Properties

Label 735.2.p.g.374.32
Level $735$
Weight $2$
Character 735.374
Analytic conductor $5.869$
Analytic rank $0$
Dimension $64$
Inner twists $16$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [735,2,Mod(374,735)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("735.374"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(735, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 3, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 735 = 3 \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 735.p (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [64,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.86900454856\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(32\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 374.32
Character \(\chi\) \(=\) 735.374
Dual form 735.2.p.g.509.32

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.10453 + 1.91310i) q^{2} +(1.38025 - 1.04638i) q^{3} +(-1.43998 + 2.49412i) q^{4} +(0.889228 - 2.05165i) q^{5} +(3.52637 + 1.48480i) q^{6} -1.94389 q^{8} +(0.810168 - 2.88853i) q^{9} +(4.90720 - 0.564929i) q^{10} +(-3.30554 - 1.90846i) q^{11} +(0.622272 + 4.94927i) q^{12} +6.50161 q^{13} +(-0.919457 - 3.76226i) q^{15} +(0.732874 + 1.26937i) q^{16} +(-2.54654 - 1.47025i) q^{17} +(6.42092 - 1.64054i) q^{18} +(-1.76224 + 1.01743i) q^{19} +(3.83659 + 5.17218i) q^{20} -8.43180i q^{22} +(1.50029 + 2.59858i) q^{23} +(-2.68305 + 2.03405i) q^{24} +(-3.41855 - 3.64877i) q^{25} +(7.18123 + 12.4383i) q^{26} +(-1.90428 - 4.83464i) q^{27} +2.25259i q^{29} +(6.18203 - 5.91455i) q^{30} +(5.77216 + 3.33256i) q^{31} +(-3.56285 + 6.17104i) q^{32} +(-6.55944 + 0.824719i) q^{33} -6.49574i q^{34} +(6.03772 + 6.18009i) q^{36} +(-2.91560 + 1.68332i) q^{37} +(-3.89289 - 2.24756i) q^{38} +(8.97383 - 6.80317i) q^{39} +(-1.72856 + 3.98818i) q^{40} -3.51094 q^{41} +7.03729i q^{43} +(9.51983 - 5.49628i) q^{44} +(-5.20584 - 4.23075i) q^{45} +(-3.31424 + 5.74043i) q^{46} +(-4.34120 + 2.50639i) q^{47} +(2.33980 + 0.985185i) q^{48} +(3.20459 - 10.5702i) q^{50} +(-5.05330 + 0.635352i) q^{51} +(-9.36219 + 16.2158i) q^{52} +(0.967113 - 1.67509i) q^{53} +(7.14584 - 8.98309i) q^{54} +(-6.85487 + 5.08477i) q^{55} +(-1.36770 + 3.24827i) q^{57} +(-4.30944 + 2.48806i) q^{58} +(-3.96509 + 6.86774i) q^{59} +(10.7075 + 3.12434i) q^{60} +(11.8342 - 6.83249i) q^{61} +14.7237i q^{62} -12.8096 q^{64} +(5.78141 - 13.3390i) q^{65} +(-8.82289 - 11.6380i) q^{66} +(-9.34121 - 5.39315i) q^{67} +(7.33395 - 4.23426i) q^{68} +(4.78988 + 2.01681i) q^{69} +10.9926i q^{71} +(-1.57488 + 5.61499i) q^{72} +(-1.65449 + 2.86566i) q^{73} +(-6.44074 - 3.71856i) q^{74} +(-8.53645 - 1.45910i) q^{75} -5.86030i q^{76} +(22.9271 + 9.65357i) q^{78} +(2.92489 + 5.06605i) q^{79} +(3.25601 - 0.374839i) q^{80} +(-7.68725 - 4.68040i) q^{81} +(-3.87795 - 6.71680i) q^{82} -2.66330i q^{83} +(-5.28089 + 3.91724i) q^{85} +(-13.4631 + 7.77291i) q^{86} +(2.35707 + 3.10913i) q^{87} +(6.42561 + 3.70983i) q^{88} +(-6.75793 - 11.7051i) q^{89} +(2.34385 - 14.6323i) q^{90} -8.64156 q^{92} +(11.4541 - 1.44013i) q^{93} +(-9.58999 - 5.53678i) q^{94} +(0.520378 + 4.52022i) q^{95} +(1.53965 + 12.2457i) q^{96} +4.46688 q^{97} +(-8.19069 + 8.00200i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64 q - 16 q^{4} - 40 q^{9} + 32 q^{15} + 16 q^{16} - 64 q^{25} - 56 q^{30} - 32 q^{36} + 56 q^{39} + 32 q^{46} + 40 q^{51} - 8 q^{60} - 352 q^{64} - 48 q^{79} + 40 q^{81} - 128 q^{85} + 80 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/735\mathbb{Z}\right)^\times\).

\(n\) \(346\) \(442\) \(491\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.10453 + 1.91310i 0.781022 + 1.35277i 0.931347 + 0.364133i \(0.118635\pi\)
−0.150325 + 0.988637i \(0.548032\pi\)
\(3\) 1.38025 1.04638i 0.796886 0.604129i
\(4\) −1.43998 + 2.49412i −0.719990 + 1.24706i
\(5\) 0.889228 2.05165i 0.397675 0.917526i
\(6\) 3.52637 + 1.48480i 1.43963 + 0.606166i
\(7\) 0 0
\(8\) −1.94389 −0.687269
\(9\) 0.810168 2.88853i 0.270056 0.962845i
\(10\) 4.90720 0.564929i 1.55179 0.178646i
\(11\) −3.30554 1.90846i −0.996659 0.575421i −0.0894006 0.995996i \(-0.528495\pi\)
−0.907258 + 0.420575i \(0.861828\pi\)
\(12\) 0.622272 + 4.94927i 0.179635 + 1.42873i
\(13\) 6.50161 1.80322 0.901611 0.432548i \(-0.142385\pi\)
0.901611 + 0.432548i \(0.142385\pi\)
\(14\) 0 0
\(15\) −0.919457 3.76226i −0.237403 0.971411i
\(16\) 0.732874 + 1.26937i 0.183218 + 0.317344i
\(17\) −2.54654 1.47025i −0.617628 0.356587i 0.158317 0.987388i \(-0.449393\pi\)
−0.775945 + 0.630801i \(0.782726\pi\)
\(18\) 6.42092 1.64054i 1.51343 0.386679i
\(19\) −1.76224 + 1.01743i −0.404285 + 0.233414i −0.688331 0.725397i \(-0.741656\pi\)
0.284046 + 0.958811i \(0.408323\pi\)
\(20\) 3.83659 + 5.17218i 0.857888 + 1.15653i
\(21\) 0 0
\(22\) 8.43180i 1.79767i
\(23\) 1.50029 + 2.59858i 0.312832 + 0.541842i 0.978974 0.203983i \(-0.0653888\pi\)
−0.666142 + 0.745825i \(0.732056\pi\)
\(24\) −2.68305 + 2.03405i −0.547675 + 0.415199i
\(25\) −3.41855 3.64877i −0.683710 0.729754i
\(26\) 7.18123 + 12.4383i 1.40836 + 2.43934i
\(27\) −1.90428 4.83464i −0.366478 0.930427i
\(28\) 0 0
\(29\) 2.25259i 0.418296i 0.977884 + 0.209148i \(0.0670690\pi\)
−0.977884 + 0.209148i \(0.932931\pi\)
\(30\) 6.18203 5.91455i 1.12868 1.07984i
\(31\) 5.77216 + 3.33256i 1.03671 + 0.598545i 0.918900 0.394491i \(-0.129079\pi\)
0.117810 + 0.993036i \(0.462413\pi\)
\(32\) −3.56285 + 6.17104i −0.629829 + 1.09090i
\(33\) −6.55944 + 0.824719i −1.14185 + 0.143565i
\(34\) 6.49574i 1.11401i
\(35\) 0 0
\(36\) 6.03772 + 6.18009i 1.00629 + 1.03001i
