−0.0826570 + 0.996578i \(0.526341\pi\)
\(594\) 0.203568 1.20653i 0.00835252 0.0495043i
\(595\) 0 0
\(596\) 33.2438i 1.36172i
\(597\) −21.1473 + 18.9130i −0.865503 + 0.774058i
\(598\) 7.32931 1.96388i 0.299718 0.0803091i
\(599\) −7.93869 + 13.7502i −0.324366 + 0.561819i −0.981384 0.192056i \(-0.938484\pi\)
0.657018 + 0.753875i \(0.271818\pi\)
\(600\) −8.83067 5.57515i −0.360511 0.227605i
\(601\) −41.5249 −1.69384 −0.846919 0.531722i \(-0.821545\pi\)
−0.846919 + 0.531722i \(0.821545\pi\)
\(602\) 0 0
\(603\) 0.0533783 0.136313i 0.00217373 0.00555110i
\(604\) 25.0976 14.4901i 1.02120 0.589593i
\(605\) −16.3396 + 16.6060i −0.664299 + 0.675129i
\(606\) −4.58092 9.06565i −0.186087 0.368267i
\(607\) −14.7681 3.95710i −0.599418 0.160614i −0.0536641 0.998559i \(-0.517090\pi\)
−0.545754 + 0.837945i \(0.683757\pi\)
\(608\) 4.02013 4.02013i 0.163038 0.163038i
\(609\) 0 0
\(610\) −1.53839 2.61551i −0.0622877 0.105899i
\(611\) −11.9242 + 6.88444i −0.482402 + 0.278515i
\(612\) −17.3317 21.6991i −0.700593 0.877135i
\(613\) −29.7879 + 7.98165i −1.20312 + 0.322376i −0.804060 0.594548i \(-0.797331\pi\)
−0.399063 + 0.916924i \(0.630664\pi\)
\(614\) −3.72926 6.45927i −0.150501 0.260675i
\(615\) 0.803941 16.8656i 0.0324180 0.680088i
\(616\) 0 0
\(617\) −13.2098 13.2098i −0.531808 0.531808i 0.389302 0.921110i \(-0.372716\pi\)
−0.921110 + 0.389302i \(0.872716\pi\)
\(618\) 5.03637 4.50426i 0.202593 0.181188i
\(619\) 14.7495 + 8.51561i 0.592831 + 0.342271i 0.766216 0.642583i \(-0.222137\pi\)
−0.173385 + 0.984854i \(0.555471\pi\)
\(620\) 17.9965 + 17.7079i 0.722758 + 0.711165i
\(621\) 37.2554 13.8723i 1.49501 0.556675i
\(622\) 5.16425 5.16425i 0.207068 0.207068i
\(623\) 0 0
\(624\) −15.9973 10.4652i −0.640403 0.418945i
\(625\) 11.7934 22.0435i 0.471736 0.881740i
\(626\) −3.31107 1.91165i −0.132337 0.0764047i
\(627\) −0.674915 + 2.05370i −0.0269535 + 0.0820167i
\(628\) 4.50384 16.8086i 0.179723 0.670735i
\(629\) 17.1879 0.685327
\(630\) 0 0
\(631\) 6.51082 0.259191 0.129596 0.991567i \(-0.458632\pi\)
0.129596 + 0.991567i \(0.458632\pi\)
\(632\) 1.32194 4.93356i 0.0525841 0.196247i
\(633\) 13.7909 41.9641i 0.548138 1.66792i
\(634\) −1.17480 0.678272i −0.0466573 0.0269376i
\(635\) −12.2743 6.95487i −0.487091 0.275996i
\(636\) 19.1875 + 12.5523i 0.760834 + 0.497730i
\(637\) 0 0
\(638\) −0.822967 + 0.822967i −0.0325816 + 0.0325816i
\(639\) −22.0978 + 29.9896i −0.874174 + 1.18637i
\(640\) −0.157967 19.5380i −0.00624418 0.772308i
\(641\) −36.6801 21.1773i −1.44878 0.836451i −0.450367 0.892843i \(-0.648707\pi\)
−0.998409 + 0.0563924i \(0.982040\pi\)
\(642\) −0.869478 + 0.777613i −0.0343155 + 0.0306899i
\(643\) −11.2098 11.2098i −0.442072 0.442072i 0.450636 0.892708i \(-0.351197\pi\)
−0.892708 + 0.450636i \(0.851197\pi\)
\(644\) 0 0
\(645\) 9.91181 + 10.9040i 0.390277 + 0.429347i
\(646\) −1.22854 2.12790i −0.0483363 0.0837209i
\(647\) −22.9610 + 6.15237i −0.902689 + 0.241875i −0.680171 0.733054i \(-0.738094\pi\)
