Properties

Label 735.2.s.e.521.1
Level $735$
Weight $2$
Character 735.521
Analytic conductor $5.869$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [735,2,Mod(521,735)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("735.521"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(735, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 0, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 735 = 3 \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 735.s (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,3,0,1,-1,3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.86900454856\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 105)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 521.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 735.521
Dual form 735.2.s.e.656.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.50000 - 0.866025i) q^{2} +1.73205i q^{3} +(0.500000 - 0.866025i) q^{4} +(-0.500000 - 0.866025i) q^{5} +(1.50000 + 2.59808i) q^{6} +1.73205i q^{8} -3.00000 q^{9} +(-1.50000 - 0.866025i) q^{10} +(3.00000 + 1.73205i) q^{11} +(1.50000 + 0.866025i) q^{12} +3.46410i q^{13} +(1.50000 - 0.866025i) q^{15} +(2.50000 + 4.33013i) q^{16} +(-3.00000 + 5.19615i) q^{17} +(-4.50000 + 2.59808i) q^{18} +(6.00000 - 3.46410i) q^{19} -1.00000 q^{20} +6.00000 q^{22} +(-1.50000 + 0.866025i) q^{23} -3.00000 q^{24} +(-0.500000 + 0.866025i) q^{25} +(3.00000 + 5.19615i) q^{26} -5.19615i q^{27} -1.73205i q^{29} +(1.50000 - 2.59808i) q^{30} +(3.00000 + 1.73205i) q^{31} +(4.50000 + 2.59808i) q^{32} +(-3.00000 + 5.19615i) q^{33} +10.3923i q^{34} +(-1.50000 + 2.59808i) q^{36} +(-2.00000 - 3.46410i) q^{37} +(6.00000 - 10.3923i) q^{38} -6.00000 q^{39} +(1.50000 - 0.866025i) q^{40} -3.00000 q^{41} +1.00000 q^{43} +(3.00000 - 1.73205i) q^{44} +(1.50000 + 2.59808i) q^{45} +(-1.50000 + 2.59808i) q^{46} +(-7.50000 + 4.33013i) q^{48} +1.73205i q^{50} +(-9.00000 - 5.19615i) q^{51} +(3.00000 + 1.73205i) q^{52} +(-4.50000 - 7.79423i) q^{54} -3.46410i q^{55} +(6.00000 + 10.3923i) q^{57} +(-1.50000 - 2.59808i) q^{58} -1.73205i q^{60} +(4.50000 - 2.59808i) q^{61} +6.00000 q^{62} -1.00000 q^{64} +(3.00000 - 1.73205i) q^{65} +10.3923i q^{66} +(6.50000 - 11.2583i) q^{67} +(3.00000 + 5.19615i) q^{68} +(-1.50000 - 2.59808i) q^{69} -6.92820i q^{71} -5.19615i q^{72} +(-3.00000 - 1.73205i) q^{73} +(-6.00000 - 3.46410i) q^{74} +(-1.50000 - 0.866025i) q^{75} -6.92820i q^{76} +(-9.00000 + 5.19615i) q^{78} +(8.00000 + 13.8564i) q^{79} +(2.50000 - 4.33013i) q^{80} +9.00000 q^{81} +(-4.50000 + 2.59808i) q^{82} -9.00000 q^{83} +6.00000 q^{85} +(1.50000 - 0.866025i) q^{86} +3.00000 q^{87} +(-3.00000 + 5.19615i) q^{88} +(-1.50000 - 2.59808i) q^{89} +(4.50000 + 2.59808i) q^{90} +1.73205i q^{92} +(-3.00000 + 5.19615i) q^{93} +(-6.00000 - 3.46410i) q^{95} +(-4.50000 + 7.79423i) q^{96} -10.3923i q^{97} +(-9.00000 - 5.19615i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 3 q^{2} + q^{4} - q^{5} + 3 q^{6} - 6 q^{9} - 3 q^{10} + 6 q^{11} + 3 q^{12} + 3 q^{15} + 5 q^{16} - 6 q^{17} - 9 q^{18} + 12 q^{19} - 2 q^{20} + 12 q^{22} - 3 q^{23} - 6 q^{24} - q^{25} + 6 q^{26}+ \cdots - 18 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/735\mathbb{Z}\right)^\times\).

\(n\) \(346\) \(442\) \(491\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.50000 0.866025i 1.06066 0.612372i 0.135045 0.990839i \(-0.456882\pi\)
0.925615 + 0.378467i \(0.123549\pi\)
\(3\) 1.73205i 1.00000i
\(4\) 0.500000 0.866025i 0.250000 0.433013i
\(5\) −0.500000 0.866025i −0.223607 0.387298i
\(6\) 1.50000 + 2.59808i 0.612372 + 1.06066i
\(7\) 0 0
\(8\) 1.73205i 0.612372i
\(9\) −3.00000 −1.00000
\(10\) −1.50000 0.866025i −0.474342 0.273861i
\(11\) 3.00000 + 1.73205i 0.904534 + 0.522233i 0.878668 0.477432i \(-0.158432\pi\)
0.0258656 + 0.999665i \(0.491766\pi\)
\(12\) 1.50000 + 0.866025i 0.433013 + 0.250000i
\(13\) 3.46410i 0.960769i 0.877058 + 0.480384i \(0.159503\pi\)
−0.877058 + 0.480384i \(0.840497\pi\)
\(14\) 0 0
\(15\) 1.50000 0.866025i 0.387298 0.223607i
\(16\) 2.50000 + 4.33013i 0.625000 + 1.08253i
\(17\) −3.00000 + 5.19615i −0.727607 + 1.26025i 0.230285 + 0.973123i \(0.426034\pi\)
−0.957892 + 0.287129i \(0.907299\pi\)
\(18\) −4.50000 + 2.59808i −1.06066 + 0.612372i
\(19\) 6.00000 3.46410i 1.37649 0.794719i 0.384759 0.923017i \(-0.374285\pi\)
0.991736 + 0.128298i \(0.0409513\pi\)
\(20\) −1.00000 −0.223607
\(21\) 0 0
\(22\) 6.00000 1.27920
\(23\) −1.50000 + 0.866025i −0.312772 + 0.180579i −0.648166 0.761499i \(-0.724464\pi\)
0.335394 + 0.942078i \(0.391130\pi\)
\(24\) −3.00000 −0.612372
\(25\) −0.500000 + 0.866025i −0.100000 + 0.173205i
\(26\) 3.00000 + 5.19615i 0.588348 + 1.01905i
\(27\) 5.19615i 1.00000i
\(28\) 0 0
\(29\) 1.73205i 0.321634i −0.986984 0.160817i \(-0.948587\pi\)
0.986984 0.160817i \(-0.0514129\pi\)
\(30\) 1.50000 2.59808i 0.273861 0.474342i
\(31\) 3.00000 + 1.73205i 0.538816 + 0.311086i 0.744599 0.667512i \(-0.232641\pi\)
−0.205783 + 0.978598i \(0.565974\pi\)
\(32\) 4.50000 + 2.59808i 0.795495 + 0.459279i
\(33\) −3.00000 + 5.19615i −0.522233 + 0.904534i
\(34\) 10.3923i 1.78227i
\(35\) 0 0
\(36\) −1.50000 + 2.59808i −0.250000 + 0.433013i
\(37\) −2.00000 3.46410i −0.328798 0.569495i 0.653476 0.756948i \(-0.273310\pi\)
−0.982274 + 0.187453i \(0.939977\pi\)
\(38\) 6.00000 10.3923i 0.973329 1.68585i
\(39\) −6.00000 −0.960769
\(40\) 1.50000 0.866025i 0.237171 0.136931i
\(41\) −3.00000 −0.468521 −0.234261 0.972174i \(-0.575267\pi\)
−0.234261 + 0.972174i \(0.575267\pi\)
\(42\) 0 0
\(43\) 1.00000 0.152499 0.0762493 0.997089i \(-0.475706\pi\)
0.0762493 + 0.997089i \(0.475706\pi\)
\(44\) 3.00000 1.73205i 0.452267 0.261116i
\(45\) 1.50000 + 2.59808i 0.223607 + 0.387298i
\(46\) −1.50000 + 2.59808i −0.221163 + 0.383065i
\(47\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(48\) −7.50000 + 4.33013i −1.08253 + 0.625000i
\(49\) 0 0
\(50\) 1.73205i 0.244949i
\(51\) −9.00000 5.19615i −1.26025 0.727607i
\(52\) 3.00000 + 1.73205i 0.416025 + 0.240192i
\(53\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(54\) −4.50000 7.79423i −0.612372 1.06066i
\(55\) 3.46410i 0.467099i
\(56\) 0 0
\(57\) 6.00000 + 10.3923i 0.794719 + 1.37649i
\(58\) −1.50000 2.59808i −0.196960 0.341144i
\(59\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(60\) 1.73205i 0.223607i
\(61\) 4.50000 2.59808i 0.576166 0.332650i −0.183442 0.983030i \(-0.558724\pi\)
0.759608 + 0.650381i \(0.225391\pi\)
\(62\) 6.00000 0.762001