\(37\) −2.91560 + 1.68332i −0.479321 + 0.276736i −0.720134 0.693835i \(-0.755919\pi\)
0.240812 + 0.970572i \(0.422586\pi\)
\(38\) −3.89289 2.24756i −0.631510 0.364603i
\(39\) 8.97383 6.80317i 1.43696 1.08938i
\(40\) −1.72856 + 3.98818i −0.273309 + 0.630587i
\(41\) −3.51094 −0.548317 −0.274158 0.961685i \(-0.588399\pi\)
−0.274158 + 0.961685i \(0.588399\pi\)
\(42\) 0 0
\(43\) 7.03729i 1.07318i 0.843844 + 0.536588i \(0.180287\pi\)
−0.843844 + 0.536588i \(0.819713\pi\)
\(44\) 9.51983 5.49628i 1.43517 0.828595i
\(45\) −5.20584 4.23075i −0.776041 0.630683i
\(46\) −3.31424 + 5.74043i −0.488658 + 0.846380i
\(47\) −4.34120 + 2.50639i −0.633229 + 0.365595i −0.782002 0.623276i \(-0.785801\pi\)
0.148772 + 0.988871i \(0.452468\pi\)
\(48\) 2.33980 + 0.985185i 0.337721 + 0.142199i
\(49\) 0 0
\(50\) 3.20459 10.5702i 0.453197 1.49486i
\(51\) −5.05330 + 0.635352i −0.707604 + 0.0889671i
\(52\) −9.36219 + 16.2158i −1.29830 + 2.24873i
\(53\) 0.967113 1.67509i 0.132843 0.230091i −0.791928 0.610614i \(-0.790923\pi\)
0.924771 + 0.380523i \(0.124256\pi\)
\(54\) 7.14584 8.98309i 0.972425 1.22244i
\(55\) −6.85487 + 5.08477i −0.924310 + 0.685630i
\(56\) 0 0
\(57\) −1.36770 + 3.24827i −0.181157 + 0.430244i
\(58\) −4.30944 + 2.48806i −0.565858 + 0.326698i
\(59\) −3.96509 + 6.86774i −0.516211 + 0.894104i 0.483612 + 0.875283i \(0.339325\pi\)
−0.999823 + 0.0188214i \(0.994009\pi\)
\(60\) 10.7075 + 3.12434i 1.38234 + 0.403351i
\(61\) 11.8342 6.83249i 1.51522 0.874810i 0.515375 0.856965i \(-0.327653\pi\)
0.999841 0.0178455i \(-0.00568070\pi\)
\(62\) 14.7237i 1.86991i
\(63\) 0 0
\(64\) −12.8096 −1.60121
\(65\) 5.78141 13.3390i 0.717096 1.65450i
\(66\) −8.82289 11.6380i −1.08602 1.43254i
\(67\) −9.34121 5.39315i −1.14121 0.658878i −0.194480 0.980906i \(-0.562302\pi\)
−0.946730 + 0.322029i \(0.895635\pi\)
\(68\) 7.33395 4.23426i 0.889372 0.513479i
\(69\) 4.78988 + 2.01681i 0.576634 + 0.242795i
\(70\) 0 0
\(71\) 10.9926i 1.30458i 0.757971 + 0.652288i \(0.226191\pi\)
−0.757971 + 0.652288i \(0.773809\pi\)
\(72\) −1.57488 + 5.61499i −0.185601 + 0.661733i
\(73\) −1.65449 + 2.86566i −0.193643 + 0.335400i −0.946455 0.322836i \(-0.895364\pi\)
0.752812 + 0.658236i \(0.228697\pi\)
\(74\) −6.44074 3.71856i −0.748721 0.432274i
\(75\) −8.53645 1.45910i −0.985705 0.168482i
\(76\) 5.86030i 0.672223i
\(77\) 0 0
\(78\) 22.9271 + 9.65357i 2.59598 + 1.09305i
\(79\) 2.92489 + 5.06605i 0.329075 + 0.569975i 0.982329 0.187164i \(-0.0599296\pi\)
−0.653253 + 0.757140i \(0.726596\pi\)
\(80\) 3.25601 0.374839i 0.364032 0.0419082i
\(81\) −7.68725 4.68040i −0.854139 0.520044i
\(82\) −3.87795 6.71680i −0.428248 0.741746i
\(83\) 2.66330i 0.292336i −0.989260 0.146168i \(-0.953306\pi\)
0.989260 0.146168i \(-0.0466939\pi\)
\(84\) 0 0
\(85\) −5.28089 + 3.91724i −0.572793 + 0.424884i
\(86\) −13.4631 + 7.77291i −1.45176 + 0.838175i
\(87\) 2.35707 + 3.10913i 0.252705 + 0.333334i
\(88\) 6.42561 + 3.70983i 0.684972 + 0.395469i
\(89\) −6.75793 11.7051i −0.716339 1.24074i −0.962441 0.271492i \(-0.912483\pi\)
0.246101 0.969244i \(-0.420850\pi\)
\(90\) 2.34385 14.6323i 0.247063 1.54238i
\(91\) 0 0
\(92\) −8.64156 −0.900945
\(93\) 11.4541 1.44013i 1.18774 0.149334i
\(94\) −9.58999 5.53678i −0.989132 0.571075i
\(95\) 0.520378 + 4.52022i 0.0533896 + 0.463765i
\(96\) 1.53965 + 12.2457i 0.157140 + 1.24982i
\(97\) 4.46688 0.453543 0.226771 0.973948i \(-0.427183\pi\)
0.226771 + 0.973948i \(0.427183\pi\)
\(98\) 0 0
\(99\) −8.19069 + 8.00200i −0.823195 + 0.804231i
\(100\) 14.0231 3.27211i 1.40231 0.327211i
\(101\) 4.43523 7.68205i 0.441322 0.764392i −0.556466 0.830871i \(-0.687843\pi\)
0.997788 + 0.0664781i \(0.0211763\pi\)
\(102\) −6.79703 8.96573i −0.673006 0.887740i
\(103\) −0.661216 1.14526i −0.0651516 0.112846i 0.831610 0.555361i \(-0.187420\pi\)
−0.896761 + 0.442515i \(0.854086\pi\)
\(104\) −12.6384 −1.23930
\(105\) 0 0
\(106\) 4.27283 0.415014
\(107\) −1.66222 2.87905i −0.160693 0.278328i 0.774425 0.632666i \(-0.218040\pi\)
−0.935117 + 0.354338i \(0.884706\pi\)
\(108\) 14.8003 + 2.21229i 1.42416 + 0.212878i
\(109\) −6.14927 + 10.6509i −0.588994 + 1.02017i 0.405371 + 0.914152i \(0.367142\pi\)
−0.994365 + 0.106015i \(0.966191\pi\)
\(110\) −17.2991 7.49779i −1.64941 0.714886i
\(111\) −2.26285 + 5.37423i −0.214780 + 0.510099i
\(112\) 0 0
\(113\) −20.4591 −1.92463 −0.962314 0.271941i \(-0.912334\pi\)
−0.962314 + 0.271941i \(0.912334\pi\)
\(114\) −7.72496 + 0.971260i −0.723509 + 0.0909668i
\(115\) 6.66548 0.767346i 0.621560 0.0715553i
\(116\) −5.61823 3.24369i −0.521640 0.301169i
\(117\) 5.26740 18.7801i 0.486971 1.73622i
\(118\) −17.5183 −1.61269
\(119\) 0 0
\(120\) 1.78732 + 7.31342i 0.163160 + 0.667620i
\(121\) 1.78441 + 3.09068i 0.162219 + 0.280971i
\(122\) 26.1425 + 15.0934i 2.36683 + 1.36649i
\(123\) −4.84597 + 3.67379i −0.436946 + 0.331254i
\(124\) −16.6236 + 9.59763i −1.49284 + 0.861893i
\(125\) −10.5259 + 3.76908i −0.941463 + 0.337117i
\(126\) 0 0
\(127\) 0.597329i 0.0530044i 0.999649 + 0.0265022i \(0.00843689\pi\)
−0.999649 + 0.0265022i \(0.991563\pi\)
\(128\) −7.02295 12.1641i −0.620747 1.07517i
\(129\) 7.36370 + 9.71321i 0.648337 + 0.855200i
\(130\) 31.9047 3.67294i 2.79823 0.322139i
\(131\) 2.90591 + 5.03319i 0.253891 + 0.439752i 0.964594 0.263741i \(-0.0849563\pi\)
−0.710703 + 0.703492i \(0.751623\pi\)
\(132\) 7.38852 17.5476i 0.643088 1.52732i
\(133\) 0 0
\(134\) 23.8276i 2.05839i
\(135\) −11.6123 0.392180i −0.999430 0.0337535i
\(136\) 4.95020 + 2.85800i 0.424476 + 0.245071i
\(137\) −0.546844 + 0.947161i −0.0467200 + 0.0809215i −0.888440 0.458993i \(-0.848210\pi\)
0.841720 + 0.539915i \(0.181544\pi\)
\(138\) 1.43221 + 11.3912i 0.121918 + 0.969681i