−0.222518 + 0.974929i \(0.571428\pi\)
\(648\) 9.60309 + 5.05655i 0.377245 + 0.198640i
\(649\) −5.07783 + 2.93169i −0.199322 + 0.115079i
\(650\) −2.40969 + 4.33408i −0.0945160 + 0.169996i
\(651\) 0 0
\(652\) 3.64616 3.64616i 0.142794 0.142794i
\(653\) −21.0505 5.64046i −0.823769 0.220728i −0.177775 0.984071i \(-0.556890\pi\)
−0.645994 + 0.763343i \(0.723557\pi\)
\(654\) −0.569277 1.12660i −0.0222605 0.0440535i
\(655\) 3.42597 + 3.37102i 0.133864 + 0.131717i
\(656\) 12.9759 7.49163i 0.506623 0.292499i
\(657\) −3.87653 1.51800i −0.151238 0.0592227i
\(658\) 0 0
\(659\) 42.6184 1.66018 0.830088 0.557632i \(-0.188290\pi\)
0.830088 + 0.557632i \(0.188290\pi\)
\(660\) 2.57708 + 4.99923i 0.100313 + 0.194595i
\(661\) 22.7467 39.3985i 0.884744 1.53242i 0.0387381 0.999249i \(-0.487666\pi\)
0.846006 0.533173i \(-0.179000\pi\)
\(662\) 1.85511 0.497076i 0.0721010 0.0193194i
\(663\) −20.1509 + 18.0219i −0.782597 + 0.699911i
\(664\) 8.61819i 0.334451i
\(665\) 0 0
\(666\) −3.00210 + 1.31254i −0.116329 + 0.0508601i
\(667\) −36.5253 9.78693i −1.41427 0.378951i
\(668\) −2.68783 10.0311i −0.103995 0.388115i
\(669\) −33.7873 + 17.0729i −1.30629 + 0.660075i
\(670\) −0.00898467 0.0324786i −0.000347108 0.00125476i
\(671\) 3.35026i 0.129335i
\(672\) 0 0
\(673\) −32.1249 32.1249i −1.23832 1.23832i −0.960686 0.277636i \(-0.910449\pi\)
−0.277636 0.960686i \(-0.589551\pi\)
\(674\) −3.28666 5.69266i −0.126597 0.219273i
\(675\) −10.4223 + 23.7986i −0.401156 + 0.916010i
\(676\) 2.55910 4.43248i 0.0984268 0.170480i
\(677\) −11.0202 + 41.1280i −0.423542 + 1.58068i 0.343545 + 0.939136i \(0.388372\pi\)
−0.767087 + 0.641543i \(0.778295\pi\)
\(678\) −8.84036 + 1.84809i −0.339512 + 0.0709753i
\(679\) 0 0
\(680\) −12.6861 3.28953i −0.486489 0.126148i
\(681\) 1.23922 22.2186i 0.0474870 0.851419i
\(682\) 0.361305 + 1.34841i 0.0138351 + 0.0516332i
\(683\) 0.603360 + 2.25177i 0.0230869 + 0.0861617i 0.976508 0.215481i \(-0.0691318\pi\)
−0.953421 + 0.301642i \(0.902465\pi\)
\(684\) −7.52972 5.54827i −0.287906 0.212143i
\(685\) 9.99568 + 16.9942i 0.381915 + 0.649316i
\(686\) 0 0
\(687\) 5.42298 + 25.9409i 0.206899 + 0.989708i
\(688\) −3.38438 + 12.6307i −0.129028 + 0.481540i
\(689\) 11.1600 19.3297i 0.425163 0.736404i
\(690\) 4.94775 7.69832i 0.188358 0.293070i
\(691\) −8.27824 14.3383i −0.314919 0.545456i 0.664501 0.747287i \(-0.268644\pi\)
−0.979420 + 0.201831i \(0.935311\pi\)
\(692\) −1.78210 1.78210i −0.0677454 0.0677454i
\(693\) 0 0
\(694\) 5.94884i 0.225815i
\(695\) −22.3326 + 6.17796i −0.847125 + 0.234343i
\(696\) −4.65576 9.21376i −0.176476 0.349247i
\(697\) −5.48418 20.4672i −0.207728 0.775252i
\(698\) −2.75752 0.738875i −0.104374 0.0279668i
\(699\) 6.50607 9.94523i 0.246082 0.376163i
\(700\) 0 0
\(701\) 26.5973i 1.00457i 0.864703 + 0.502284i \(0.167507\pi\)
−0.864703 + 0.502284i \(0.832493\pi\)
\(702\) 2.14340 4.68657i 0.0808973 0.176883i
\(703\) 5.59148 1.49823i 0.210886 0.0565069i