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) 3.00000 1.73205i 0.372104 0.214834i
\(66\) 10.3923i 1.27920i
\(67\) 6.50000 11.2583i 0.794101 1.37542i −0.129307 0.991605i \(-0.541275\pi\)
0.923408 0.383819i \(-0.125391\pi\)
\(68\) 3.00000 + 5.19615i 0.363803 + 0.630126i
\(69\) −1.50000 2.59808i −0.180579 0.312772i
\(70\) 0 0
\(71\) 6.92820i 0.822226i −0.911584 0.411113i \(-0.865140\pi\)
0.911584 0.411113i \(-0.134860\pi\)
\(72\) 5.19615i 0.612372i
\(73\) −3.00000 1.73205i −0.351123 0.202721i 0.314057 0.949404i \(-0.398312\pi\)
−0.665180 + 0.746683i \(0.731645\pi\)
\(74\) −6.00000 3.46410i −0.697486 0.402694i
\(75\) −1.50000 0.866025i −0.173205 0.100000i
\(76\) 6.92820i 0.794719i
\(77\) 0 0
\(78\) −9.00000 + 5.19615i −1.01905 + 0.588348i
\(79\) 8.00000 + 13.8564i 0.900070 + 1.55897i 0.827401 + 0.561611i \(0.189818\pi\)
0.0726692 + 0.997356i \(0.476848\pi\)
\(80\) 2.50000 4.33013i 0.279508 0.484123i
\(81\) 9.00000 1.00000
\(82\) −4.50000 + 2.59808i −0.496942 + 0.286910i
\(83\) −9.00000 −0.987878 −0.493939 0.869496i \(-0.664443\pi\)
−0.493939 + 0.869496i \(0.664443\pi\)
\(84\) 0 0
\(85\) 6.00000 0.650791
\(86\) 1.50000 0.866025i 0.161749 0.0933859i
\(87\) 3.00000 0.321634
\(88\) −3.00000 + 5.19615i −0.319801 + 0.553912i
\(89\) −1.50000 2.59808i −0.159000 0.275396i 0.775509 0.631337i \(-0.217494\pi\)
−0.934508 + 0.355942i \(0.884160\pi\)
\(90\) 4.50000 + 2.59808i 0.474342 + 0.273861i
\(91\) 0 0
\(92\) 1.73205i 0.180579i
\(93\) −3.00000 + 5.19615i −0.311086 + 0.538816i
\(94\) 0 0
\(95\) −6.00000 3.46410i −0.615587 0.355409i
\(96\) −4.50000 + 7.79423i −0.459279 + 0.795495i
\(97\) 10.3923i 1.05518i −0.849500 0.527589i \(-0.823096\pi\)
0.849500 0.527589i \(-0.176904\pi\)
\(98\) 0 0
\(99\) −9.00000 5.19615i −0.904534 0.522233i
\(100\) 0.500000 + 0.866025i 0.0500000 + 0.0866025i
\(101\) 7.50000 12.9904i 0.746278 1.29259i −0.203317 0.979113i \(-0.565172\pi\)
0.949595 0.313478i \(-0.101494\pi\)
\(102\) −18.0000 −1.78227
\(103\) 4.50000 2.59808i 0.443398 0.255996i −0.261640 0.965166i \(-0.584263\pi\)
0.705038 + 0.709170i \(0.250930\pi\)
\(104\) −6.00000 −0.588348
\(105\) 0 0
\(106\) 0 0
\(107\) −4.50000 + 2.59808i −0.435031 + 0.251166i −0.701488 0.712681i \(-0.747481\pi\)
0.266456 + 0.963847i \(0.414147\pi\)
\(108\) −4.50000 2.59808i −0.433013 0.250000i
\(109\) 2.50000 4.33013i 0.239457 0.414751i −0.721102 0.692829i \(-0.756364\pi\)
0.960558 + 0.278078i \(0.0896974\pi\)
\(110\) −3.00000 5.19615i −0.286039 0.495434i
\(111\) 6.00000 3.46410i 0.569495 0.328798i
\(112\) 0 0
\(113\) 6.92820i 0.651751i −0.945413 0.325875i \(-0.894341\pi\)
0.945413 0.325875i \(-0.105659\pi\)
\(114\) 18.0000 + 10.3923i 1.68585 + 0.973329i
\(115\) 1.50000 + 0.866025i 0.139876 + 0.0807573i
\(116\) −1.50000 0.866025i −0.139272 0.0804084i
\(117\) 10.3923i 0.960769i
\(118\) 0 0
\(119\) 0 0
\(120\) 1.50000 + 2.59808i 0.136931 + 0.237171i
\(121\) 0.500000 + 0.866025i 0.0454545 + 0.0787296i
\(122\) 4.50000 7.79423i 0.407411 0.705656i
\(123\) 5.19615i 0.468521i
\(124\) 3.00000 1.73205i 0.269408 0.155543i
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) −16.0000 −1.41977 −0.709885 0.704317i \(-0.751253\pi\)
−0.709885 + 0.704317i \(0.751253\pi\)
\(128\) −10.5000 + 6.06218i −0.928078 + 0.535826i
\(129\) 1.73205i 0.152499i
\(130\) 3.00000 5.19615i 0.263117 0.455733i
\(131\) −6.00000 10.3923i −0.524222 0.907980i −0.999602 0.0281993i \(-0.991023\pi\)
0.475380 0.879781i \(-0.342311\pi\)
\(132\) 3.00000 + 5.19615i 0.261116 + 0.452267i
\(133\) 0 0
\(134\) 22.5167i 1.94514i
\(135\) −4.50000 + 2.59808i −0.387298 + 0.223607i
\(136\) −9.00000 5.19615i −0.771744 0.445566i
\(137\) 18.0000 + 10.3923i 1.53784 + 0.887875i 0.998965 + 0.0454914i \(0.0144854\pi\)
0.538879 + 0.842383i \(0.318848\pi\)
\(138\) −4.50000 2.59808i −0.383065 0.221163i
\(139\) 10.3923i 0.881464i 0.897639 + 0.440732i \(0.145281\pi\)
−0.897639 + 0.440732i \(0.854719\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −6.00000 10.3923i −0.503509 0.872103i
\(143\) −6.00000 + 10.3923i −0.501745 + 0.869048i
\(144\) −7.50000 12.9904i −0.625000 1.08253i
\(145\) −1.50000 + 0.866025i −0.124568 + 0.0719195i
\(146\) −6.00000 −0.496564
\(147\) 0 0
\(148\) −4.00000 −0.328798
\(149\) 19.5000 11.2583i 1.59750 0.922318i 0.605536 0.795818i \(-0.292959\pi\)
0.991967 0.126500i \(-0.0403744\pi\)
\(150\) −3.00000 −0.244949
\(151\) 1.00000 1.73205i 0.0813788 0.140952i −0.822464 0.568818i \(-0.807401\pi\)
0.903842 + 0.427865i \(0.140734\pi\)
\(152\) 6.00000 + 10.3923i 0.486664 + 0.842927i
\(153\) 9.00000 15.5885i 0.727607 1.26025i
\(154\) 0 0
\(155\) 3.46410i 0.278243i
\(156\) −3.00000 + 5.19615i −0.240192 + 0.416025i
\(157\) 3.00000 + 1.73205i 0.239426 + 0.138233i 0.614913 0.788595i \(-0.289191\pi\)
−0.375487 + 0.926828i \(0.622524\pi\)
\(158\) 24.0000 + 13.8564i 1.90934 + 1.10236i
\(159\) 0 0
\(160\) 5.19615i 0.410792i
\(161\) 0 0
\(162\) 13.5000 7.79423i 1.06066 0.612372i
\(163\) −4.00000 6.92820i −0.313304 0.542659i 0.665771 0.746156i \(-0.268103\pi\)
−0.979076 + 0.203497i \(0.934769\pi\)
\(164\) −1.50000 + 2.59808i −0.117130 + 0.202876i
\(165\) 6.00000 0.467099
\(166\) −13.5000 + 7.79423i −1.04780 + 0.604949i
\(167\) 21.0000 1.62503 0.812514 0.582941i \(-0.198098\pi\)
0.812514 + 0.582941i \(0.198098\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) 9.00000 5.19615i 0.690268 0.398527i
\(171\) −18.0000 + 10.3923i −1.37649 + 0.794719i
\(172\) 0.500000 0.866025i 0.0381246 0.0660338i
\(173\) 6.00000 + 10.3923i 0.456172 + 0.790112i 0.998755 0.0498898i \(-0.0158870\pi\)
−0.542583 + 0.840002i \(0.682554\pi\)
\(174\) 4.50000 2.59808i 0.341144 0.196960i
\(175\) 0 0
\(176\) 17.3205i 1.30558i
\(177\) 0 0
\(178\) −4.50000 2.59808i −0.337289 0.194734i
\(179\) 9.00000 + 5.19615i 0.672692 + 0.388379i 0.797096 0.603853i \(-0.206369\pi\)
−0.124404 + 0.992232i \(0.539702\pi\)
\(180\) 3.00000 0.223607
\(181\) 5.19615i 0.386227i 0.981176 + 0.193113i \(0.0618586\pi\)
−0.981176 + 0.193113i \(0.938141\pi\)
\(182\) 0 0
\(183\) 4.50000 + 7.79423i 0.332650 + 0.576166i
\(184\) −1.50000 2.59808i −0.110581 0.191533i
\(185\) −2.00000 + 3.46410i −0.147043 + 0.254686i
\(186\) 10.3923i 0.762001i
\(187\) −18.0000 + 10.3923i −1.31629 + 0.759961i
\(188\) 0 0
\(189\) 0 0
\(190\) −12.0000 −0.870572
\(191\) −9.00000 + 5.19615i −0.651217 + 0.375980i −0.788922 0.614493i \(-0.789361\pi\)
0.137705 + 0.990473i \(0.456027\pi\)
\(192\) 1.73205i 0.125000i
\(193\) −11.0000 + 19.0526i −0.791797 + 1.37143i 0.133056 + 0.991109i \(0.457521\pi\)