\(139\) 7.35968i 0.624240i −0.950043 0.312120i \(-0.898961\pi\)
0.950043 0.312120i \(-0.101039\pi\)
\(140\) 0 0
\(141\) −3.36929 + 8.00200i −0.283745 + 0.673890i
\(142\) −21.0299 + 12.1416i −1.76479 + 1.01890i
\(143\) −21.4913 12.4080i −1.79720 1.03761i
\(144\) 4.26038 1.08852i 0.355032 0.0907103i
\(145\) 4.62153 + 2.00307i 0.383797 + 0.166346i
\(146\) −7.30973 −0.604958
\(147\) 0 0
\(148\) 9.69579i 0.796989i
\(149\) −9.36993 + 5.40973i −0.767615 + 0.443183i −0.832023 0.554741i \(-0.812817\pi\)
0.0644082 + 0.997924i \(0.479484\pi\)
\(150\) −6.63737 17.9428i −0.541939 1.46502i
\(151\) 4.14799 7.18453i 0.337559 0.584669i −0.646414 0.762987i \(-0.723732\pi\)
0.983973 + 0.178318i \(0.0570655\pi\)
\(152\) 3.42559 1.97777i 0.277852 0.160418i
\(153\) −6.30999 + 6.16463i −0.510132 + 0.498381i
\(154\) 0 0
\(155\) 11.9700 8.87905i 0.961454 0.713183i
\(156\) 4.04577 + 32.1782i 0.323921 + 2.57632i
\(157\) 2.70593 4.68680i 0.215957 0.374048i −0.737612 0.675225i \(-0.764046\pi\)
0.953568 + 0.301178i \(0.0973797\pi\)
\(158\) −6.46126 + 11.1912i −0.514030 + 0.890326i
\(159\) −0.417928 3.32401i −0.0331438 0.263611i
\(160\) 9.49264 + 12.7972i 0.750459 + 1.01171i
\(161\) 0 0
\(162\) 0.463276 19.8762i 0.0363984 1.56162i
\(163\) 14.8583 8.57846i 1.16379 0.671917i 0.211584 0.977360i \(-0.432138\pi\)
0.952210 + 0.305443i \(0.0988046\pi\)
\(164\) 5.05569 8.75671i 0.394783 0.683784i
\(165\) −4.14080 + 14.1911i −0.322361 + 1.10477i
\(166\) 5.09518 2.94170i 0.395463 0.228320i
\(167\) 9.60588i 0.743325i −0.928368 0.371663i \(-0.878788\pi\)
0.928368 0.371663i \(-0.121212\pi\)
\(168\) 0 0
\(169\) 29.2709 2.25161
\(170\) −13.3270 5.77619i −1.02213 0.443014i
\(171\) 1.51117 + 5.91457i 0.115562 + 0.452298i
\(172\) −17.5518 10.1336i −1.33832 0.772677i
\(173\) 8.80967 5.08627i 0.669787 0.386702i −0.126209 0.992004i \(-0.540281\pi\)
0.795996 + 0.605302i \(0.206948\pi\)
\(174\) −3.34464 + 7.94346i −0.253556 + 0.602192i
\(175\) 0 0
\(176\) 5.59463i 0.421711i
\(177\) 1.71347 + 13.6282i 0.128793 + 1.02436i
\(178\) 14.9287 25.8573i 1.11895 1.93808i
\(179\) 20.4854 + 11.8273i 1.53115 + 0.884011i 0.999309 + 0.0371678i \(0.0118336\pi\)
0.531843 + 0.846843i \(0.321500\pi\)
\(180\) 18.0483 6.89180i 1.34524 0.513684i
\(181\) 15.6330i 1.16199i 0.813906 + 0.580997i \(0.197337\pi\)
−0.813906 + 0.580997i \(0.802663\pi\)
\(182\) 0 0
\(183\) 9.18476 21.8136i 0.678957 1.61251i
\(184\) −2.91640 5.05135i −0.215000 0.372391i
\(185\) 0.860958 + 7.47864i 0.0632989 + 0.549841i
\(186\) 15.4066 + 20.3223i 1.12966 + 1.49010i
\(187\) 5.61181 + 9.71993i 0.410376 + 0.710792i
\(188\) 14.4366i 1.05290i
\(189\) 0 0
\(190\) −8.07288 + 5.98826i −0.585668 + 0.434434i
\(191\) 9.33503 5.38958i 0.675459 0.389976i −0.122683 0.992446i \(-0.539150\pi\)
0.798142 + 0.602470i \(0.205817\pi\)
\(192\) −17.6805 + 13.4038i −1.27598 + 0.967335i
\(193\) 1.59886 + 0.923104i 0.115089 + 0.0664465i 0.556439 0.830888i \(-0.312167\pi\)
−0.441351 + 0.897335i \(0.645500\pi\)
\(194\) 4.93381 + 8.54561i 0.354227 + 0.613539i
\(195\) −5.97795 24.4607i −0.428090 1.75167i
\(196\) 0 0
\(197\) 8.09941 0.577059 0.288530 0.957471i \(-0.406834\pi\)
0.288530 + 0.957471i \(0.406834\pi\)
\(198\) −24.3555 6.83118i −1.73087 0.485471i
\(199\) −8.74922 5.05137i −0.620216 0.358082i 0.156737 0.987640i \(-0.449902\pi\)
−0.776953 + 0.629559i \(0.783236\pi\)
\(200\) 6.64528 + 7.09281i 0.469892 + 0.501537i
\(201\) −18.5365 + 2.33059i −1.30746 + 0.164387i
\(202\) 19.5954 1.37873
\(203\) 0 0
\(204\) 5.69201 13.5184i 0.398521 0.946480i
\(205\) −3.12203 + 7.20323i −0.218052 + 0.503095i
\(206\) 1.46067 2.52995i 0.101770 0.176270i
\(207\) 8.72158 2.22835i 0.606192 0.154881i
\(208\) 4.76486 + 8.25298i 0.330383 + 0.572241i
\(209\) 7.76686 0.537245
\(210\) 0 0
\(211\) 10.6818 0.735367 0.367684 0.929951i \(-0.380151\pi\)
0.367684 + 0.929951i \(0.380151\pi\)
\(212\) 2.78525 + 4.82419i 0.191292 + 0.331327i
\(213\) 11.5024 + 15.1725i 0.788133 + 1.03960i
\(214\) 3.67195 6.36000i 0.251009 0.434761i
\(215\) 14.4381 + 6.25775i 0.984668 + 0.426775i
\(216\) 3.70170 + 9.39800i 0.251869 + 0.639453i
\(217\) 0 0
\(218\) −27.1683 −1.84007
\(219\) 0.714969 + 5.68654i 0.0483131 + 0.384261i
\(220\) −2.81115 24.4188i −0.189528 1.64632i
\(221\) −16.5566 9.55898i −1.11372 0.643006i
\(222\) −12.7809 + 1.60694i −0.857795 + 0.107851i
\(223\) −4.13183 −0.276688 −0.138344 0.990384i \(-0.544178\pi\)
−0.138344 + 0.990384i \(0.544178\pi\)
\(224\) 0 0
\(225\) −13.3092 + 6.91848i −0.887280 + 0.461232i
\(226\) −22.5977 39.1404i −1.50318 2.60358i
\(227\) −6.21430 3.58783i −0.412458 0.238132i 0.279388 0.960178i \(-0.409869\pi\)
−0.691845 + 0.722046i \(0.743202\pi\)
\(228\) −6.13212 8.08867i −0.406109 0.535685i
\(229\) −9.05093 + 5.22556i −0.598102 + 0.345315i −0.768295 0.640096i \(-0.778894\pi\)
0.170192 + 0.985411i \(0.445561\pi\)
\(230\) 8.83025 + 11.9042i 0.582250 + 0.784941i
\(231\) 0 0
\(232\) 4.37879i 0.287481i
\(233\) −1.95072 3.37875i −0.127796 0.221349i 0.795026 0.606575i \(-0.207457\pi\)
−0.922822 + 0.385226i \(0.874124\pi\)
\(234\) 41.7463 10.6661i 2.72904 0.697268i
\(235\) 1.28193 + 11.1354i 0.0836240 + 0.726393i
\(236\) −11.4193 19.7788i −0.743334 1.28749i
\(237\) 9.33810 + 3.93186i 0.606574 + 0.255402i
\(238\) 0 0
\(239\) 23.7873i 1.53867i 0.638844 + 0.769336i \(0.279413\pi\)
−0.638844 + 0.769336i \(0.720587\pi\)
\(240\) 4.10187 3.92440i 0.264775 0.253319i
\(241\) −11.5030 6.64126i −0.740974 0.427801i 0.0814495 0.996677i \(-0.474045\pi\)
−0.822423 + 0.568876i \(0.807378\pi\)
\(242\) −3.94187 + 6.82752i −0.253393 + 0.438889i
\(243\) −15.5078 + 1.58370i −0.994826 + 0.101594i