\(704\) −2.21152 + 3.83047i −0.0833500 + 0.144366i
\(705\) −5.05671 + 15.8171i −0.190447 + 0.595705i
\(706\) 3.64717 0.137263
\(707\) 0 0
\(708\) −5.19111 24.8318i −0.195094 0.933235i
\(709\) −13.7850 + 7.95880i −0.517708 + 0.298899i −0.735997 0.676985i \(-0.763286\pi\)
0.218288 + 0.975884i \(0.429953\pi\)
\(710\) 0.0693280 + 8.57481i 0.00260184 + 0.321807i
\(711\) −12.6278 1.41300i −0.473580 0.0529917i
\(712\) 1.05671 + 0.283144i 0.0396018 + 0.0106113i
\(713\) −32.0712 + 32.0712i −1.20108 + 1.20108i
\(714\) 0 0
\(715\) 4.71930 2.77580i 0.176492 0.103809i
\(716\) 0.398625 0.230146i 0.0148973 0.00860096i
\(717\) 10.1166 30.7839i 0.377813 1.14964i
\(718\) −4.16523 + 1.11607i −0.155445 + 0.0416514i
\(719\) 10.6906 + 18.5167i 0.398694 + 0.690558i 0.993565 0.113263i \(-0.0361302\pi\)
−0.594871 + 0.803821i \(0.702797\pi\)
\(720\) −22.7660 + 3.63782i −0.848440 + 0.135573i
\(721\) 0 0
\(722\) 3.56409 + 3.56409i 0.132642 + 0.132642i
\(723\) −2.27710 2.54611i −0.0846862 0.0946907i
\(724\) −30.8223 17.7952i −1.14550 0.661355i
\(725\) 21.1991 12.7007i 0.787315 0.471692i
\(726\) 0.310355 5.56451i 0.0115183 0.206518i
\(727\) −7.43836 + 7.43836i −0.275873 + 0.275873i −0.831459 0.555586i \(-0.812494\pi\)
0.555586 + 0.831459i \(0.312494\pi\)
\(728\) 0 0
\(729\) 8.85885 25.5053i 0.328106 0.944641i
\(730\) −0.923641 + 0.255510i −0.0341855 + 0.00945685i
\(731\) 16.0148 + 9.24617i 0.592330 + 0.341982i
\(732\) −13.7707 4.52553i −0.508980 0.167268i
\(733\) −9.45077 + 35.2708i −0.349072 + 1.30276i 0.538710 + 0.842491i \(0.318912\pi\)
−0.887782 + 0.460264i \(0.847755\pi\)
\(734\) 4.65810 0.171934
\(735\) 0 0
\(736\) 26.5725 0.979475
\(737\) −0.00962968 + 0.0359385i −0.000354714 + 0.00132381i
\(738\) 2.52085 + 3.15608i 0.0927939 + 0.116177i
\(739\) 33.2198 + 19.1794i 1.22201 + 0.705527i 0.965346 0.260974i \(-0.0840437\pi\)
0.256663 + 0.966501i \(0.417377\pi\)
\(740\) 7.42475 13.1036i 0.272939 0.481697i
\(741\) −4.98446 + 7.61928i −0.183109 + 0.279901i
\(742\) 0 0
\(743\) 30.8182 30.8182i 1.13061 1.13061i 0.140534 0.990076i \(-0.455118\pi\)
0.990076 0.140534i \(-0.0448819\pi\)
\(744\) −12.3630 0.689531i −0.453248 0.0252794i
\(745\) 27.3737 27.8199i 1.00289 1.01924i
\(746\) 9.31740 + 5.37940i 0.341134 + 0.196954i
\(747\) −21.1983 + 3.21177i −0.775605 + 0.117512i
\(748\) 4.99090 + 4.99090i 0.182485 + 0.182485i
\(749\) 0 0
\(750\) 1.36541 + 5.82265i 0.0498578 + 0.212613i
\(751\) −19.9356 34.5294i −0.727459 1.26000i −0.957954 0.286923i \(-0.907368\pi\)
0.230495 0.973074i \(-0.425966\pi\)
\(752\) −14.2335 + 3.81385i −0.519042 + 0.139077i
\(753\) 29.4566 + 9.68045i 1.07346 + 0.352775i
\(754\) −4.24517 + 2.45095i −0.154600 + 0.0892583i
\(755\) −32.9342 8.53991i −1.19860 0.310799i
\(756\) 0 0
\(757\) 0.798673 0.798673i 0.0290283 0.0290283i −0.692444 0.721472i \(-0.743466\pi\)
0.721472 + 0.692444i \(0.243466\pi\)
\(758\) −5.68591 1.52354i −0.206522 0.0553373i
\(759\) −9.01787 + 4.55678i −0.327328 + 0.165401i