−0.924853 + 0.380325i \(0.875812\pi\)
\(194\) −9.00000 15.5885i −0.646162 1.11919i
\(195\) 3.00000 + 5.19615i 0.214834 + 0.372104i
\(196\) 0 0
\(197\) 3.46410i 0.246807i −0.992357 0.123404i \(-0.960619\pi\)
0.992357 0.123404i \(-0.0393809\pi\)
\(198\) −18.0000 −1.27920
\(199\) −6.00000 3.46410i −0.425329 0.245564i 0.272026 0.962290i \(-0.412306\pi\)
−0.697355 + 0.716726i \(0.745640\pi\)
\(200\) −1.50000 0.866025i −0.106066 0.0612372i
\(201\) 19.5000 + 11.2583i 1.37542 + 0.794101i
\(202\) 25.9808i 1.82800i
\(203\) 0 0
\(204\) −9.00000 + 5.19615i −0.630126 + 0.363803i
\(205\) 1.50000 + 2.59808i 0.104765 + 0.181458i
\(206\) 4.50000 7.79423i 0.313530 0.543050i
\(207\) 4.50000 2.59808i 0.312772 0.180579i
\(208\) −15.0000 + 8.66025i −1.04006 + 0.600481i
\(209\) 24.0000 1.66011
\(210\) 0 0
\(211\) −20.0000 −1.37686 −0.688428 0.725304i \(-0.741699\pi\)
−0.688428 + 0.725304i \(0.741699\pi\)
\(212\) 0 0
\(213\) 12.0000 0.822226
\(214\) −4.50000 + 7.79423i −0.307614 + 0.532803i
\(215\) −0.500000 0.866025i −0.0340997 0.0590624i
\(216\) 9.00000 0.612372
\(217\) 0 0
\(218\) 8.66025i 0.586546i
\(219\) 3.00000 5.19615i 0.202721 0.351123i
\(220\) −3.00000 1.73205i −0.202260 0.116775i
\(221\) −18.0000 10.3923i −1.21081 0.699062i
\(222\) 6.00000 10.3923i 0.402694 0.697486i
\(223\) 3.46410i 0.231973i −0.993251 0.115987i \(-0.962997\pi\)
0.993251 0.115987i \(-0.0370030\pi\)
\(224\) 0 0
\(225\) 1.50000 2.59808i 0.100000 0.173205i
\(226\) −6.00000 10.3923i −0.399114 0.691286i
\(227\) −6.00000 + 10.3923i −0.398234 + 0.689761i −0.993508 0.113761i \(-0.963710\pi\)
0.595274 + 0.803523i \(0.297043\pi\)
\(228\) 12.0000 0.794719
\(229\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(230\) 3.00000 0.197814
\(231\) 0 0
\(232\) 3.00000 0.196960
\(233\) −3.00000 + 1.73205i −0.196537 + 0.113470i −0.595039 0.803697i \(-0.702863\pi\)
0.398502 + 0.917167i \(0.369530\pi\)
\(234\) −9.00000 15.5885i −0.588348 1.01905i
\(235\) 0 0
\(236\) 0 0
\(237\) −24.0000 + 13.8564i −1.55897 + 0.900070i
\(238\) 0 0
\(239\) 10.3923i 0.672222i 0.941822 + 0.336111i \(0.109112\pi\)
−0.941822 + 0.336111i \(0.890888\pi\)
\(240\) 7.50000 + 4.33013i 0.484123 + 0.279508i
\(241\) 6.00000 + 3.46410i 0.386494 + 0.223142i 0.680640 0.732618i \(-0.261702\pi\)
−0.294146 + 0.955761i \(0.595035\pi\)
\(242\) 1.50000 + 0.866025i 0.0964237 + 0.0556702i
\(243\) 15.5885i 1.00000i
\(244\) 5.19615i 0.332650i
\(245\) 0 0
\(246\) −4.50000 7.79423i −0.286910 0.496942i
\(247\) 12.0000 + 20.7846i 0.763542 + 1.32249i
\(248\) −3.00000 + 5.19615i −0.190500 + 0.329956i
\(249\) 15.5885i 0.987878i
\(250\) 1.50000 0.866025i 0.0948683 0.0547723i
\(251\) −18.0000 −1.13615 −0.568075 0.822977i \(-0.692312\pi\)
−0.568075 + 0.822977i \(0.692312\pi\)
\(252\) 0 0
\(253\) −6.00000 −0.377217
\(254\) −24.0000 + 13.8564i −1.50589 + 0.869428i
\(255\) 10.3923i 0.650791i
\(256\) −9.50000 + 16.4545i −0.593750 + 1.02841i
\(257\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(258\) 1.50000 + 2.59808i 0.0933859 + 0.161749i
\(259\) 0 0
\(260\) 3.46410i 0.214834i
\(261\) 5.19615i 0.321634i
\(262\) −18.0000 10.3923i −1.11204 0.642039i
\(263\) −1.50000 0.866025i −0.0924940 0.0534014i 0.453040 0.891490i \(-0.350340\pi\)
−0.545534 + 0.838089i \(0.683673\pi\)
\(264\) −9.00000 5.19615i −0.553912 0.319801i
\(265\) 0 0
\(266\) 0 0
\(267\) 4.50000 2.59808i 0.275396 0.159000i
\(268\) −6.50000 11.2583i −0.397051 0.687712i
\(269\) 1.50000 2.59808i 0.0914566 0.158408i −0.816668 0.577108i \(-0.804181\pi\)
0.908124 + 0.418701i \(0.137514\pi\)
\(270\) −4.50000 + 7.79423i −0.273861 + 0.474342i
\(271\) −6.00000 + 3.46410i −0.364474 + 0.210429i −0.671042 0.741420i \(-0.734153\pi\)
0.306568 + 0.951849i \(0.400819\pi\)
\(272\) −30.0000 −1.81902
\(273\) 0 0
\(274\) 36.0000 2.17484
\(275\) −3.00000 + 1.73205i −0.180907 + 0.104447i
\(276\) −3.00000 −0.180579
\(277\) −13.0000 + 22.5167i −0.781094 + 1.35290i 0.150210 + 0.988654i \(0.452005\pi\)
−0.931305 + 0.364241i \(0.881328\pi\)
\(278\) 9.00000 + 15.5885i 0.539784 + 0.934934i
\(279\) −9.00000 5.19615i −0.538816 0.311086i
\(280\) 0 0
\(281\) 6.92820i 0.413302i −0.978415 0.206651i \(-0.933744\pi\)
0.978415 0.206651i \(-0.0662565\pi\)
\(282\) 0 0
\(283\) 27.0000 + 15.5885i 1.60498 + 0.926638i 0.990470 + 0.137732i \(0.0439811\pi\)
0.614514 + 0.788906i \(0.289352\pi\)
\(284\) −6.00000 3.46410i −0.356034 0.205557i
\(285\) 6.00000 10.3923i 0.355409 0.615587i
\(286\) 20.7846i 1.22902i
\(287\) 0 0
\(288\) −13.5000 7.79423i −0.795495 0.459279i
\(289\) −9.50000 16.4545i −0.558824 0.967911i
\(290\) −1.50000 + 2.59808i −0.0880830 + 0.152564i
\(291\) 18.0000 1.05518
\(292\) −3.00000 + 1.73205i −0.175562 + 0.101361i
\(293\) 24.0000 1.40209 0.701047 0.713115i \(-0.252716\pi\)
0.701047 + 0.713115i \(0.252716\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 6.00000 3.46410i 0.348743 0.201347i
\(297\) 9.00000 15.5885i 0.522233 0.904534i
\(298\) 19.5000 33.7750i 1.12960 1.95653i
\(299\) −3.00000 5.19615i −0.173494 0.300501i
\(300\) −1.50000 + 0.866025i −0.0866025 + 0.0500000i
\(301\) 0 0
\(302\) 3.46410i 0.199337i
\(303\) 22.5000 + 12.9904i 1.29259 + 0.746278i
\(304\) 30.0000 + 17.3205i 1.72062 + 0.993399i
\(305\) −4.50000 2.59808i −0.257669 0.148765i
\(306\) 31.1769i 1.78227i
\(307\) 22.5167i 1.28509i 0.766246 + 0.642547i \(0.222122\pi\)
−0.766246 + 0.642547i \(0.777878\pi\)
\(308\) 0 0
\(309\) 4.50000 + 7.79423i 0.255996 + 0.443398i
\(310\) −3.00000 5.19615i −0.170389 0.295122i
\(311\) 12.0000 20.7846i 0.680458 1.17859i −0.294384 0.955687i \(-0.595114\pi\)
0.974841 0.222900i \(-0.0715523\pi\)
\(312\) 10.3923i 0.588348i
\(313\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(314\) 6.00000 0.338600
\(315\) 0 0
\(316\) 16.0000 0.900070
\(317\) 15.0000 8.66025i 0.842484 0.486408i −0.0156238 0.999878i \(-0.504973\pi\)
0.858108 + 0.513470i \(0.171640\pi\)
\(318\) 0 0
\(319\) 3.00000 5.19615i 0.167968 0.290929i
\(320\) 0.500000 + 0.866025i 0.0279508 + 0.0484123i
\(321\) −4.50000 7.79423i −0.251166 0.435031i
\(322\) 0 0
\(323\) 41.5692i 2.31297i
\(324\) 4.50000 7.79423i 0.250000 0.433013i
\(325\) −3.00000 1.73205i −0.166410 0.0960769i
\(326\) −12.0000 6.92820i −0.664619 0.383718i
\(327\) 7.50000 + 4.33013i 0.414751 + 0.239457i
\(328\) 5.19615i 0.286910i
\(329\) 0 0
\(330\) 9.00000 5.19615i 0.495434 0.286039i
\(331\) −5.00000 8.66025i −0.274825 0.476011i 0.695266 0.718752i \(-0.255287\pi\)
−0.970091 + 0.242742i \(0.921953\pi\)
\(332\) −4.50000 + 7.79423i −0.246970 + 0.427764i