\(244\) 39.3546i 2.51942i
\(245\) 0 0
\(246\) −12.3809 5.21303i −0.789375 0.332371i
\(247\) −11.4574 + 6.61492i −0.729015 + 0.420897i
\(248\) −11.2204 6.47812i −0.712498 0.411361i
\(249\) −2.78683 3.67602i −0.176608 0.232958i
\(250\) −18.8368 15.9740i −1.19134 1.01029i
\(251\) −9.12747 −0.576121 −0.288060 0.957612i \(-0.593010\pi\)
−0.288060 + 0.957612i \(0.593010\pi\)
\(252\) 0 0
\(253\) 11.4530i 0.720041i
\(254\) −1.14275 + 0.659769i −0.0717027 + 0.0413976i
\(255\) −3.19001 + 10.9326i −0.199766 + 0.684625i
\(256\) 2.70450 4.68433i 0.169031 0.292770i
\(257\) 5.79051 3.34315i 0.361202 0.208540i −0.308406 0.951255i \(-0.599795\pi\)
0.669608 + 0.742715i \(0.266462\pi\)
\(258\) −10.4489 + 24.8161i −0.650523 + 1.54498i
\(259\) 0 0
\(260\) 24.9440 + 33.6275i 1.54696 + 2.08549i
\(261\) 6.50669 + 1.82498i 0.402754 + 0.112963i
\(262\) −6.41935 + 11.1186i −0.396588 + 0.686911i
\(263\) 12.0642 20.8958i 0.743908 1.28849i −0.206795 0.978384i \(-0.566303\pi\)
0.950703 0.310103i \(-0.100363\pi\)
\(264\) 12.7508 1.60316i 0.784759 0.0986678i
\(265\) −2.57672 3.47371i −0.158286 0.213389i
\(266\) 0 0
\(267\) −21.5756 9.08453i −1.32041 0.555964i
\(268\) 26.9023 15.5321i 1.64332 0.948771i
\(269\) 9.50393 16.4613i 0.579465 1.00366i −0.416076 0.909330i \(-0.636595\pi\)
0.995541 0.0943328i \(-0.0300718\pi\)
\(270\) −12.0759 22.6488i −0.734916 1.37836i
\(271\) 10.2612 5.92429i 0.623321 0.359875i −0.154840 0.987940i \(-0.549486\pi\)
0.778161 + 0.628065i \(0.216153\pi\)
\(272\) 4.31002i 0.261334i
\(273\) 0 0
\(274\) −2.41603 −0.145957
\(275\) 4.33664 + 18.5853i 0.261509 + 1.12074i
\(276\) −11.9275 + 9.04238i −0.717951 + 0.544287i
\(277\) 14.3051 + 8.25906i 0.859511 + 0.496239i 0.863848 0.503752i \(-0.168047\pi\)
−0.00433762 + 0.999991i \(0.501381\pi\)
\(278\) 14.0798 8.12900i 0.844452 0.487545i
\(279\) 14.3026 13.9731i 0.856275 0.836550i
\(280\) 0 0
\(281\) 10.1076i 0.602968i −0.953471 0.301484i \(-0.902518\pi\)
0.953471 0.301484i \(-0.0974820\pi\)
\(282\) −19.0302 + 2.39266i −1.13323 + 0.142481i
\(283\) −3.00101 + 5.19791i −0.178392 + 0.308984i −0.941330 0.337488i \(-0.890423\pi\)
0.762938 + 0.646472i \(0.223756\pi\)
\(284\) −27.4167 15.8291i −1.62688 0.939282i
\(285\) 5.44813 + 5.69451i 0.322719 + 0.337314i
\(286\) 54.8203i 3.24159i
\(287\) 0 0
\(288\) 14.9388 + 15.2910i 0.880275 + 0.901031i
\(289\) −4.17674 7.23433i −0.245691 0.425549i
\(290\) 1.27255 + 11.0539i 0.0747269 + 0.649109i
\(291\) 6.16540 4.67406i 0.361422 0.273998i
\(292\) −4.76486 8.25298i −0.278842 0.482969i
\(293\) 3.55369i 0.207609i 0.994598 + 0.103805i \(0.0331016\pi\)
−0.994598 + 0.103805i \(0.966898\pi\)
\(294\) 0 0
\(295\) 10.5643 + 14.2420i 0.615080 + 0.829200i
\(296\) 5.66760 3.27219i 0.329422 0.190192i
\(297\) −2.93202 + 19.6153i −0.170133 + 1.13820i
\(298\) −20.6988 11.9504i −1.19905 0.692271i
\(299\) 9.75431 + 16.8950i 0.564106 + 0.977061i
\(300\) 15.9315 19.1899i 0.919805 1.10793i
\(301\) 0 0
\(302\) 18.3264 1.05456
\(303\) −1.91664 15.2441i −0.110108 0.875750i
\(304\) −2.58299 1.49129i −0.148145 0.0855314i
\(305\) −3.49457 30.3553i −0.200099 1.73814i
\(306\) −18.7632 5.26264i −1.07262 0.300845i
\(307\) −29.0345 −1.65709 −0.828544 0.559923i \(-0.810831\pi\)
−0.828544 + 0.559923i \(0.810831\pi\)
\(308\) 0 0
\(309\) −2.11102 0.888858i −0.120092 0.0505654i
\(310\) 30.2078 + 13.0927i 1.71569 + 0.743614i
\(311\) −4.32216 + 7.48620i −0.245087 + 0.424503i −0.962156 0.272499i \(-0.912150\pi\)
0.717069 + 0.697002i \(0.245483\pi\)
\(312\) −17.4441 + 13.2246i −0.987580 + 0.748696i
\(313\) −5.42607 9.39824i −0.306700 0.531220i 0.670938 0.741513i \(-0.265891\pi\)
−0.977638 + 0.210293i \(0.932558\pi\)
\(314\) 11.9551 0.674667
\(315\) 0 0
\(316\) −16.8471 −0.947724
\(317\) −4.67046 8.08947i −0.262319 0.454350i 0.704539 0.709665i \(-0.251154\pi\)
−0.966858 + 0.255316i \(0.917821\pi\)
\(318\) 5.89756 4.47101i 0.330719 0.250722i
\(319\) 4.29897 7.44604i 0.240696 0.416898i
\(320\) −11.3907 + 26.2809i −0.636759 + 1.46915i
\(321\) −5.30686 2.23448i −0.296200 0.124717i
\(322\) 0 0
\(323\) 5.98348 0.332930
\(324\) 22.7430 12.4332i 1.26350 0.690736i
\(325\) −22.2261 23.7229i −1.23288 1.31591i
\(326\) 32.8230 + 18.9504i 1.81790 + 1.04956i
\(327\) 2.65734 + 21.1353i 0.146951 + 1.16879i
\(328\) 6.82488 0.376841
\(329\) 0 0
\(330\) −31.7226 + 7.75268i −1.74627 + 0.426771i
\(331\) −1.45459 2.51942i −0.0799515 0.138480i 0.823277 0.567639i \(-0.192143\pi\)
−0.903229 + 0.429159i \(0.858810\pi\)
\(332\) 6.64260 + 3.83511i 0.364560 + 0.210479i
\(333\) 2.50020 + 9.78557i 0.137010 + 0.536246i
\(334\) 18.3771 10.6100i 1.00555 0.580553i
\(335\) −19.3713 + 14.3692i −1.05837 + 0.785071i
\(336\) 0 0
\(337\) 15.2910i 0.832954i 0.909146 + 0.416477i \(0.136735\pi\)
−0.909146 + 0.416477i \(0.863265\pi\)
\(338\) 32.3307 + 55.9983i 1.75856 + 3.04591i
\(339\) −28.2386 + 21.4080i −1.53371 + 1.16272i
\(340\) −2.16567 18.8119i −0.117450 1.02022i
\(341\) −12.7201 22.0318i −0.688830 1.19309i
\(342\) −9.64606 + 9.42384i −0.521599 + 0.509583i
\(343\) 0 0
\(344\) 13.6797i 0.737561i
\(345\) 8.39708 8.03377i 0.452084 0.432524i
\(346\) 19.4611 + 11.2359i 1.04624 + 0.604045i
\(347\) −15.7892 + 27.3477i −0.847609 + 1.46810i 0.0357279 + 0.999362i \(0.488625\pi\)
−0.883336 + 0.468739i \(0.844708\pi\)
\(348\) −11.1487 + 1.40172i −0.597632 + 0.0751403i
\(349\) 8.25024i 0.441625i −0.975316 0.220813i \(-0.929129\pi\)
0.975316 0.220813i \(-0.0708709\pi\)
\(350\) 0 0
\(351\) −12.3809 31.4329i −0.660842 1.67777i
\(352\) 23.5543 13.5991i 1.25545 0.724834i
\(353\) 3.71360 + 2.14405i 0.197655 + 0.114116i 0.595561 0.803310i \(-0.296930\pi\)