\(760\) −4.41371 + 0.0356852i −0.160102 + 0.00129444i
\(761\) 37.3941 21.5895i 1.35554 0.782619i 0.366518 0.930411i \(-0.380550\pi\)
0.989019 + 0.147791i \(0.0472164\pi\)
\(762\) 3.30350 0.690601i 0.119673 0.0250178i
\(763\) 0 0
\(764\) −27.1236 −0.981299
\(765\) −3.36355 + 32.4301i −0.121610 + 1.17251i
\(766\) −1.56829 + 2.71637i −0.0566648 + 0.0981463i
\(767\) −23.8538 + 6.39162i −0.861312 + 0.230788i
\(768\) −10.2802 11.4946i −0.370954 0.414777i
\(769\) 44.1875i 1.59344i −0.604348 0.796720i \(-0.706566\pi\)
0.604348 0.796720i \(-0.293434\pi\)
\(770\) 0 0
\(771\) 28.5812 + 18.6975i 1.02933 + 0.673376i
\(772\) −12.5397 3.36001i −0.451315 0.120929i
\(773\) −5.66214 21.1314i −0.203653 0.760043i −0.989856 0.142075i \(-0.954623\pi\)
0.786203 0.617968i \(-0.212044\pi\)
\(774\) −3.50328 0.392003i −0.125923 0.0140903i
\(775\) −0.479274 29.6375i −0.0172160 1.06461i
\(776\) 6.36214i 0.228388i
\(777\) 0 0
\(778\) 8.13643 + 8.13643i 0.291705 + 0.291705i
\(779\) −3.56817 6.18024i −0.127843 0.221430i
\(780\) 5.03467 + 23.1475i 0.180270 + 0.828813i
\(781\) 4.73385 8.19927i 0.169391 0.293393i
\(782\) 2.97231 11.0928i 0.106289 0.396678i
\(783\) −20.9281 + 14.8856i −0.747911 + 0.531966i
\(784\) 0 0
\(785\) −17.6095 + 10.3576i −0.628512 + 0.369679i
\(786\) −1.14801 0.0640291i −0.0409482 0.00228384i
\(787\) −0.0780372 0.291239i −0.00278173 0.0103815i 0.964521 0.264006i \(-0.0850439\pi\)
−0.967303 + 0.253625i \(0.918377\pi\)
\(788\) −5.33748 19.9197i −0.190140 0.709612i
\(789\) 9.59544 + 0.535176i 0.341607 + 0.0190528i
\(790\) −2.52120 + 1.48292i −0.0897003 + 0.0527600i
\(791\) 0 0
\(792\) −2.56845 1.00577i −0.0912659 0.0357385i
\(793\) −3.65209 + 13.6298i −0.129689 + 0.484007i
\(794\) −1.37270 + 2.37759i −0.0487153 + 0.0843774i
\(795\) −5.72115 26.3037i −0.202908 0.932895i
\(796\) 15.5988 + 27.0180i 0.552886 + 0.957626i
\(797\) −8.45240 8.45240i −0.299399 0.299399i 0.541379 0.840779i \(-0.317902\pi\)
−0.840779 + 0.541379i \(0.817902\pi\)
\(798\) 0 0
\(799\) 20.8390i 0.737231i
\(800\) −12.0795 + 12.4766i −0.427073 + 0.441113i
\(801\) 0.302647 2.70472i 0.0106935 0.0955665i
\(802\) 0.371808 + 1.38761i 0.0131290 + 0.0489981i
\(803\) 1.02203 + 0.273853i 0.0360668 + 0.00966407i
\(804\) −0.134712 0.0881271i −0.00475092 0.00310800i
\(805\) 0 0
\(806\) 5.87955i 0.207098i
\(807\) −11.6000 12.9704i −0.408340 0.456579i
\(808\) −22.1177 + 5.92642i −0.778098 + 0.208491i
\(809\) 18.5676 32.1600i 0.652801 1.13068i −0.329640 0.944107i \(-0.606927\pi\)
0.982440 0.186577i \(-0.0597394\pi\)
\(810\) −1.88902 5.92120i −0.0663732 0.208050i
\(811\) −23.5491 −0.826921 −0.413461 0.910522i \(-0.635680\pi\)
−0.413461 + 0.910522i \(0.635680\pi\)
\(812\) 0 0
\(813\) 9.56300 1.99915i 0.335389 0.0701134i
\(814\) 0.721171 0.416368i 0.0252770 0.0145937i
\(815\) −6.05359 + 0.0489438i −0.212048 + 0.00171442i
\(816\) −25.8228 + 13.0484i −0.903977 + 0.456784i
\(817\) 6.01583 + 1.61194i 0.210467 + 0.0563945i
\(818\) 5.79994 5.79994i 0.202790 0.202790i