\(333\) 6.00000 + 10.3923i 0.328798 + 0.569495i
\(334\) 31.5000 18.1865i 1.72360 0.995123i
\(335\) −13.0000 −0.710266
\(336\) 0 0
\(337\) −32.0000 −1.74315 −0.871576 0.490261i \(-0.836901\pi\)
−0.871576 + 0.490261i \(0.836901\pi\)
\(338\) 1.50000 0.866025i 0.0815892 0.0471056i
\(339\) 12.0000 0.651751
\(340\) 3.00000 5.19615i 0.162698 0.281801i
\(341\) 6.00000 + 10.3923i 0.324918 + 0.562775i
\(342\) −18.0000 + 31.1769i −0.973329 + 1.68585i
\(343\) 0 0
\(344\) 1.73205i 0.0933859i
\(345\) −1.50000 + 2.59808i −0.0807573 + 0.139876i
\(346\) 18.0000 + 10.3923i 0.967686 + 0.558694i
\(347\) −16.5000 9.52628i −0.885766 0.511397i −0.0132111 0.999913i \(-0.504205\pi\)
−0.872555 + 0.488515i \(0.837539\pi\)
\(348\) 1.50000 2.59808i 0.0804084 0.139272i
\(349\) 8.66025i 0.463573i −0.972767 0.231786i \(-0.925543\pi\)
0.972767 0.231786i \(-0.0744570\pi\)
\(350\) 0 0
\(351\) 18.0000 0.960769
\(352\) 9.00000 + 15.5885i 0.479702 + 0.830868i
\(353\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(354\) 0 0
\(355\) −6.00000 + 3.46410i −0.318447 + 0.183855i
\(356\) −3.00000 −0.159000
\(357\) 0 0
\(358\) 18.0000 0.951330
\(359\) 21.0000 12.1244i 1.10834 0.639899i 0.169939 0.985455i \(-0.445643\pi\)
0.938398 + 0.345556i \(0.112310\pi\)
\(360\) −4.50000 + 2.59808i −0.237171 + 0.136931i
\(361\) 14.5000 25.1147i 0.763158 1.32183i
\(362\) 4.50000 + 7.79423i 0.236515 + 0.409656i
\(363\) −1.50000 + 0.866025i −0.0787296 + 0.0454545i
\(364\) 0 0
\(365\) 3.46410i 0.181319i
\(366\) 13.5000 + 7.79423i 0.705656 + 0.407411i
\(367\) −13.5000 7.79423i −0.704694 0.406855i 0.104399 0.994535i \(-0.466708\pi\)
−0.809093 + 0.587680i \(0.800041\pi\)
\(368\) −7.50000 4.33013i −0.390965 0.225723i
\(369\) 9.00000 0.468521
\(370\) 6.92820i 0.360180i
\(371\) 0 0
\(372\) 3.00000 + 5.19615i 0.155543 + 0.269408i
\(373\) 2.00000 + 3.46410i 0.103556 + 0.179364i 0.913147 0.407630i \(-0.133645\pi\)
−0.809591 + 0.586994i \(0.800311\pi\)
\(374\) −18.0000 + 31.1769i −0.930758 + 1.61212i
\(375\) 1.73205i 0.0894427i
\(376\) 0 0
\(377\) 6.00000 0.309016
\(378\) 0 0
\(379\) 16.0000 0.821865 0.410932 0.911666i \(-0.365203\pi\)
0.410932 + 0.911666i \(0.365203\pi\)
\(380\) −6.00000 + 3.46410i −0.307794 + 0.177705i
\(381\) 27.7128i 1.41977i
\(382\) −9.00000 + 15.5885i −0.460480 + 0.797575i
\(383\) −10.5000 18.1865i −0.536525 0.929288i −0.999088 0.0427020i \(-0.986403\pi\)
0.462563 0.886586i \(-0.346930\pi\)
\(384\) −10.5000 18.1865i −0.535826 0.928078i
\(385\) 0 0
\(386\) 38.1051i 1.93950i
\(387\) −3.00000 −0.152499
\(388\) −9.00000 5.19615i −0.456906 0.263795i
\(389\) −24.0000 13.8564i −1.21685 0.702548i −0.252606 0.967569i \(-0.581288\pi\)
−0.964242 + 0.265022i \(0.914621\pi\)
\(390\) 9.00000 + 5.19615i 0.455733 + 0.263117i
\(391\) 10.3923i 0.525561i
\(392\) 0 0
\(393\) 18.0000 10.3923i 0.907980 0.524222i
\(394\) −3.00000 5.19615i −0.151138 0.261778i
\(395\) 8.00000 13.8564i 0.402524 0.697191i
\(396\) −9.00000 + 5.19615i −0.452267 + 0.261116i
\(397\) 21.0000 12.1244i 1.05396 0.608504i 0.130204 0.991487i \(-0.458437\pi\)
0.923755 + 0.382983i \(0.125103\pi\)
\(398\) −12.0000 −0.601506
\(399\) 0 0
\(400\) −5.00000 −0.250000
\(401\) 16.5000 9.52628i 0.823971 0.475720i −0.0278131 0.999613i \(-0.508854\pi\)
0.851784 + 0.523893i \(0.175521\pi\)
\(402\) 39.0000 1.94514
\(403\) −6.00000 + 10.3923i −0.298881 + 0.517678i
\(404\) −7.50000 12.9904i −0.373139 0.646296i
\(405\) −4.50000 7.79423i −0.223607 0.387298i
\(406\) 0 0
\(407\) 13.8564i 0.686837i
\(408\) 9.00000 15.5885i 0.445566 0.771744i
\(409\) −19.5000 11.2583i −0.964213 0.556689i −0.0667458 0.997770i \(-0.521262\pi\)
−0.897467 + 0.441081i \(0.854595\pi\)
\(410\) 4.50000 + 2.59808i 0.222239 + 0.128310i
\(411\) −18.0000 + 31.1769i −0.887875 + 1.53784i
\(412\) 5.19615i 0.255996i
\(413\) 0 0
\(414\) 4.50000 7.79423i 0.221163 0.383065i
\(415\) 4.50000 + 7.79423i 0.220896 + 0.382604i
\(416\) −9.00000 + 15.5885i −0.441261 + 0.764287i
\(417\) −18.0000 −0.881464
\(418\) 36.0000 20.7846i 1.76082 1.01661i
\(419\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(420\) 0 0
\(421\) 35.0000 1.70580 0.852898 0.522078i \(-0.174843\pi\)
0.852898 + 0.522078i \(0.174843\pi\)
\(422\) −30.0000 + 17.3205i −1.46038 + 0.843149i
\(423\) 0 0
\(424\) 0 0
\(425\) −3.00000 5.19615i −0.145521 0.252050i
\(426\) 18.0000 10.3923i 0.872103 0.503509i
\(427\) 0 0
\(428\) 5.19615i 0.251166i
\(429\) −18.0000 10.3923i −0.869048 0.501745i
\(430\) −1.50000 0.866025i −0.0723364 0.0417635i
\(431\) −9.00000 5.19615i −0.433515 0.250290i 0.267328 0.963606i \(-0.413859\pi\)
−0.700843 + 0.713316i \(0.747193\pi\)
\(432\) 22.5000 12.9904i 1.08253 0.625000i
\(433\) 13.8564i 0.665896i 0.942945 + 0.332948i \(0.108043\pi\)
−0.942945 + 0.332948i \(0.891957\pi\)
\(434\) 0 0
\(435\) −1.50000 2.59808i −0.0719195 0.124568i
\(436\) −2.50000 4.33013i −0.119728 0.207375i
\(437\) −6.00000 + 10.3923i −0.287019 + 0.497131i
\(438\) 10.3923i 0.496564i
\(439\) 6.00000 3.46410i 0.286364 0.165333i −0.349937 0.936773i \(-0.613797\pi\)
0.636301 + 0.771441i \(0.280464\pi\)
\(440\) 6.00000 0.286039
\(441\) 0 0
\(442\) −36.0000 −1.71235
\(443\) −13.5000 + 7.79423i −0.641404 + 0.370315i −0.785155 0.619299i \(-0.787417\pi\)
0.143751 + 0.989614i \(0.454084\pi\)
\(444\) 6.92820i 0.328798i
\(445\) −1.50000 + 2.59808i −0.0711068 + 0.123161i
\(446\) −3.00000 5.19615i −0.142054 0.246045i
\(447\) 19.5000 + 33.7750i 0.922318 + 1.59750i
\(448\) 0 0
\(449\) 12.1244i 0.572184i 0.958202 + 0.286092i \(0.0923563\pi\)
−0.958202 + 0.286092i \(0.907644\pi\)
\(450\) 5.19615i 0.244949i
\(451\) −9.00000 5.19615i −0.423793 0.244677i
\(452\) −6.00000 3.46410i −0.282216 0.162938i
\(453\) 3.00000 + 1.73205i 0.140952 + 0.0813788i
\(454\) 20.7846i 0.975470i
\(455\) 0 0
\(456\) −18.0000 + 10.3923i −0.842927 + 0.486664i
\(457\) 4.00000 + 6.92820i 0.187112 + 0.324088i 0.944286 0.329125i \(-0.106754\pi\)
−0.757174 + 0.653213i \(0.773421\pi\)
\(458\) 0 0
\(459\) 27.0000 + 15.5885i 1.26025 + 0.727607i
\(460\) 1.50000 0.866025i 0.0699379 0.0403786i
\(461\) −30.0000 −1.39724 −0.698620 0.715493i \(-0.746202\pi\)
−0.698620 + 0.715493i \(0.746202\pi\)
\(462\) 0 0
\(463\) 29.0000 1.34774 0.673872 0.738848i \(-0.264630\pi\)
0.673872 + 0.738848i \(0.264630\pi\)
\(464\) 7.50000 4.33013i 0.348179 0.201021i
\(465\) 6.00000 0.278243
\(466\) −3.00000 + 5.19615i −0.138972 + 0.240707i
\(467\) −10.5000 18.1865i −0.485882 0.841572i 0.513986 0.857798i \(-0.328168\pi\)
−0.999868 + 0.0162260i \(0.994835\pi\)