−0.397906 + 0.917426i \(0.630263\pi\)
\(354\) −24.1796 + 18.3308i −1.28513 + 0.974272i
\(355\) 22.5529 + 9.77488i 1.19698 + 0.518797i
\(356\) 38.9252 2.06303
\(357\) 0 0
\(358\) 52.2543i 2.76173i
\(359\) −6.17938 + 3.56767i −0.326135 + 0.188294i −0.654124 0.756387i \(-0.726963\pi\)
0.327989 + 0.944682i \(0.393629\pi\)
\(360\) 10.1196 + 8.22410i 0.533349 + 0.433448i
\(361\) −7.42968 + 12.8686i −0.391036 + 0.677294i
\(362\) −29.9076 + 17.2672i −1.57191 + 0.907542i
\(363\) 5.69696 + 2.39874i 0.299013 + 0.125901i
\(364\) 0 0
\(365\) 4.40811 + 5.94265i 0.230731 + 0.311053i
\(366\) 51.8766 6.52245i 2.71163 0.340934i
\(367\) −12.1957 + 21.1235i −0.636609 + 1.10264i 0.349563 + 0.936913i \(0.386330\pi\)
−0.986172 + 0.165726i \(0.947003\pi\)
\(368\) −2.19905 + 3.80886i −0.114633 + 0.198551i
\(369\) −2.84445 + 10.1415i −0.148076 + 0.527944i
\(370\) −13.3565 + 9.90750i −0.694370 + 0.515067i
\(371\) 0 0
\(372\) −12.9019 + 30.6417i −0.668931 + 1.58870i
\(373\) −19.0999 + 11.0273i −0.988956 + 0.570974i −0.904962 0.425492i \(-0.860101\pi\)
−0.0839940 + 0.996466i \(0.526768\pi\)
\(374\) −12.3968 + 21.4719i −0.641025 + 1.11029i
\(375\) −10.5844 + 16.2164i −0.546577 + 0.837409i
\(376\) 8.43881 4.87215i 0.435199 0.251262i
\(377\) 14.6455i 0.754280i
\(378\) 0 0
\(379\) 1.15801 0.0594828 0.0297414 0.999558i \(-0.490532\pi\)
0.0297414 + 0.999558i \(0.490532\pi\)
\(380\) −12.0233 5.21114i −0.616782 0.267326i
\(381\) 0.625034 + 0.824462i 0.0320215 + 0.0422385i
\(382\) 20.6217 + 11.9059i 1.05510 + 0.609160i
\(383\) 1.84403 1.06465i 0.0942255 0.0544011i −0.452147 0.891944i \(-0.649342\pi\)
0.546372 + 0.837542i \(0.316008\pi\)
\(384\) −22.4217 9.44079i −1.14420 0.481773i
\(385\) 0 0
\(386\) 4.07839i 0.207585i
\(387\) 20.3275 + 5.70139i 1.03330 + 0.289818i
\(388\) −6.43222 + 11.1409i −0.326546 + 0.565595i
\(389\) 20.9207 + 12.0785i 1.06072 + 0.612406i 0.925631 0.378427i \(-0.123535\pi\)
0.135088 + 0.990834i \(0.456868\pi\)
\(390\) 40.1931 38.4541i 2.03526 1.94720i
\(391\) 8.82320i 0.446208i
\(392\) 0 0
\(393\) 9.27752 + 3.90635i 0.467989 + 0.197049i
\(394\) 8.94606 + 15.4950i 0.450696 + 0.780628i
\(395\) 12.9947 1.49598i 0.653832 0.0752707i
\(396\) −8.16352 31.9513i −0.410232 1.60561i
\(397\) 6.00792 + 10.4060i 0.301529 + 0.522263i 0.976482 0.215597i \(-0.0691697\pi\)
−0.674954 + 0.737860i \(0.735836\pi\)
\(398\) 22.3176i 1.11868i
\(399\) 0 0
\(400\) 2.12629 7.01351i 0.106315 0.350675i
\(401\) 26.6997 15.4151i 1.33332 0.769792i 0.347513 0.937675i \(-0.387026\pi\)
0.985807 + 0.167883i \(0.0536930\pi\)
\(402\) −24.9328 32.8880i −1.24353 1.64030i
\(403\) 37.5283 + 21.6670i 1.86942 + 1.07931i
\(404\) 12.7733 + 22.1240i 0.635495 + 1.10071i
\(405\) −16.4383 + 11.6096i −0.816824 + 0.576887i
\(406\) 0 0
\(407\) 12.8502 0.636959
\(408\) 9.82306 1.23505i 0.486314 0.0611443i
\(409\) 13.5699 + 7.83456i 0.670986 + 0.387394i 0.796450 0.604704i \(-0.206709\pi\)
−0.125464 + 0.992098i \(0.540042\pi\)
\(410\) −17.2289 + 1.98343i −0.850875 + 0.0979547i
\(411\) 0.236313 + 1.87953i 0.0116564 + 0.0927101i
\(412\) 3.80855 0.187634
\(413\) 0 0
\(414\) 13.8963 + 14.2240i 0.682968 + 0.699072i
\(415\) −5.46417 2.36828i −0.268226 0.116254i
\(416\) −23.1643 + 40.1217i −1.13572 + 1.96713i
\(417\) −7.70103 10.1582i −0.377121 0.497448i
\(418\) 8.57874 + 14.8588i 0.419600 + 0.726769i
\(419\) 19.5975 0.957399 0.478699 0.877979i \(-0.341108\pi\)
0.478699 + 0.877979i \(0.341108\pi\)
\(420\) 0 0
\(421\) −32.5791 −1.58781 −0.793903 0.608044i \(-0.791954\pi\)
−0.793903 + 0.608044i \(0.791954\pi\)
\(422\) 11.7984 + 20.4355i 0.574338 + 0.994782i
\(423\) 3.72270 + 14.5703i 0.181004 + 0.708433i
\(424\) −1.87996 + 3.25619i −0.0912990 + 0.158134i
\(425\) 3.34089 + 14.3179i 0.162057 + 0.694518i
\(426\) −16.3217 + 38.7638i −0.790789 + 1.87811i
\(427\) 0 0
\(428\) 9.57425 0.462789
\(429\) −42.6469 + 5.36200i −2.05901 + 0.258880i
\(430\) 3.97557 + 34.5334i 0.191719 + 1.66535i
\(431\) 24.1528 + 13.9447i 1.16340 + 0.671690i 0.952117 0.305734i \(-0.0989019\pi\)
0.211285 + 0.977425i \(0.432235\pi\)
\(432\) 4.74137 5.96042i 0.228119 0.286771i
\(433\) 3.47350 0.166926 0.0834629 0.996511i \(-0.473402\pi\)
0.0834629 + 0.996511i \(0.473402\pi\)
\(434\) 0 0
\(435\) 8.47483 2.07116i 0.406337 0.0993046i
\(436\) −17.7097 30.6740i −0.848139 1.46902i
\(437\) −5.28774 3.05288i −0.252947 0.146039i
\(438\) −10.0892 + 7.64878i −0.482083 + 0.365473i
\(439\) −3.41910 + 1.97402i −0.163185 + 0.0942147i −0.579368 0.815066i \(-0.696701\pi\)
0.416184 + 0.909281i \(0.363367\pi\)
\(440\) 13.3251 9.88423i 0.635249 0.471212i
\(441\) 0 0
\(442\) 42.2328i 2.00881i
\(443\) −8.01539 13.8831i −0.380823 0.659604i 0.610357 0.792126i \(-0.291026\pi\)
−0.991180 + 0.132522i \(0.957693\pi\)
\(444\) −10.1455 13.3826i −0.481484 0.635110i
\(445\) −30.0241 + 3.45644i −1.42328 + 0.163851i
\(446\) −4.56373 7.90462i −0.216099 0.374295i
\(447\) −7.27218 + 17.2713i −0.343962 + 0.816905i
\(448\) 0 0
\(449\) 21.1001i 0.995777i 0.867241 + 0.497889i \(0.165891\pi\)
−0.867241 + 0.497889i \(0.834109\pi\)
\(450\) −27.9362 17.8202i −1.31692 0.840053i
\(451\) 11.6056 + 6.70048i 0.546485 + 0.315513i
\(452\) 29.4607 51.0274i 1.38571 2.40013i
\(453\) −1.79251 14.2568i −0.0842195 0.669844i
\(454\) 15.8515i 0.743947i
\(455\) 0 0
\(456\) 2.65867 6.31429i 0.124503 0.295694i
\(457\) 8.31969 4.80338i 0.389179 0.224692i −0.292625 0.956227i \(-0.594529\pi\)
0.681804 + 0.731535i \(0.261196\pi\)
\(458\) −19.9941 11.5436i −0.934262 0.539397i
\(459\) −2.25879 + 15.1114i −0.105431 + 0.705339i
\(460\) −7.68432 + 17.7295i −0.358283 + 0.826641i