\(819\) 0 0
\(820\) −17.9727 4.66036i −0.627633 0.162747i
\(821\) 35.4996 20.4957i 1.23895 0.715306i 0.270067 0.962842i \(-0.412954\pi\)
0.968879 + 0.247536i \(0.0796208\pi\)
\(822\) −4.48076 1.47253i −0.156285 0.0513605i
\(823\) 24.8888 6.66893i 0.867568 0.232464i 0.202532 0.979276i \(-0.435083\pi\)
0.665036 + 0.746812i \(0.268416\pi\)
\(824\) −7.61596 13.1912i −0.265315 0.459538i
\(825\) 1.95985 6.30560i 0.0682333 0.219533i
\(826\) 0 0
\(827\) −19.5668 19.5668i −0.680404 0.680404i 0.279687 0.960091i \(-0.409769\pi\)
−0.960091 + 0.279687i \(0.909769\pi\)
\(828\) −6.54857 43.2219i −0.227579 1.50206i
\(829\) −21.9279 12.6601i −0.761588 0.439703i 0.0682778 0.997666i \(-0.478250\pi\)
−0.829866 + 0.557963i \(0.811583\pi\)
\(830\) −3.46153 + 3.51796i −0.120151 + 0.122110i
\(831\) −19.4464 1.08460i −0.674588 0.0376245i
\(832\) −13.1727 + 13.1727i −0.456680 + 0.456680i
\(833\) 0 0
\(834\) 3.03461 4.63873i 0.105080 0.160626i
\(835\) −6.01053 + 10.6077i −0.208003 + 0.367094i
\(836\) 2.05866 + 1.18857i 0.0712002 + 0.0411075i
\(837\) 2.91129 + 30.6663i 0.100629 + 1.05998i
\(838\) −2.06449 + 7.70479i −0.0713167 + 0.266157i
\(839\) 50.7484 1.75203 0.876014 0.482286i \(-0.160193\pi\)
0.876014 + 0.482286i \(0.160193\pi\)
\(840\) 0 0
\(841\) −4.57160 −0.157641
\(842\) 0.0345654 0.129000i 0.00119120 0.00444563i
\(843\) 3.17299 + 1.04275i 0.109283 + 0.0359143i
\(844\) −42.0656 24.2866i −1.44796 0.835978i
\(845\) −5.79137 + 1.60209i −0.199229 + 0.0551134i
\(846\) −1.59136 3.63981i −0.0547120 0.125139i
\(847\) 0 0
\(848\) 16.8908 16.8908i 0.580031 0.580031i
\(849\) 2.54300 45.5948i 0.0872757 1.56481i
\(850\) 3.85723 + 6.43820i 0.132302 + 0.220829i
\(851\) 23.4310 + 13.5279i 0.803204 + 0.463730i
\(852\) 27.3074 + 30.5334i 0.935535 + 1.04606i
\(853\) 18.8448 + 18.8448i 0.645233 + 0.645233i 0.951837 0.306604i \(-0.0991928\pi\)
−0.306604 + 0.951837i \(0.599193\pi\)
\(854\) 0 0
\(855\) 1.73265 + 10.8432i 0.0592552 + 0.370829i
\(856\) 1.31482 + 2.27733i 0.0449395 + 0.0778375i
\(857\) 12.0212 3.22108i 0.410637 0.110030i −0.0475860 0.998867i \(-0.515153\pi\)
0.458223 + 0.888837i \(0.348486\pi\)
\(858\) −0.408922 + 1.24431i −0.0139604 + 0.0424800i
\(859\) −3.33705 + 1.92665i −0.113859 + 0.0657364i −0.555848 0.831284i \(-0.687606\pi\)
0.441989 + 0.897020i \(0.354273\pi\)
\(860\) 13.9670 8.21515i 0.476272 0.280134i
\(861\) 0 0
\(862\) 3.56217 3.56217i 0.121328 0.121328i
\(863\) 48.2127 + 12.9186i 1.64118 + 0.439753i 0.957125 0.289676i \(-0.0935477\pi\)
0.684056 + 0.729429i \(0.260214\pi\)
\(864\) 11.4982 13.9103i 0.391175 0.473238i
\(865\) 0.0239219 + 2.95877i 0.000813368 + 0.100601i
\(866\) 0.194509 0.112300i 0.00660967 0.00381610i
\(867\) 2.34727 + 11.2282i 0.0797176 + 0.381331i
\(868\) 0 0
\(869\) 3.22945 0.109552
\(870\) −1.80025 + 5.63107i −0.0610343 + 0.190911i
\(871\) −0.0783524 + 0.135710i −0.00265487 + 0.00459837i
\(872\) −2.74860 + 0.736484i −0.0930793 + 0.0249405i