\(468\) −9.00000 5.19615i −0.416025 0.240192i
\(469\) 0 0
\(470\) 0 0
\(471\) −3.00000 + 5.19615i −0.138233 + 0.239426i
\(472\) 0 0
\(473\) 3.00000 + 1.73205i 0.137940 + 0.0796398i
\(474\) −24.0000 + 41.5692i −1.10236 + 1.90934i
\(475\) 6.92820i 0.317888i
\(476\) 0 0
\(477\) 0 0
\(478\) 9.00000 + 15.5885i 0.411650 + 0.712999i
\(479\) 3.00000 5.19615i 0.137073 0.237418i −0.789314 0.613990i \(-0.789564\pi\)
0.926388 + 0.376571i \(0.122897\pi\)
\(480\) 9.00000 0.410792
\(481\) 12.0000 6.92820i 0.547153 0.315899i
\(482\) 12.0000 0.546585
\(483\) 0 0
\(484\) 1.00000 0.0454545
\(485\) −9.00000 + 5.19615i −0.408669 + 0.235945i
\(486\) 13.5000 + 23.3827i 0.612372 + 1.06066i
\(487\) 16.0000 27.7128i 0.725029 1.25579i −0.233933 0.972253i \(-0.575160\pi\)
0.958962 0.283535i \(-0.0915071\pi\)
\(488\) 4.50000 + 7.79423i 0.203705 + 0.352828i
\(489\) 12.0000 6.92820i 0.542659 0.313304i
\(490\) 0 0
\(491\) 38.1051i 1.71966i −0.510581 0.859830i \(-0.670569\pi\)
0.510581 0.859830i \(-0.329431\pi\)
\(492\) −4.50000 2.59808i −0.202876 0.117130i
\(493\) 9.00000 + 5.19615i 0.405340 + 0.234023i
\(494\) 36.0000 + 20.7846i 1.61972 + 0.935144i
\(495\) 10.3923i 0.467099i
\(496\) 17.3205i 0.777714i
\(497\) 0 0
\(498\) −13.5000 23.3827i −0.604949 1.04780i
\(499\) 7.00000 + 12.1244i 0.313363 + 0.542761i 0.979088 0.203436i \(-0.0652110\pi\)
−0.665725 + 0.746197i \(0.731878\pi\)
\(500\) 0.500000 0.866025i 0.0223607 0.0387298i
\(501\) 36.3731i 1.62503i
\(502\) −27.0000 + 15.5885i −1.20507 + 0.695747i
\(503\) −15.0000 −0.668817 −0.334408 0.942428i \(-0.608537\pi\)
−0.334408 + 0.942428i \(0.608537\pi\)
\(504\) 0 0
\(505\) −15.0000 −0.667491
\(506\) −9.00000 + 5.19615i −0.400099 + 0.230997i
\(507\) 1.73205i 0.0769231i
\(508\) −8.00000 + 13.8564i −0.354943 + 0.614779i
\(509\) 22.5000 + 38.9711i 0.997295 + 1.72737i 0.562303 + 0.826931i \(0.309915\pi\)
0.434992 + 0.900434i \(0.356751\pi\)
\(510\) 9.00000 + 15.5885i 0.398527 + 0.690268i
\(511\) 0 0
\(512\) 8.66025i 0.382733i
\(513\) −18.0000 31.1769i −0.794719 1.37649i
\(514\) 0 0
\(515\) −4.50000 2.59808i −0.198294 0.114485i
\(516\) 1.50000 + 0.866025i 0.0660338 + 0.0381246i
\(517\) 0 0
\(518\) 0 0
\(519\) −18.0000 + 10.3923i −0.790112 + 0.456172i
\(520\) 3.00000 + 5.19615i 0.131559 + 0.227866i
\(521\) −15.0000 + 25.9808i −0.657162 + 1.13824i 0.324185 + 0.945994i \(0.394910\pi\)
−0.981347 + 0.192244i \(0.938423\pi\)
\(522\) 4.50000 + 7.79423i 0.196960 + 0.341144i
\(523\) −21.0000 + 12.1244i −0.918266 + 0.530161i −0.883081 0.469220i \(-0.844535\pi\)
−0.0351845 + 0.999381i \(0.511202\pi\)
\(524\) −12.0000 −0.524222
\(525\) 0 0
\(526\) −3.00000 −0.130806
\(527\) −18.0000 + 10.3923i −0.784092 + 0.452696i
\(528\) −30.0000 −1.30558
\(529\) −10.0000 + 17.3205i −0.434783 + 0.753066i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 10.3923i 0.450141i
\(534\) 4.50000 7.79423i 0.194734 0.337289i
\(535\) 4.50000 + 2.59808i 0.194552 + 0.112325i
\(536\) 19.5000 + 11.2583i 0.842272 + 0.486286i
\(537\) −9.00000 + 15.5885i −0.388379 + 0.672692i
\(538\) 5.19615i 0.224022i
\(539\) 0 0
\(540\) 5.19615i 0.223607i
\(541\) −14.5000 25.1147i −0.623404 1.07977i −0.988847 0.148933i \(-0.952416\pi\)
0.365444 0.930834i \(-0.380917\pi\)
\(542\) −6.00000 + 10.3923i −0.257722 + 0.446388i
\(543\) −9.00000 −0.386227
\(544\) −27.0000 + 15.5885i −1.15762 + 0.668350i
\(545\) −5.00000 −0.214176
\(546\) 0 0
\(547\) −1.00000 −0.0427569 −0.0213785 0.999771i \(-0.506805\pi\)
−0.0213785 + 0.999771i \(0.506805\pi\)
\(548\) 18.0000 10.3923i 0.768922 0.443937i
\(549\) −13.5000 + 7.79423i −0.576166 + 0.332650i
\(550\) −3.00000 + 5.19615i −0.127920 + 0.221565i
\(551\) −6.00000 10.3923i −0.255609 0.442727i
\(552\) 4.50000 2.59808i 0.191533 0.110581i
\(553\) 0 0
\(554\) 45.0333i 1.91328i
\(555\) −6.00000 3.46410i −0.254686 0.147043i
\(556\) 9.00000 + 5.19615i 0.381685 + 0.220366i
\(557\) 15.0000 + 8.66025i 0.635570 + 0.366947i 0.782906 0.622140i \(-0.213736\pi\)
−0.147336 + 0.989087i \(0.547070\pi\)
\(558\) −18.0000 −0.762001
\(559\) 3.46410i 0.146516i
\(560\) 0 0
\(561\) −18.0000 31.1769i −0.759961 1.31629i
\(562\) −6.00000 10.3923i −0.253095 0.438373i
\(563\) −10.5000 + 18.1865i −0.442522 + 0.766471i −0.997876 0.0651433i \(-0.979250\pi\)
0.555354 + 0.831614i \(0.312583\pi\)
\(564\) 0 0
\(565\) −6.00000 + 3.46410i −0.252422 + 0.145736i
\(566\) 54.0000 2.26979
\(567\) 0 0
\(568\) 12.0000 0.503509
\(569\) −6.00000 + 3.46410i −0.251533 + 0.145223i −0.620466 0.784233i \(-0.713057\pi\)
0.368933 + 0.929456i \(0.379723\pi\)
\(570\) 20.7846i 0.870572i
\(571\) 2.00000 3.46410i 0.0836974 0.144968i −0.821138 0.570730i \(-0.806660\pi\)
0.904835 + 0.425762i \(0.139994\pi\)
\(572\) 6.00000 + 10.3923i 0.250873 + 0.434524i
\(573\) −9.00000 15.5885i −0.375980 0.651217i
\(574\) 0 0
\(575\) 1.73205i 0.0722315i
\(576\) 3.00000 0.125000
\(577\) −21.0000 12.1244i −0.874241 0.504744i −0.00548605 0.999985i \(-0.501746\pi\)
−0.868755 + 0.495241i \(0.835080\pi\)
\(578\) −28.5000 16.4545i −1.18544 0.684416i
\(579\) −33.0000 19.0526i −1.37143 0.791797i
\(580\) 1.73205i 0.0719195i
\(581\) 0 0
\(582\) 27.0000 15.5885i 1.11919 0.646162i
\(583\) 0 0
\(584\) 3.00000 5.19615i 0.124141 0.215018i
\(585\) −9.00000 + 5.19615i −0.372104 + 0.214834i
\(586\) 36.0000 20.7846i 1.48715 0.858604i
\(587\) −12.0000 −0.495293 −0.247647 0.968850i \(-0.579657\pi\)
−0.247647 + 0.968850i \(0.579657\pi\)
\(588\) 0 0
\(589\) 24.0000 0.988903
\(590\) 0 0
\(591\) 6.00000 0.246807
\(592\) 10.0000 17.3205i 0.410997 0.711868i
\(593\) −24.0000 41.5692i −0.985562 1.70704i −0.639413 0.768864i \(-0.720822\pi\)
−0.346149 0.938179i \(-0.612511\pi\)
\(594\) 31.1769i 1.27920i
\(595\) 0 0
\(596\) 22.5167i 0.922318i
\(597\) 6.00000 10.3923i 0.245564 0.425329i
\(598\) −9.00000 5.19615i −0.368037 0.212486i
\(599\) 12.0000 + 6.92820i 0.490307 + 0.283079i 0.724702 0.689063i \(-0.241978\pi\)
−0.234395 + 0.972141i \(0.575311\pi\)
\(600\) 1.50000 2.59808i 0.0612372 0.106066i
\(601\) 20.7846i 0.847822i −0.905704 0.423911i \(-0.860657\pi\)
0.905704 0.423911i \(-0.139343\pi\)
\(602\) 0 0
\(603\) −19.5000 + 33.7750i −0.794101 + 1.37542i
\(604\) −1.00000 1.73205i −0.0406894 0.0704761i
\(605\) 0.500000 0.866025i 0.0203279 0.0352089i
\(606\) 45.0000 1.82800
\(607\) 1.50000 0.866025i 0.0608831 0.0351509i −0.469249 0.883066i \(-0.655475\pi\)
0.530133 + 0.847915i \(0.322142\pi\)
\(608\) 36.0000 1.45999
\(609\) 0 0
\(610\) −9.00000 −0.364399
\(611\) 0 0
\(612\) −9.00000 15.5885i −0.363803 0.630126i