\(461\) 24.5367 1.14279 0.571393 0.820676i \(-0.306403\pi\)
0.571393 + 0.820676i \(0.306403\pi\)
\(462\) 0 0
\(463\) 14.5875i 0.677937i −0.940798 0.338968i \(-0.889922\pi\)
0.940798 0.338968i \(-0.110078\pi\)
\(464\) −2.85938 + 1.65086i −0.132743 + 0.0766395i
\(465\) 7.23069 24.7805i 0.335315 1.14917i
\(466\) 4.30927 7.46387i 0.199623 0.345757i
\(467\) −15.5179 + 8.95926i −0.718083 + 0.414585i −0.814047 0.580800i \(-0.802740\pi\)
0.0959639 + 0.995385i \(0.469407\pi\)
\(468\) 39.2549 + 40.1805i 1.81456 + 1.85735i
\(469\) 0 0
\(470\) −19.8872 + 14.7519i −0.917330 + 0.680452i
\(471\) −1.16934 9.30039i −0.0538802 0.428539i
\(472\) 7.70770 13.3501i 0.354776 0.614490i
\(473\) 13.4304 23.2621i 0.617529 1.06959i
\(474\) 2.79216 + 22.2076i 0.128248 + 1.02003i
\(475\) 9.73665 + 2.95187i 0.446748 + 0.135441i
\(476\) 0 0
\(477\) −4.05503 4.15064i −0.185667 0.190045i
\(478\) −45.5076 + 26.2738i −2.08147 + 1.20174i
\(479\) −1.48248 + 2.56774i −0.0677364 + 0.117323i −0.897905 0.440190i \(-0.854911\pi\)
0.830168 + 0.557513i \(0.188244\pi\)
\(480\) 26.4930 + 7.73037i 1.20923 + 0.352841i
\(481\) −18.9561 + 10.9443i −0.864322 + 0.499017i
\(482\) 29.3419i 1.33649i
\(483\) 0 0
\(484\) −10.2780 −0.467184
\(485\) 3.97207 9.16448i 0.180362 0.416138i
\(486\) −20.1586 27.9188i −0.914414 1.26642i
\(487\) −28.8004 16.6279i −1.30507 0.753482i −0.323800 0.946125i \(-0.604961\pi\)
−0.981269 + 0.192644i \(0.938294\pi\)
\(488\) −23.0044 + 13.2816i −1.04136 + 0.601230i
\(489\) 11.5318 27.3879i 0.521487 1.23852i
\(490\) 0 0
\(491\) 25.4892i 1.15031i −0.818043 0.575157i \(-0.804941\pi\)
0.818043 0.575157i \(-0.195059\pi\)
\(492\) −2.18476 17.3766i −0.0984966 0.783398i
\(493\) 3.31187 5.73632i 0.149159 0.258351i
\(494\) −25.3101 14.6128i −1.13875 0.657460i
\(495\) 9.13393 + 23.9200i 0.410540 + 1.07513i
\(496\) 9.76937i 0.438658i
\(497\) 0 0
\(498\) 3.95447 9.39179i 0.177204 0.420856i
\(499\) 16.8358 + 29.1604i 0.753673 + 1.30540i 0.946031 + 0.324076i \(0.105053\pi\)
−0.192358 + 0.981325i \(0.561613\pi\)
\(500\) 5.75651 31.6802i 0.257439 1.41678i
\(501\) −10.0514 13.2585i −0.449064 0.592346i
\(502\) −10.0816 17.4618i −0.449963 0.779358i
\(503\) 35.2418i 1.57135i −0.618637 0.785677i \(-0.712315\pi\)
0.618637 0.785677i \(-0.287685\pi\)
\(504\) 0 0
\(505\) −11.8170 15.9306i −0.525848 0.708904i
\(506\) 21.9107 12.6502i 0.974050 0.562368i
\(507\) 40.4011 30.6286i 1.79428 1.36026i
\(508\) −1.48981 0.860142i −0.0660996 0.0381626i
\(509\) −11.5914 20.0770i −0.513782 0.889896i −0.999872 0.0159875i \(-0.994911\pi\)
0.486090 0.873908i \(-0.338423\pi\)
\(510\) −24.4387 + 5.97256i −1.08216 + 0.264469i
\(511\) 0 0
\(512\) −16.1430 −0.713426
\(513\) 8.27468 + 6.58231i 0.365336 + 0.290616i
\(514\) 12.7916 + 7.38523i 0.564213 + 0.325749i
\(515\) −2.93765 + 0.338189i −0.129448 + 0.0149024i
\(516\) −34.8295 + 4.37911i −1.53328 + 0.192780i
\(517\) 19.1334 0.841484
\(518\) 0 0
\(519\) 6.83735 16.2386i 0.300126 0.712795i
\(520\) −11.2384 + 25.9296i −0.492837 + 1.13709i
\(521\) 7.18762 12.4493i 0.314895 0.545415i −0.664520 0.747271i \(-0.731364\pi\)
0.979415 + 0.201856i \(0.0646972\pi\)
\(522\) 3.69547 + 14.4637i 0.161746 + 0.633060i
\(523\) −12.6242 21.8658i −0.552018 0.956124i −0.998129 0.0611461i \(-0.980524\pi\)
0.446110 0.894978i \(-0.352809\pi\)
\(524\) −16.7378 −0.731195
\(525\) 0 0
\(526\) 53.3010 2.32403
\(527\) −9.79936 16.9730i −0.426867 0.739355i
\(528\) −5.85412 7.72197i −0.254768 0.336056i
\(529\) 6.99825 12.1213i 0.304272 0.527014i
\(530\) 3.79952 8.76636i 0.165040 0.380786i
\(531\) 16.6253 + 17.0173i 0.721477 + 0.738489i
\(532\) 0 0
\(533\) −22.8268 −0.988737
\(534\) −6.45128 51.3106i −0.279174 2.22042i
\(535\) −7.38490 + 0.850166i −0.319277 + 0.0367559i
\(536\) 18.1583 + 10.4837i 0.784318 + 0.452826i
\(537\) 40.6508 5.11102i 1.75421 0.220557i
\(538\) 41.9896 1.81030
\(539\) 0 0
\(540\) 17.6997 28.3978i 0.761673 1.22205i
\(541\) −7.88973 13.6654i −0.339206 0.587522i 0.645078 0.764117i \(-0.276825\pi\)
−0.984284 + 0.176595i \(0.943492\pi\)
\(542\) 22.6676 + 13.0871i 0.973655 + 0.562140i
\(543\) 16.3581 + 21.5774i 0.701994 + 0.925977i
\(544\) 18.1459 10.4766i 0.778000 0.449179i
\(545\) 16.3837 + 22.0872i 0.701802 + 0.946112i
\(546\) 0 0
\(547\) 8.23195i 0.351973i −0.984393 0.175986i \(-0.943689\pi\)
0.984393 0.175986i \(-0.0563115\pi\)
\(548\) −1.57489 2.72779i −0.0672759 0.116525i
\(549\) −10.1482 39.7190i −0.433113 1.69517i
\(550\) −30.7657 + 28.8245i −1.31185 + 1.22908i
\(551\) −2.29185 3.96960i −0.0976360 0.169111i
\(552\) −9.31100 3.92045i −0.396303 0.166865i
\(553\) 0 0
\(554\) 36.4896i 1.55029i
\(555\) 9.01386 + 9.42149i 0.382617 + 0.399920i
\(556\) 18.3559 + 10.5978i 0.778464 + 0.449446i
\(557\) 14.4676 25.0586i 0.613011 1.06177i −0.377719 0.925920i \(-0.623292\pi\)
0.990730 0.135845i \(-0.0433750\pi\)
\(558\) 42.5298 + 11.9286i 1.80043 + 0.504980i
\(559\) 45.7537i 1.93518i
\(560\) 0 0
\(561\) 17.9164 + 7.54382i 0.756433 + 0.318500i
\(562\) 19.3369 11.1641i 0.815677 0.470931i
\(563\) 5.39368 + 3.11404i 0.227316 + 0.131241i 0.609333 0.792914i \(-0.291437\pi\)
−0.382017 + 0.924155i \(0.624770\pi\)
\(564\) −15.1062 19.9261i −0.636087 0.839041i
\(565\) −18.1928 + 41.9749i −0.765376 + 1.76590i
\(566\) −13.2589 −0.557312
\(567\) 0 0
\(568\) 21.3683i 0.896594i
\(569\) 8.56862 4.94710i 0.359215 0.207393i −0.309521 0.950893i \(-0.600169\pi\)
0.668736 + 0.743500i \(0.266835\pi\)
\(570\) −4.87656 + 16.7126i −0.204257 + 0.700014i
\(571\) −9.60472 + 16.6359i −0.401945 + 0.696189i −0.993961 0.109737i \(-0.964999\pi\)
0.592015 + 0.805927i \(0.298332\pi\)
\(572\) 61.8942 35.7347i 2.58793 1.49414i