\(873\) 15.6491 2.37100i 0.529640 0.0802461i
\(874\) 3.86774i 0.130828i
\(875\) 0 0
\(876\) −2.50620 + 3.83099i −0.0846765 + 0.129437i
\(877\) 43.6713 + 11.7017i 1.47467 + 0.395138i 0.904531 0.426408i \(-0.140221\pi\)
0.570143 + 0.821546i \(0.306888\pi\)
\(878\) 1.22284 + 4.56370i 0.0412689 + 0.154018i
\(879\) −8.65357 17.1254i −0.291878 0.577627i
\(880\) 5.64741 1.56226i 0.190374 0.0526639i
\(881\) 25.2055i 0.849195i −0.905382 0.424597i \(-0.860416\pi\)
0.905382 0.424597i \(-0.139584\pi\)
\(882\) 0 0
\(883\) −14.2942 14.2942i −0.481039 0.481039i 0.424424 0.905463i \(-0.360476\pi\)
−0.905463 + 0.424424i \(0.860476\pi\)
\(884\) 14.8638 + 25.7449i 0.499925 + 0.865895i
\(885\) −16.1029 + 25.0548i −0.541292 + 0.842208i
\(886\) −1.40912 + 2.44067i −0.0473403 + 0.0819958i
\(887\) 10.0709 37.5853i 0.338149 1.26199i −0.562266 0.826957i \(-0.690070\pi\)
0.900415 0.435033i \(-0.143263\pi\)
\(888\) 1.51144 + 7.23000i 0.0507206 + 0.242623i
\(889\) 0 0
\(890\) −0.317623 0.540010i −0.0106468 0.0181012i
\(891\) −1.51671 + 6.69248i −0.0508118 + 0.224207i
\(892\) 10.7740 + 40.2091i 0.360740 + 1.34630i
\(893\) 1.81649 + 6.77923i 0.0607865 + 0.226858i
\(894\) −0.519936 + 9.32220i −0.0173893 + 0.311781i
\(895\) −0.523094 0.135639i −0.0174851 0.00453393i
\(896\) 0 0
\(897\) −41.6545 + 8.70792i −1.39080 + 0.290749i
\(898\) 0.752081 2.80681i 0.0250973 0.0936643i
\(899\) 14.6503 25.3750i 0.488613 0.846303i
\(900\) 23.2708 + 16.5733i 0.775694 + 0.552443i
\(901\) −16.8905 29.2553i −0.562705 0.974634i
\(902\) −0.725914 0.725914i −0.0241703 0.0241703i
\(903\) 0 0
\(904\) 20.3599i 0.677161i
\(905\) 11.1405 + 40.2716i 0.370322 + 1.33867i
\(906\) 7.26446 3.67077i 0.241345 0.121953i
\(907\) 0.623721 + 2.32776i 0.0207103 + 0.0772920i 0.975508 0.219966i \(-0.0705946\pi\)
−0.954797 + 0.297258i \(0.903928\pi\)
\(908\) −23.6365 6.33337i −0.784404 0.210180i
\(909\) 22.8200 + 52.1946i 0.756891 + 1.73119i
\(910\) 0 0
\(911\) 19.3662i 0.641631i 0.947142 + 0.320815i \(0.103957\pi\)
−0.947142 + 0.320815i \(0.896043\pi\)
\(912\) −7.26312 + 6.49574i −0.240506 + 0.215095i
\(913\) 5.26347 1.41034i 0.174196 0.0466755i
\(914\) 5.33185 9.23503i 0.176362 0.305468i
\(915\) 7.79753 + 15.1263i 0.257778 + 0.500059i
\(916\) 29.1421 0.962883
\(917\) 0 0
\(918\) −4.52077 6.35591i −0.149208 0.209776i
\(919\) 29.5591 17.0659i 0.975063 0.562953i 0.0742872 0.997237i \(-0.476332\pi\)
0.900776 + 0.434284i \(0.142998\pi\)
\(920\) −14.7050 14.4691i −0.484808 0.477031i
\(921\) 18.8650 + 37.3340i 0.621625 + 1.23020i
\(922\) 11.0175 + 2.95213i 0.362842 + 0.0972231i
\(923\) 28.1966 28.1966i 0.928102 0.928102i
\(924\) 0 0
\(925\) −17.0031 + 4.85196i −0.559059 + 0.159531i
\(926\) 9.97388 5.75842i 0.327762 0.189233i
\(927\) −29.6084 + 23.6491i −0.972467 + 0.776738i
\(928\) −16.5814 + 4.44297i −0.544311 + 0.145848i
\(929\) 9.86232 + 17.0820i 0.323572 + 0.560443i 0.981222 0.192880i \(-0.0617828\pi\)
−0.657650 + 0.753323i \(0.728450\pi\)