\(613\) −1.00000 + 1.73205i −0.0403896 + 0.0699569i −0.885514 0.464614i \(-0.846193\pi\)
0.845124 + 0.534570i \(0.179527\pi\)
\(614\) 19.5000 + 33.7750i 0.786956 + 1.36305i
\(615\) −4.50000 + 2.59808i −0.181458 + 0.104765i
\(616\) 0 0
\(617\) 34.6410i 1.39459i 0.716782 + 0.697297i \(0.245614\pi\)
−0.716782 + 0.697297i \(0.754386\pi\)
\(618\) 13.5000 + 7.79423i 0.543050 + 0.313530i
\(619\) 21.0000 + 12.1244i 0.844061 + 0.487319i 0.858643 0.512575i \(-0.171308\pi\)
−0.0145814 + 0.999894i \(0.504642\pi\)
\(620\) −3.00000 1.73205i −0.120483 0.0695608i
\(621\) 4.50000 + 7.79423i 0.180579 + 0.312772i
\(622\) 41.5692i 1.66677i
\(623\) 0 0
\(624\) −15.0000 25.9808i −0.600481 1.04006i
\(625\) −0.500000 0.866025i −0.0200000 0.0346410i
\(626\) 0 0
\(627\) 41.5692i 1.66011i
\(628\) 3.00000 1.73205i 0.119713 0.0691164i
\(629\) 24.0000 0.956943
\(630\) 0 0
\(631\) −34.0000 −1.35352 −0.676759 0.736204i \(-0.736616\pi\)
−0.676759 + 0.736204i \(0.736616\pi\)
\(632\) −24.0000 + 13.8564i −0.954669 + 0.551178i
\(633\) 34.6410i 1.37686i
\(634\) 15.0000 25.9808i 0.595726 1.03183i
\(635\) 8.00000 + 13.8564i 0.317470 + 0.549875i
\(636\) 0 0
\(637\) 0 0
\(638\) 10.3923i 0.411435i
\(639\) 20.7846i 0.822226i
\(640\) 10.5000 + 6.06218i 0.415049 + 0.239629i
\(641\) −10.5000 6.06218i −0.414725 0.239442i 0.278093 0.960554i \(-0.410298\pi\)
−0.692818 + 0.721113i \(0.743631\pi\)
\(642\) −13.5000 7.79423i −0.532803 0.307614i
\(643\) 17.3205i 0.683054i 0.939872 + 0.341527i \(0.110944\pi\)
−0.939872 + 0.341527i \(0.889056\pi\)
\(644\) 0 0
\(645\) 1.50000 0.866025i 0.0590624 0.0340997i
\(646\) 36.0000 + 62.3538i 1.41640 + 2.45328i
\(647\) −1.50000 + 2.59808i −0.0589711 + 0.102141i −0.894004 0.448059i \(-0.852115\pi\)
0.835033 + 0.550200i \(0.185449\pi\)
\(648\) 15.5885i 0.612372i
\(649\) 0 0
\(650\) −6.00000 −0.235339
\(651\) 0 0
\(652\) −8.00000 −0.313304
\(653\) 27.0000 15.5885i 1.05659 0.610023i 0.132104 0.991236i \(-0.457827\pi\)
0.924487 + 0.381212i \(0.124493\pi\)
\(654\) 15.0000 0.586546
\(655\) −6.00000 + 10.3923i −0.234439 + 0.406061i
\(656\) −7.50000 12.9904i −0.292826 0.507189i
\(657\) 9.00000 + 5.19615i 0.351123 + 0.202721i
\(658\) 0 0
\(659\) 41.5692i 1.61931i −0.586908 0.809653i \(-0.699655\pi\)
0.586908 0.809653i \(-0.300345\pi\)
\(660\) 3.00000 5.19615i 0.116775 0.202260i
\(661\) −28.5000 16.4545i −1.10852 0.640005i −0.170075 0.985431i \(-0.554401\pi\)
−0.938446 + 0.345426i \(0.887734\pi\)
\(662\) −15.0000 8.66025i −0.582992 0.336590i
\(663\) 18.0000 31.1769i 0.699062 1.21081i
\(664\) 15.5885i 0.604949i
\(665\) 0 0
\(666\) 18.0000 + 10.3923i 0.697486 + 0.402694i
\(667\) 1.50000 + 2.59808i 0.0580802 + 0.100598i
\(668\) 10.5000 18.1865i 0.406257 0.703658i
\(669\) 6.00000 0.231973
\(670\) −19.5000 + 11.2583i −0.753351 + 0.434947i
\(671\) 18.0000 0.694882
\(672\) 0 0
\(673\) 4.00000 0.154189 0.0770943 0.997024i \(-0.475436\pi\)
0.0770943 + 0.997024i \(0.475436\pi\)
\(674\) −48.0000 + 27.7128i −1.84889 + 1.06746i
\(675\) 4.50000 + 2.59808i 0.173205 + 0.100000i
\(676\) 0.500000 0.866025i 0.0192308 0.0333087i
\(677\) −3.00000 5.19615i −0.115299 0.199704i 0.802600 0.596518i \(-0.203449\pi\)
−0.917899 + 0.396813i \(0.870116\pi\)
\(678\) 18.0000 10.3923i 0.691286 0.399114i
\(679\) 0 0
\(680\) 10.3923i 0.398527i
\(681\) −18.0000 10.3923i −0.689761 0.398234i
\(682\) 18.0000 + 10.3923i 0.689256 + 0.397942i
\(683\) −34.5000 19.9186i −1.32011 0.762163i −0.336361 0.941733i \(-0.609196\pi\)
−0.983745 + 0.179570i \(0.942529\pi\)
\(684\) 20.7846i 0.794719i
\(685\) 20.7846i 0.794139i
\(686\) 0 0
\(687\) 0 0
\(688\) 2.50000 + 4.33013i 0.0953116 + 0.165085i
\(689\) 0 0
\(690\) 5.19615i 0.197814i
\(691\) −3.00000 + 1.73205i −0.114125 + 0.0658903i −0.555976 0.831198i \(-0.687655\pi\)
0.441851 + 0.897089i \(0.354322\pi\)
\(692\) 12.0000 0.456172
\(693\) 0 0
\(694\) −33.0000 −1.25266
\(695\) 9.00000 5.19615i 0.341389 0.197101i
\(696\) 5.19615i 0.196960i
\(697\) 9.00000 15.5885i 0.340899 0.590455i
\(698\) −7.50000 12.9904i −0.283879 0.491693i
\(699\) −3.00000 5.19615i −0.113470 0.196537i
\(700\) 0 0
\(701\) 25.9808i 0.981280i 0.871362 + 0.490640i \(0.163237\pi\)
−0.871362 + 0.490640i \(0.836763\pi\)
\(702\) 27.0000 15.5885i 1.01905 0.588348i
\(703\) −24.0000 13.8564i −0.905177 0.522604i
\(704\) −3.00000 1.73205i −0.113067 0.0652791i
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −9.50000 16.4545i −0.356780 0.617961i 0.630641 0.776075i \(-0.282792\pi\)
−0.987421 + 0.158114i \(0.949459\pi\)
\(710\) −6.00000 + 10.3923i −0.225176 + 0.390016i
\(711\) −24.0000 41.5692i −0.900070 1.55897i
\(712\) 4.50000 2.59808i 0.168645 0.0973670i
\(713\) −6.00000 −0.224702
\(714\) 0 0
\(715\) 12.0000 0.448775
\(716\) 9.00000 5.19615i 0.336346 0.194189i
\(717\) −18.0000 −0.672222
\(718\) 21.0000 36.3731i 0.783713 1.35743i
\(719\) −3.00000 5.19615i −0.111881 0.193784i 0.804648 0.593753i \(-0.202354\pi\)
−0.916529 + 0.399969i \(0.869021\pi\)
\(720\) −7.50000 + 12.9904i −0.279508 + 0.484123i
\(721\) 0 0
\(722\) 50.2295i 1.86935i
\(723\) −6.00000 + 10.3923i −0.223142 + 0.386494i
\(724\) 4.50000 + 2.59808i 0.167241 + 0.0965567i
\(725\) 1.50000 + 0.866025i 0.0557086 + 0.0321634i
\(726\) −1.50000 + 2.59808i −0.0556702 + 0.0964237i
\(727\) 5.19615i 0.192715i −0.995347 0.0963573i \(-0.969281\pi\)
0.995347 0.0963573i \(-0.0307191\pi\)
\(728\) 0 0
\(729\) −27.0000 −1.00000
\(730\) 3.00000 + 5.19615i 0.111035 + 0.192318i
\(731\) −3.00000 + 5.19615i −0.110959 + 0.192187i
\(732\) 9.00000 0.332650
\(733\) 15.0000 8.66025i 0.554038 0.319874i −0.196711 0.980461i \(-0.563026\pi\)
0.750749 + 0.660588i \(0.229693\pi\)
\(734\) −27.0000 −0.996588
\(735\) 0 0
\(736\) −9.00000 −0.331744
\(737\) 39.0000 22.5167i 1.43658 0.829412i
\(738\) 13.5000 7.79423i 0.496942 0.286910i
\(739\) −19.0000 + 32.9090i −0.698926 + 1.21058i 0.269913 + 0.962885i \(0.413005\pi\)
−0.968839 + 0.247691i \(0.920328\pi\)
\(740\) 2.00000 + 3.46410i 0.0735215 + 0.127343i
\(741\) −36.0000 + 20.7846i −1.32249 + 0.763542i
\(742\) 0 0
\(743\) 46.7654i 1.71566i −0.513938 0.857828i \(-0.671814\pi\)
0.513938 0.857828i \(-0.328186\pi\)
\(744\) −9.00000 5.19615i −0.329956 0.190500i
\(745\) −19.5000 11.2583i −0.714425 0.412473i
\(746\) 6.00000 + 3.46410i 0.219676 + 0.126830i
\(747\) 27.0000 0.987878
\(748\) 20.7846i 0.759961i
\(749\) 0 0
\(750\) 1.50000 + 2.59808i 0.0547723 + 0.0948683i
\(751\) 10.0000 + 17.3205i 0.364905 + 0.632034i 0.988761 0.149505i \(-0.0477681\pi\)