\(573\) 7.24509 17.2070i 0.302668 0.718831i
\(574\) 0 0
\(575\) 4.35281 14.3576i 0.181525 0.598753i
\(576\) −10.3780 + 37.0011i −0.432415 + 1.54171i
\(577\) 19.0377 32.9742i 0.792549 1.37273i −0.131835 0.991272i \(-0.542087\pi\)
0.924384 0.381463i \(-0.124580\pi\)
\(578\) 9.22669 15.9811i 0.383780 0.664726i
\(579\) 3.17275 0.398910i 0.131855 0.0165781i
\(580\) −11.6508 + 8.64228i −0.483773 + 0.358851i
\(581\) 0 0
\(582\) 15.7519 + 6.63241i 0.652935 + 0.274922i
\(583\) −6.39367 + 3.69139i −0.264799 + 0.152882i
\(584\) 3.21614 5.57052i 0.133085 0.230510i
\(585\) −33.8463 27.5067i −1.39937 1.13726i
\(586\) −6.79859 + 3.92517i −0.280847 + 0.162147i
\(587\) 11.9232i 0.492124i 0.969254 + 0.246062i \(0.0791367\pi\)
−0.969254 + 0.246062i \(0.920863\pi\)
\(588\) 0 0
\(589\) −13.5625 −0.558835
\(590\) −15.5777 + 35.9414i −0.641326 + 1.47968i
\(591\) 11.1792 8.47508i 0.459851 0.348618i
\(592\) −4.27353 2.46732i −0.175641 0.101406i
\(593\) −14.5994 + 8.42896i −0.599525 + 0.346136i −0.768855 0.639424i \(-0.779173\pi\)
0.169330 + 0.985559i \(0.445840\pi\)
\(594\) −40.7647 + 16.0565i −1.67260 + 0.658806i
\(595\) 0 0
\(596\) 31.1596i 1.27635i
\(597\) −17.3618 + 2.18289i −0.710569 + 0.0893399i
\(598\) −21.5479 + 37.3220i −0.881159 + 1.52621i
\(599\) 11.7736 + 6.79751i 0.481058 + 0.277739i 0.720857 0.693084i \(-0.243748\pi\)
−0.239800 + 0.970822i \(0.577082\pi\)
\(600\) 16.5939 + 2.83633i 0.677444 + 0.115793i
\(601\) 46.2155i 1.88517i −0.333966 0.942585i \(-0.608387\pi\)
0.333966 0.942585i \(-0.391613\pi\)
\(602\) 0 0
\(603\) −23.1462 + 22.6130i −0.942588 + 0.920874i
\(604\) 11.9461 + 20.6912i 0.486078 + 0.841912i
\(605\) 7.92775 0.912661i 0.322309 0.0371049i
\(606\) 27.0465 20.5043i 1.09869 0.832930i
\(607\) −4.37164 7.57190i −0.177439 0.307334i 0.763563 0.645733i \(-0.223448\pi\)
−0.941003 + 0.338399i \(0.890115\pi\)
\(608\) 14.4998i 0.588044i
\(609\) 0 0
\(610\) 54.2130 40.2139i 2.19502 1.62821i
\(611\) −28.2248 + 16.2956i −1.14185 + 0.659249i
\(612\) −6.28906 24.6148i −0.254220 0.994995i
\(613\) −21.0938 12.1785i −0.851970 0.491885i 0.00934480 0.999956i \(-0.497025\pi\)
−0.861315 + 0.508071i \(0.830359\pi\)
\(614\) −32.0696 55.5461i −1.29422 2.24166i
\(615\) 3.22816 + 13.2091i 0.130172 + 0.532641i
\(616\) 0 0
\(617\) 25.3125 1.01904 0.509522 0.860458i \(-0.329822\pi\)
0.509522 + 0.860458i \(0.329822\pi\)
\(618\) −0.631212 5.02038i −0.0253911 0.201949i
\(619\) 26.2018 + 15.1276i 1.05314 + 0.608029i 0.923526 0.383535i \(-0.125294\pi\)
0.129612 + 0.991565i \(0.458627\pi\)
\(620\) 4.90885 + 42.6403i 0.197144 + 1.71247i
\(621\) 9.70623 12.2018i 0.389498 0.489641i
\(622\) −19.0958 −0.765673
\(623\) 0 0
\(624\) 15.2125 + 6.40529i 0.608986 + 0.256417i
\(625\) −1.62705 + 24.9470i −0.0650820 + 0.997880i
\(626\) 11.9865 20.7613i 0.479079 0.829788i
\(627\) 10.7202 8.12711i 0.428123 0.324565i
\(628\) 7.79296 + 13.4978i 0.310973 + 0.538621i
\(629\) 9.89959 0.394723
\(630\) 0 0
\(631\) −5.90652 −0.235135 −0.117568 0.993065i \(-0.537510\pi\)
−0.117568 + 0.993065i \(0.537510\pi\)
\(632\) −5.68566 9.84784i −0.226163 0.391726i
\(633\) 14.7436 11.1773i 0.586004 0.444257i
\(634\) 10.3173 17.8701i 0.409754 0.709714i
\(635\) 1.22551 + 0.531161i 0.0486329 + 0.0210785i
\(636\) 8.89228 + 3.74415i 0.352602 + 0.148465i
\(637\) 0 0
\(638\) 18.9934 0.751956
\(639\) 31.7524 + 8.90582i 1.25610 + 0.352309i
\(640\) −31.2015 + 3.59199i −1.23335 + 0.141986i
\(641\) −0.111457 0.0643495i −0.00440227 0.00254165i 0.497797 0.867293i \(-0.334142\pi\)
−0.502200 + 0.864752i \(0.667476\pi\)
\(642\) −1.58679 12.6206i −0.0626257 0.498097i
\(643\) 0.150563 0.00593763 0.00296881 0.999996i \(-0.499055\pi\)
0.00296881 + 0.999996i \(0.499055\pi\)
\(644\) 0 0
\(645\) 26.4761 6.47049i 1.04250 0.254775i
\(646\) 6.60894 + 11.4470i 0.260025 + 0.450377i
\(647\) −35.8147 20.6776i −1.40802 0.812920i −0.412822 0.910812i \(-0.635457\pi\)
−0.995197 + 0.0978912i \(0.968790\pi\)
\(648\) 14.9432 + 9.09817i 0.587023 + 0.357410i
\(649\) 26.2136 15.1344i 1.02897 0.594078i
\(650\) 20.8350 68.7235i 0.817214 2.69556i
\(651\) 0 0
\(652\) 49.4113i 1.93509i
\(653\) −14.7304 25.5138i −0.576446 0.998433i −0.995883 0.0906487i \(-0.971106\pi\)
0.419437 0.907784i \(-0.362227\pi\)
\(654\) −37.4990 + 28.4284i −1.46633 + 1.11164i
\(655\) 12.9104 1.48627i 0.504450 0.0580734i
\(656\) −2.57308 4.45670i −0.100462 0.174005i
\(657\) 6.93713 + 7.10071i 0.270643 + 0.277025i
\(658\) 0 0
\(659\) 22.4678i 0.875220i −0.899165 0.437610i \(-0.855825\pi\)
0.899165 0.437610i \(-0.144175\pi\)
\(660\) −29.4315 30.7625i −1.14562 1.19743i
\(661\) 20.3164 + 11.7297i 0.790218 + 0.456233i 0.840039 0.542526i \(-0.182532\pi\)
−0.0498213 + 0.998758i \(0.515865\pi\)
\(662\) 3.21328 5.56557i 0.124888 0.216312i
\(663\) −32.8546 + 4.13081i −1.27597 + 0.160427i
\(664\) 5.17717i 0.200913i
\(665\) 0 0
\(666\) −15.9593 + 15.5916i −0.618409 + 0.604163i
\(667\) −5.85354 + 3.37954i −0.226650 + 0.130856i
\(668\) 23.9582 + 13.8323i 0.926971 + 0.535187i
\(669\) −5.70294 + 4.32347i −0.220489 + 0.167155i
\(670\) −48.8860 21.1882i −1.88863 0.818570i
\(671\) −52.1580 −2.01354
\(672\) 0 0
\(673\) 44.5504i 1.71729i −0.512570 0.858645i \(-0.671307\pi\)
0.512570 0.858645i \(-0.328693\pi\)
\(674\) −29.2533 + 16.8894i −1.12680 + 0.650555i
\(675\) −11.1306 + 23.4757i −0.428418 + 0.903581i
\(676\) −42.1496 + 73.0052i −1.62114 + 2.80789i
\(677\) −39.5783 + 22.8505i −1.52112 + 0.878217i −0.521427 + 0.853296i \(0.674600\pi\)
−0.999689 + 0.0249214i \(0.992066\pi\)
\(678\) −72.1462 30.3776i −2.77076 1.16664i
\(679\) 0 0
\(680\) 10.2655 7.61467i 0.393663 0.292009i