\(930\) 4.76962 + 5.24709i 0.156402 + 0.172059i
\(931\) 0 0
\(932\) −9.24073 9.24073i −0.302690 0.302690i
\(933\) −30.5306 + 27.3049i −0.999527 + 0.893922i
\(934\) 2.72793 + 1.57497i 0.0892606 + 0.0515346i
\(935\) −0.0669948 8.28622i −0.00219096 0.270988i
\(936\) −9.35279 6.89159i −0.305706 0.225259i
\(937\) 17.3041 17.3041i 0.565300 0.565300i −0.365508 0.930808i \(-0.619105\pi\)
0.930808 + 0.365508i \(0.119105\pi\)
\(938\) 0 0
\(939\) 17.9436 + 11.7385i 0.585568 + 0.383072i
\(940\) 15.8871 + 9.00194i 0.518179 + 0.293611i
\(941\) 3.89269 + 2.24744i 0.126898 + 0.0732646i 0.562105 0.827066i \(-0.309992\pi\)
−0.435207 + 0.900330i \(0.643325\pi\)
\(942\) 1.52585 4.64300i 0.0497149 0.151277i
\(943\) 8.63274 32.2178i 0.281121 1.04916i
\(944\) −26.4292 −0.860196
\(945\) 0 0
\(946\) 0.895935 0.0291294
\(947\) 3.88234 14.4891i 0.126159 0.470832i −0.873719 0.486431i \(-0.838299\pi\)
0.999878 + 0.0155984i \(0.00496534\pi\)
\(948\) −4.36235 + 13.2742i −0.141683 + 0.431125i
\(949\) 3.85939 + 2.22822i 0.125281 + 0.0723311i
\(950\) 1.81602 + 1.75822i 0.0589193 + 0.0570440i
\(951\) 6.36658 + 4.16495i 0.206451 + 0.135058i
\(952\) 0 0
\(953\) −21.6181 + 21.6181i −0.700277 + 0.700277i −0.964470 0.264193i \(-0.914895\pi\)
0.264193 + 0.964470i \(0.414895\pi\)
\(954\) 5.18422 + 3.81999i 0.167845 + 0.123677i
\(955\) 22.6983 + 22.3342i 0.734499 + 0.722717i
\(956\) −30.8583 17.8160i −0.998028 0.576212i
\(957\) 4.86531 4.35126i 0.157273 0.140656i
\(958\) 2.99334 + 2.99334i 0.0967106 + 0.0967106i
\(959\) 0 0
\(960\) −1.06973 + 22.4416i −0.0345255 + 0.724300i
\(961\) −2.07218 3.58912i −0.0668444 0.115778i
\(962\) 3.38780 0.907759i 0.109227 0.0292673i
\(963\) 5.11158 4.08277i 0.164718 0.131565i
\(964\) −3.25292 + 1.87807i −0.104769 + 0.0604887i
\(965\) 7.72710 + 13.1373i 0.248744 + 0.422904i
\(966\) 0 0
\(967\) 16.1911 16.1911i 0.520672 0.520672i −0.397102 0.917774i \(-0.629984\pi\)
0.917774 + 0.397102i \(0.129984\pi\)
\(968\) −12.1357 3.25174i −0.390055 0.104515i
\(969\) 6.21477 + 12.2990i 0.199647 + 0.395102i
\(970\) 2.55538 2.59703i 0.0820482 0.0833857i
\(971\) 15.8437 9.14738i 0.508450 0.293553i −0.223747 0.974647i \(-0.571829\pi\)
0.732196 + 0.681094i \(0.238495\pi\)
\(972\) −25.4596 15.2744i −0.816618 0.489928i
\(973\) 0 0
\(974\) −7.06004 −0.226218
\(975\) 14.8469 23.5165i 0.475481 0.753131i
\(976\) −7.55064 + 13.0781i −0.241690 + 0.418619i
\(977\) 14.3951 3.85716i 0.460540 0.123401i −0.0210868 0.999778i \(-0.506713\pi\)
0.481627 + 0.876376i \(0.340046\pi\)
\(978\) 1.07948 0.965425i 0.0345179 0.0308709i
\(979\) 0.691709i 0.0221071i
\(980\) 0 0
\(981\) 2.83587 + 6.48630i 0.0905423 + 0.207092i
\(982\) −7.08425 1.89822i −0.226067 0.0605746i
\(983\) −3.04352 11.3586i −0.0970733 0.362283i 0.900252 0.435368i \(-0.143382\pi\)
−0.997326 + 0.0730860i \(0.976715\pi\)
\(984\) 8.12717 4.10670i 0.259085 0.130917i
\(985\) −11.9357 + 21.0647i −0.380303 + 0.671178i
\(986\) 7.41895i 0.236267i
\(987\) 0 0