−0.623856 + 0.781540i \(0.714435\pi\)
\(752\) 0 0
\(753\) 31.1769i 1.13615i
\(754\) 9.00000 5.19615i 0.327761 0.189233i
\(755\) −2.00000 −0.0727875
\(756\) 0 0
\(757\) 22.0000 0.799604 0.399802 0.916602i \(-0.369079\pi\)
0.399802 + 0.916602i \(0.369079\pi\)
\(758\) 24.0000 13.8564i 0.871719 0.503287i
\(759\) 10.3923i 0.377217i
\(760\) 6.00000 10.3923i 0.217643 0.376969i
\(761\) −9.00000 15.5885i −0.326250 0.565081i 0.655515 0.755182i \(-0.272452\pi\)
−0.981764 + 0.190101i \(0.939118\pi\)
\(762\) −24.0000 41.5692i −0.869428 1.50589i
\(763\) 0 0
\(764\) 10.3923i 0.375980i
\(765\) −18.0000 −0.650791
\(766\) −31.5000 18.1865i −1.13814 0.657106i
\(767\) 0 0
\(768\) −28.5000 16.4545i −1.02841 0.593750i
\(769\) 41.5692i 1.49902i 0.661991 + 0.749512i \(0.269712\pi\)
−0.661991 + 0.749512i \(0.730288\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 11.0000 + 19.0526i 0.395899 + 0.685717i
\(773\) 9.00000 15.5885i 0.323708 0.560678i −0.657542 0.753418i \(-0.728404\pi\)
0.981250 + 0.192740i \(0.0617373\pi\)
\(774\) −4.50000 + 2.59808i −0.161749 + 0.0933859i
\(775\) −3.00000 + 1.73205i −0.107763 + 0.0622171i
\(776\) 18.0000 0.646162
\(777\) 0 0
\(778\) −48.0000 −1.72088
\(779\) −18.0000 + 10.3923i −0.644917 + 0.372343i
\(780\) 6.00000 0.214834
\(781\) 12.0000 20.7846i 0.429394 0.743732i
\(782\) −9.00000 15.5885i −0.321839 0.557442i
\(783\) −9.00000 −0.321634
\(784\) 0 0
\(785\) 3.46410i 0.123639i
\(786\) 18.0000 31.1769i 0.642039 1.11204i
\(787\) 22.5000 + 12.9904i 0.802038 + 0.463057i 0.844183 0.536054i \(-0.180086\pi\)
−0.0421450 + 0.999112i \(0.513419\pi\)
\(788\) −3.00000 1.73205i −0.106871 0.0617018i
\(789\) 1.50000 2.59808i 0.0534014 0.0924940i
\(790\) 27.7128i 0.985978i
\(791\) 0 0
\(792\) 9.00000 15.5885i 0.319801 0.553912i
\(793\) 9.00000 + 15.5885i 0.319599 + 0.553562i
\(794\) 21.0000 36.3731i 0.745262 1.29083i
\(795\) 0 0
\(796\) −6.00000 + 3.46410i −0.212664 + 0.122782i
\(797\) 12.0000 0.425062 0.212531 0.977154i \(-0.431829\pi\)
0.212531 + 0.977154i \(0.431829\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) −4.50000 + 2.59808i −0.159099 + 0.0918559i
\(801\) 4.50000 + 7.79423i 0.159000 + 0.275396i
\(802\) 16.5000 28.5788i 0.582635 1.00915i
\(803\) −6.00000 10.3923i −0.211735 0.366736i
\(804\) 19.5000 11.2583i 0.687712 0.397051i
\(805\) 0 0
\(806\) 20.7846i 0.732107i
\(807\) 4.50000 + 2.59808i 0.158408 + 0.0914566i
\(808\) 22.5000 + 12.9904i 0.791547 + 0.457000i
\(809\) −16.5000 9.52628i −0.580109 0.334926i 0.181068 0.983471i \(-0.442045\pi\)
−0.761177 + 0.648544i \(0.775378\pi\)
\(810\) −13.5000 7.79423i −0.474342 0.273861i
\(811\) 45.0333i 1.58133i −0.612247 0.790667i \(-0.709734\pi\)
0.612247 0.790667i \(-0.290266\pi\)
\(812\) 0 0
\(813\) −6.00000 10.3923i −0.210429 0.364474i
\(814\) −12.0000 20.7846i −0.420600 0.728500i
\(815\) −4.00000 + 6.92820i −0.140114 + 0.242684i
\(816\) 51.9615i 1.81902i
\(817\) 6.00000 3.46410i 0.209913 0.121194i
\(818\) −39.0000 −1.36360
\(819\) 0 0
\(820\) 3.00000 0.104765
\(821\) −36.0000 + 20.7846i −1.25641 + 0.725388i −0.972375 0.233426i \(-0.925006\pi\)
−0.284034 + 0.958814i \(0.591673\pi\)
\(822\) 62.3538i 2.17484i
\(823\) −11.5000 + 19.9186i −0.400865 + 0.694318i −0.993831 0.110910i \(-0.964624\pi\)
0.592966 + 0.805228i \(0.297957\pi\)
\(824\) 4.50000 + 7.79423i 0.156765 + 0.271525i
\(825\) −3.00000 5.19615i −0.104447 0.180907i
\(826\) 0 0
\(827\) 22.5167i 0.782981i 0.920182 + 0.391491i \(0.128040\pi\)
−0.920182 + 0.391491i \(0.871960\pi\)
\(828\) 5.19615i 0.180579i
\(829\) 12.0000 + 6.92820i 0.416777 + 0.240626i 0.693698 0.720266i \(-0.255980\pi\)
−0.276920 + 0.960893i \(0.589314\pi\)
\(830\) 13.5000 + 7.79423i 0.468592 + 0.270542i
\(831\) −39.0000 22.5167i −1.35290 0.781094i
\(832\) 3.46410i 0.120096i
\(833\) 0 0
\(834\) −27.0000 + 15.5885i −0.934934 + 0.539784i
\(835\) −10.5000 18.1865i −0.363367 0.629371i
\(836\) 12.0000 20.7846i 0.415029 0.718851i
\(837\) 9.00000 15.5885i 0.311086 0.538816i
\(838\) 0 0
\(839\) −30.0000 −1.03572 −0.517858 0.855467i \(-0.673270\pi\)
−0.517858 + 0.855467i \(0.673270\pi\)
\(840\) 0 0
\(841\) 26.0000 0.896552
\(842\) 52.5000 30.3109i 1.80927 1.04458i
\(843\) 12.0000 0.413302
\(844\) −10.0000 + 17.3205i −0.344214 + 0.596196i
\(845\) −0.500000 0.866025i −0.0172005 0.0297922i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −27.0000 + 46.7654i −0.926638 + 1.60498i
\(850\) −9.00000 5.19615i −0.308697 0.178227i
\(851\) 6.00000 + 3.46410i 0.205677 + 0.118748i
\(852\) 6.00000 10.3923i 0.205557 0.356034i
\(853\) 20.7846i 0.711651i 0.934552 + 0.355826i \(0.115800\pi\)
−0.934552 + 0.355826i \(0.884200\pi\)
\(854\) 0 0
\(855\) 18.0000 + 10.3923i 0.615587 + 0.355409i
\(856\) −4.50000 7.79423i −0.153807 0.266401i
\(857\) 21.0000 36.3731i 0.717346 1.24248i −0.244701 0.969599i \(-0.578690\pi\)
0.962048 0.272882i \(-0.0879768\pi\)
\(858\) −36.0000 −1.22902
\(859\) −24.0000 + 13.8564i −0.818869 + 0.472774i −0.850026 0.526740i \(-0.823414\pi\)
0.0311570 + 0.999515i \(0.490081\pi\)
\(860\) −1.00000 −0.0340997
\(861\) 0 0
\(862\) −18.0000 −0.613082
\(863\) −7.50000 + 4.33013i −0.255303 + 0.147399i −0.622190 0.782866i \(-0.713757\pi\)
0.366887 + 0.930265i \(0.380424\pi\)
\(864\) 13.5000 23.3827i 0.459279 0.795495i
\(865\) 6.00000 10.3923i 0.204006 0.353349i
\(866\) 12.0000 + 20.7846i 0.407777 + 0.706290i
\(867\) 28.5000 16.4545i 0.967911 0.558824i
\(868\) 0 0
\(869\) 55.4256i 1.88019i
\(870\) −4.50000 2.59808i −0.152564 0.0880830i
\(871\) 39.0000 + 22.5167i 1.32146 + 0.762948i
\(872\) 7.50000 + 4.33013i 0.253982 + 0.146637i
\(873\) 31.1769i 1.05518i
\(874\) 20.7846i 0.703050i
\(875\) 0 0
\(876\) −3.00000 5.19615i −0.101361 0.175562i
\(877\) −16.0000 27.7128i −0.540282 0.935795i −0.998888 0.0471555i \(-0.984984\pi\)
0.458606 0.888640i \(-0.348349\pi\)
\(878\) 6.00000 10.3923i 0.202490 0.350723i
\(879\) 41.5692i 1.40209i
\(880\) 15.0000 8.66025i 0.505650 0.291937i
\(881\) −9.00000 −0.303218 −0.151609 0.988441i \(-0.548445\pi\)
−0.151609 + 0.988441i \(0.548445\pi\)
\(882\) 0 0
\(883\) −20.0000 −0.673054 −0.336527 0.941674i \(-0.609252\pi\)
−0.336527 + 0.941674i \(0.609252\pi\)
\(884\) −18.0000 + 10.3923i −0.605406 + 0.349531i
\(885\) 0 0
\(886\) −13.5000 + 23.3827i −0.453541 + 0.785557i
\(887\) −4.50000 7.79423i −0.151095 0.261705i 0.780535 0.625112i \(-0.214947\pi\)
−0.931630 + 0.363407i \(0.881613\pi\)
\(888\) 6.00000 + 10.3923i 0.201347 + 0.348743i
\(889\) 0 0
\(890\) 5.19615i 0.174175i
\(891\) 27.0000 + 15.5885i 0.904534 + 0.522233i