\(988\) 7.07955 + 7.07955i 0.225230 + 0.225230i
\(989\) 14.5546 + 25.2092i 0.462808 + 0.801607i
\(990\) 0.644474 + 1.44218i 0.0204827 + 0.0458356i
\(991\) −5.02003 + 8.69495i −0.159467 + 0.276204i −0.934676 0.355499i \(-0.884311\pi\)
0.775210 + 0.631704i \(0.217644\pi\)
\(992\) −5.32910 + 19.8885i −0.169199 + 0.631459i
\(993\) −10.5431 + 2.20405i −0.334576 + 0.0699434i
\(994\) 0 0
\(995\) 9.19337 35.4542i 0.291449 1.12397i
\(996\) −1.31291 + 23.5398i −0.0416010 + 0.745887i
\(997\) 3.64290 + 13.5955i 0.115372 + 0.430574i 0.999314 0.0370216i \(-0.0117870\pi\)
−0.883943 + 0.467596i \(0.845120\pi\)
\(998\) 0.258609 + 0.965142i 0.00818612 + 0.0305510i
\(999\) 17.2205 6.41213i 0.544831 0.202871i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 735.2.y.i.263.7 48
3.2 odd 2 inner 735.2.y.i.263.6 48
5.2 odd 4 inner 735.2.y.i.557.7 48
7.2 even 3 inner 735.2.y.i.128.6 48
7.3 odd 6 735.2.j.g.638.7 24
7.4 even 3 735.2.j.e.638.7 24
7.5 odd 6 105.2.x.a.23.6 yes 48
7.6 odd 2 105.2.x.a.53.7 yes 48
15.2 even 4 inner 735.2.y.i.557.6 48
21.2 odd 6 inner 735.2.y.i.128.7 48
21.5 even 6 105.2.x.a.23.7 yes 48
21.11 odd 6 735.2.j.e.638.6 24
21.17 even 6 735.2.j.g.638.6 24
21.20 even 2 105.2.x.a.53.6 yes 48
35.2 odd 12 inner 735.2.y.i.422.6 48
35.12 even 12 105.2.x.a.2.6 48
35.13 even 4 525.2.bf.f.32.6 48
35.17 even 12 735.2.j.g.197.6 24
35.19 odd 6 525.2.bf.f.443.7 48
35.27 even 4 105.2.x.a.32.7 yes 48
35.32 odd 12 735.2.j.e.197.6 24
35.33 even 12 525.2.bf.f.107.7 48
35.34 odd 2 525.2.bf.f.368.6 48
105.2 even 12 inner 735.2.y.i.422.7 48
105.17 odd 12 735.2.j.g.197.7 24
105.32 even 12 735.2.j.e.197.7 24
105.47 odd 12 105.2.x.a.2.7 yes 48
105.62 odd 4 105.2.x.a.32.6 yes 48
105.68 odd 12 525.2.bf.f.107.6 48
105.83 odd 4 525.2.bf.f.32.7 48
105.89 even 6 525.2.bf.f.443.6 48
105.104 even 2 525.2.bf.f.368.7 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
105.2.x.a.2.6 48 35.12 even 12
105.2.x.a.2.7 yes 48 105.47 odd 12
105.2.x.a.23.6 yes 48 7.5 odd 6
105.2.x.a.23.7 yes 48 21.5 even 6
105.2.x.a.32.6 yes 48 105.62 odd 4
105.2.x.a.32.7 yes 48 35.27 even 4
105.2.x.a.53.6 yes 48 21.20 even 2
105.2.x.a.53.7 yes 48 7.6 odd 2
525.2.bf.f.32.6 48 35.13 even 4
525.2.bf.f.32.7 48 105.83 odd 4
525.2.bf.f.107.6 48 105.68 odd 12
525.2.bf.f.107.7 48 35.33 even 12
525.2.bf.f.368.6 48 35.34 odd 2
525.2.bf.f.368.7 48 105.104 even 2
525.2.bf.f.443.6 48 105.89 even 6
525.2.bf.f.443.7 48 35.19 odd 6
735.2.j.e.197.6 24 35.32 odd 12
735.2.j.e.197.7 24 105.32 even 12
735.2.j.e.638.6 24 21.11 odd 6
735.2.j.e.638.7 24 7.4 even 3
735.2.j.g.197.6 24 35.17 even 12
735.2.j.g.197.7 24 105.17 odd 12
735.2.j.g.638.6 24 21.17 even 6
735.2.j.g.638.7 24 7.3 odd 6
735.2.y.i.128.6 48 7.2 even 3 inner
735.2.y.i.128.7 48 21.2 odd 6 inner
735.2.y.i.263.6 48 3.2 odd 2 inner
735.2.y.i.263.7 48 1.1 even 1 trivial
735.2.y.i.422.6 48 35.2 odd 12 inner
735.2.y.i.422.7 48 105.2 even 12 inner
735.2.y.i.557.6 48 15.2 even 4 inner
735.2.y.i.557.7 48 5.2 odd 4 inner