\(892\) −3.00000 1.73205i −0.100447 0.0579934i
\(893\) 0 0
\(894\) 58.5000 + 33.7750i 1.95653 + 1.12960i
\(895\) 10.3923i 0.347376i
\(896\) 0 0
\(897\) 9.00000 5.19615i 0.300501 0.173494i
\(898\) 10.5000 + 18.1865i 0.350390 + 0.606892i
\(899\) 3.00000 5.19615i 0.100056 0.173301i
\(900\) −1.50000 2.59808i −0.0500000 0.0866025i
\(901\) 0 0
\(902\) −18.0000 −0.599334
\(903\) 0 0
\(904\) 12.0000 0.399114
\(905\) 4.50000 2.59808i 0.149585 0.0863630i
\(906\) 6.00000 0.199337
\(907\) −18.5000 + 32.0429i −0.614282 + 1.06397i 0.376228 + 0.926527i \(0.377221\pi\)
−0.990510 + 0.137441i \(0.956112\pi\)
\(908\) 6.00000 + 10.3923i 0.199117 + 0.344881i
\(909\) −22.5000 + 38.9711i −0.746278 + 1.29259i
\(910\) 0 0
\(911\) 24.2487i 0.803396i −0.915772 0.401698i \(-0.868420\pi\)
0.915772 0.401698i \(-0.131580\pi\)
\(912\) −30.0000 + 51.9615i −0.993399 + 1.72062i
\(913\) −27.0000 15.5885i −0.893570 0.515903i
\(914\) 12.0000 + 6.92820i 0.396925 + 0.229165i
\(915\) 4.50000 7.79423i 0.148765 0.257669i
\(916\) 0 0
\(917\) 0 0
\(918\) 54.0000 1.78227
\(919\) −8.00000 13.8564i −0.263896 0.457081i 0.703378 0.710816i \(-0.251674\pi\)
−0.967274 + 0.253735i \(0.918341\pi\)
\(920\) −1.50000 + 2.59808i −0.0494535 + 0.0856560i
\(921\) −39.0000 −1.28509
\(922\) −45.0000 + 25.9808i −1.48200 + 0.855631i
\(923\) 24.0000 0.789970
\(924\) 0 0
\(925\) 4.00000 0.131519
\(926\) 43.5000 25.1147i 1.42950 0.825321i
\(927\) −13.5000 + 7.79423i −0.443398 + 0.255996i
\(928\) 4.50000 7.79423i 0.147720 0.255858i
\(929\) −10.5000 18.1865i −0.344494 0.596681i 0.640768 0.767735i \(-0.278616\pi\)
−0.985262 + 0.171054i \(0.945283\pi\)
\(930\) 9.00000 5.19615i 0.295122 0.170389i
\(931\) 0 0
\(932\) 3.46410i 0.113470i
\(933\) 36.0000 + 20.7846i 1.17859 + 0.680458i
\(934\) −31.5000 18.1865i −1.03071 0.595082i
\(935\) 18.0000 + 10.3923i 0.588663 + 0.339865i
\(936\) 18.0000 0.588348
\(937\) 48.4974i 1.58434i −0.610299 0.792171i \(-0.708951\pi\)
0.610299 0.792171i \(-0.291049\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −9.00000 + 15.5885i −0.293392 + 0.508169i −0.974609 0.223912i \(-0.928117\pi\)
0.681218 + 0.732081i \(0.261451\pi\)
\(942\) 10.3923i 0.338600i
\(943\) 4.50000 2.59808i 0.146540 0.0846050i
\(944\) 0 0
\(945\) 0 0
\(946\) 6.00000 0.195077
\(947\) 22.5000 12.9904i 0.731152 0.422131i −0.0876916 0.996148i \(-0.527949\pi\)
0.818843 + 0.574017i \(0.194616\pi\)
\(948\) 27.7128i 0.900070i
\(949\) 6.00000 10.3923i 0.194768 0.337348i
\(950\) 6.00000 + 10.3923i 0.194666 + 0.337171i
\(951\) 15.0000 + 25.9808i 0.486408 + 0.842484i
\(952\) 0 0
\(953\) 6.92820i 0.224427i −0.993684 0.112213i \(-0.964206\pi\)
0.993684 0.112213i \(-0.0357940\pi\)
\(954\) 0 0
\(955\) 9.00000 + 5.19615i 0.291233 + 0.168144i
\(956\) 9.00000 + 5.19615i 0.291081 + 0.168056i
\(957\) 9.00000 + 5.19615i 0.290929 + 0.167968i
\(958\) 10.3923i 0.335760i
\(959\) 0 0
\(960\) −1.50000 + 0.866025i −0.0484123 + 0.0279508i
\(961\) −9.50000 16.4545i −0.306452 0.530790i
\(962\) 12.0000 20.7846i 0.386896 0.670123i
\(963\) 13.5000 7.79423i 0.435031 0.251166i
\(964\) 6.00000 3.46410i 0.193247 0.111571i
\(965\) 22.0000 0.708205
\(966\) 0 0
\(967\) 23.0000 0.739630 0.369815 0.929105i \(-0.379421\pi\)
0.369815 + 0.929105i \(0.379421\pi\)
\(968\) −1.50000 + 0.866025i −0.0482118 + 0.0278351i
\(969\) −72.0000 −2.31297
\(970\) −9.00000 + 15.5885i −0.288973 + 0.500515i
\(971\) 6.00000 + 10.3923i 0.192549 + 0.333505i 0.946094 0.323891i \(-0.104991\pi\)
−0.753545 + 0.657396i \(0.771658\pi\)
\(972\) 13.5000 + 7.79423i 0.433013 + 0.250000i
\(973\) 0 0
\(974\) 55.4256i 1.77595i
\(975\) 3.00000 5.19615i 0.0960769 0.166410i
\(976\) 22.5000 + 12.9904i 0.720207 + 0.415812i
\(977\) 21.0000 + 12.1244i 0.671850 + 0.387893i 0.796777 0.604273i \(-0.206537\pi\)
−0.124928 + 0.992166i \(0.539870\pi\)
\(978\) 12.0000 20.7846i 0.383718 0.664619i
\(979\) 10.3923i 0.332140i
\(980\) 0 0
\(981\) −7.50000 + 12.9904i −0.239457 + 0.414751i
\(982\) −33.0000 57.1577i −1.05307 1.82397i
\(983\) −28.5000 + 49.3634i −0.909009 + 1.57445i −0.0935651 + 0.995613i \(0.529826\pi\)
−0.815444 + 0.578836i \(0.803507\pi\)
\(984\) 9.00000 0.286910
\(985\) −3.00000 + 1.73205i −0.0955879 + 0.0551877i
\(986\) 18.0000 0.573237
\(987\) 0 0
\(988\) 24.0000 0.763542
\(989\) −1.50000 + 0.866025i −0.0476972 + 0.0275380i
\(990\) 9.00000 + 15.5885i 0.286039 + 0.495434i
\(991\) −17.0000 + 29.4449i −0.540023 + 0.935347i 0.458879 + 0.888499i \(0.348251\pi\)
−0.998902 + 0.0468483i \(0.985082\pi\)
\(992\) 9.00000 + 15.5885i 0.285750 + 0.494934i
\(993\) 15.0000 8.66025i 0.476011 0.274825i
\(994\) 0 0
\(995\) 6.92820i 0.219639i
\(996\) −13.5000 7.79423i −0.427764 0.246970i
\(997\) −6.00000 3.46410i −0.190022 0.109709i 0.401971 0.915652i \(-0.368325\pi\)
−0.591993 + 0.805943i \(0.701659\pi\)
\(998\) 21.0000 + 12.1244i 0.664743 + 0.383790i
\(999\) −18.0000 + 10.3923i −0.569495 + 0.328798i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 735.2.s.e.521.1 2
3.2 odd 2 735.2.s.c.521.1 2
7.2 even 3 105.2.s.a.26.1 2
7.3 odd 6 735.2.b.a.146.2 2
7.4 even 3 735.2.b.b.146.2 2
7.5 odd 6 735.2.s.c.656.1 2
7.6 odd 2 105.2.s.b.101.1 yes 2
21.2 odd 6 105.2.s.b.26.1 yes 2
21.5 even 6 inner 735.2.s.e.656.1 2
21.11 odd 6 735.2.b.a.146.1 2
21.17 even 6 735.2.b.b.146.1 2
21.20 even 2 105.2.s.a.101.1 yes 2
35.2 odd 12 525.2.q.b.299.2 4
35.9 even 6 525.2.t.e.26.1 2
35.13 even 4 525.2.q.a.374.1 4
35.23 odd 12 525.2.q.b.299.1 4
35.27 even 4 525.2.q.a.374.2 4
35.34 odd 2 525.2.t.a.101.1 2
105.2 even 12 525.2.q.a.299.1 4
105.23 even 12 525.2.q.a.299.2 4
105.44 odd 6 525.2.t.a.26.1 2
105.62 odd 4 525.2.q.b.374.1 4
105.83 odd 4 525.2.q.b.374.2 4
105.104 even 2 525.2.t.e.101.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
105.2.s.a.26.1 2 7.2 even 3
105.2.s.a.101.1 yes 2 21.20 even 2
105.2.s.b.26.1 yes 2 21.2 odd 6
105.2.s.b.101.1 yes 2 7.6 odd 2
525.2.q.a.299.1 4 105.2 even 12
525.2.q.a.299.2 4 105.23 even 12
525.2.q.a.374.1 4 35.13 even 4
525.2.q.a.374.2 4 35.27 even 4
525.2.q.b.299.1 4 35.23 odd 12
525.2.q.b.299.2 4 35.2 odd 12
525.2.q.b.374.1 4 105.62 odd 4
525.2.q.b.374.2 4 105.83 odd 4
525.2.t.a.26.1 2 105.44 odd 6
525.2.t.a.101.1 2 35.34 odd 2
525.2.t.e.26.1 2 35.9 even 6
525.2.t.e.101.1 2 105.104 even 2
735.2.b.a.146.1 2 21.11 odd 6
735.2.b.a.146.2 2 7.3 odd 6
735.2.b.b.146.1 2 21.17 even 6
735.2.b.b.146.2 2 7.4 even 3
735.2.s.c.521.1 2 3.2 odd 2
735.2.s.c.656.1 2 7.5 odd 6
735.2.s.e.521.1 2 1.1 even 1 trivial
735.2.s.e.656.1 2 21.5 even 6 inner