\(681\) −12.3315 + 1.55044i −0.472545 + 0.0594130i
\(682\) 28.0994 48.6697i 1.07598 1.86366i
\(683\) −19.3444 + 33.5055i −0.740192 + 1.28205i 0.212215 + 0.977223i \(0.431932\pi\)
−0.952407 + 0.304828i \(0.901401\pi\)
\(684\) −16.9277 4.74783i −0.647246 0.181538i
\(685\) 1.45698 + 1.96418i 0.0556682 + 0.0750473i
\(686\) 0 0
\(687\) −7.02460 + 16.6833i −0.268005 + 0.636508i
\(688\) −8.93296 + 5.15745i −0.340566 + 0.196626i
\(689\) 6.28779 10.8908i 0.239546 0.414905i
\(690\) 24.6443 + 7.19095i 0.938192 + 0.273755i
\(691\) 16.6768 9.62834i 0.634415 0.366279i −0.148045 0.988981i \(-0.547298\pi\)
0.782460 + 0.622701i \(0.213965\pi\)
\(692\) 29.2965i 1.11369i
\(693\) 0 0
\(694\) −69.7587 −2.64800
\(695\) −15.0995 6.54443i −0.572756 0.248244i
\(696\) −4.58189 6.04381i −0.173676 0.229090i
\(697\) 8.94077 + 5.16195i 0.338656 + 0.195523i
\(698\) 15.7836 9.11265i 0.597417 0.344919i
\(699\) −6.22794 2.62231i −0.235562 0.0991849i
\(700\) 0 0
\(701\) 6.75777i 0.255238i −0.991823 0.127619i \(-0.959267\pi\)
0.991823 0.127619i \(-0.0407334\pi\)
\(702\) 46.4594 58.4046i 1.75350 2.20434i
\(703\) 3.42531 5.93282i 0.129188 0.223760i
\(704\) 42.3428 + 24.4466i 1.59586 + 0.921367i
\(705\) 13.4213 + 14.0282i 0.505474 + 0.528333i
\(706\) 9.47268i 0.356509i
\(707\) 0 0
\(708\) −36.4577 15.3507i −1.37016 0.576916i
\(709\) −2.44586 4.23635i −0.0918561 0.159099i 0.816436 0.577436i \(-0.195947\pi\)
−0.908292 + 0.418336i \(0.862613\pi\)
\(710\) 6.21001 + 53.9427i 0.233057 + 2.02443i
\(711\) 17.0031 4.34428i 0.637667 0.162923i
\(712\) 13.1367 + 22.7534i 0.492318 + 0.852719i
\(713\) 19.9992i 0.748977i
\(714\) 0 0
\(715\) −44.5677 + 33.0592i −1.66674 + 1.23634i
\(716\) −58.9972 + 34.0620i −2.20483 + 1.27296i
\(717\) 24.8906 + 32.8324i 0.929557 + 1.22615i
\(718\) −13.6506 7.88121i −0.509438 0.294124i
\(719\) 19.0108 + 32.9277i 0.708985 + 1.22800i 0.965234 + 0.261387i \(0.0841798\pi\)
−0.256249 + 0.966611i \(0.582487\pi\)
\(720\) 1.55518 9.70876i 0.0579581 0.361824i
\(721\) 0 0
\(722\) −32.8253 −1.22163
\(723\) −22.8263 + 2.86995i −0.848919 + 0.106735i
\(724\) −38.9906 22.5112i −1.44907 0.836624i
\(725\) 8.21919 7.70059i 0.305253 0.285993i
\(726\) 1.70344 + 13.5484i 0.0632205 + 0.502827i
\(727\) 18.6502 0.691699 0.345849 0.938290i \(-0.387591\pi\)
0.345849 + 0.938290i \(0.387591\pi\)
\(728\) 0 0
\(729\) −19.7475 + 18.4130i −0.731387 + 0.681962i
\(730\) −6.50002 + 14.9970i −0.240576 + 0.555065i
\(731\) 10.3466 17.9208i 0.382681 0.662824i
\(732\) 41.1799 + 54.3191i 1.52205 + 2.00769i
\(733\) −18.7967 32.5568i −0.694271 1.20251i −0.970426 0.241399i \(-0.922394\pi\)
0.276155 0.961113i \(-0.410940\pi\)
\(734\) −53.8821 −1.98882
\(735\) 0 0
\(736\) −21.3813 −0.788124
\(737\) 20.5852 + 35.6546i 0.758264 + 1.31335i
\(738\) −22.5435 + 5.75984i −0.829837 + 0.212023i
\(739\) 24.7189 42.8144i 0.909300 1.57495i 0.0942603 0.995548i \(-0.469951\pi\)
0.815039 0.579406i \(-0.196715\pi\)
\(740\) −19.8924 8.62177i −0.731259 0.316942i
\(741\) −8.89228 + 21.1190i −0.326666 + 0.775826i
\(742\) 0 0
\(743\) 42.7477 1.56826 0.784131 0.620596i \(-0.213109\pi\)
0.784131 + 0.620596i \(0.213109\pi\)
\(744\) −22.2656 + 2.79945i −0.816295 + 0.102633i
\(745\) 2.76689 + 24.0343i 0.101371 + 0.880550i
\(746\) −42.1929 24.3601i −1.54479 0.891886i
\(747\) −7.69304 2.15772i −0.281474 0.0789470i
\(748\) −32.3236 −1.18187
\(749\) 0 0
\(750\) −42.7144 2.33761i −1.55971 0.0853575i
\(751\) −2.79526 4.84152i −0.102000 0.176670i 0.810508 0.585727i \(-0.199191\pi\)
−0.912509 + 0.409057i \(0.865858\pi\)
\(752\) −6.36310 3.67374i −0.232039 0.133968i
\(753\) −12.5982 + 9.55082i −0.459103 + 0.348051i
\(754\) −28.0183 + 16.1764i −1.02037 + 0.589109i
\(755\) −11.0517 14.8989i −0.402211 0.542227i
\(756\) 0 0
\(757\) 42.9931i 1.56261i 0.624150 + 0.781305i \(0.285445\pi\)
−0.624150 + 0.781305i \(0.714555\pi\)
\(758\) 1.27906 + 2.21539i 0.0464574 + 0.0804666i
\(759\) −11.9842 15.8079i −0.434998 0.573791i
\(760\) −1.01156 8.78681i −0.0366930 0.318731i
\(761\) 24.5715 + 42.5591i 0.890716 + 1.54277i 0.839019 + 0.544102i \(0.183130\pi\)
0.0516970 + 0.998663i \(0.483537\pi\)
\(762\) −0.886912 + 2.10640i −0.0321294 + 0.0763068i
\(763\) 0 0
\(764\) 31.0436i 1.12312i
\(765\) 7.03665 + 18.4277i 0.254411 + 0.666253i
\(766\) 4.07358 + 2.35188i 0.147184 + 0.0849769i
\(767\) −25.7795 + 44.6514i −0.930843 + 1.61227i
\(768\) −1.16872 9.29547i −0.0421725 0.335421i
\(769\) 27.0203i 0.974376i −0.873297 0.487188i \(-0.838023\pi\)
0.873297 0.487188i \(-0.161977\pi\)
\(770\) 0 0
\(771\) 4.49412 10.6735i 0.161852 0.384395i
\(772\) −4.60466 + 2.65850i −0.165725 + 0.0956816i
\(773\) 45.8267 + 26.4581i 1.64827 + 0.951631i 0.977758 + 0.209735i \(0.0672601\pi\)
0.670515 + 0.741896i \(0.266073\pi\)
\(774\) 11.5450 + 45.1859i 0.414975 + 1.62417i
\(775\) −7.57267 32.4538i −0.272018 1.16577i
\(776\) −8.68312 −0.311706
\(777\) 0 0
\(778\) 53.3645i 1.91321i
\(779\) 6.18711 3.57213i 0.221676 0.127985i
\(780\) 69.6161 + 20.3133i 2.49266 + 0.727331i
\(781\) 20.9788 36.3364i 0.750681 1.30022i
\(782\) 16.8797 9.74550i 0.603617 0.348499i
\(783\) 10.8905 4.28956i 0.389193 0.153296i
\(784\) 0 0
\(785\) −7.20950 9.71926i −0.257318 0.346895i
\(786\) 2.77405 + 22.0636i 0.0989471 + 0.786981i
\(787\) −8.37879 + 14.5125i −0.298672 + 0.517315i −0.975832 0.218521i \(-0.929877\pi\)
0.677161 + 0.735835i \(0.263210\pi\)
\(788\) −11.6630 + 20.2009i −0.415477 + 0.719627i
\(789\) −5.21340 41.4650i −0.185602 1.47619i
\(790\) 17.2150 + 23.2078i 0.612481 + 0.825697i
\(791\) 0 0
\(792\) 15.9218 15.5550i 0.565756 0.552723i
\(793\) 76.9414 44.4222i 2.73227 1.57748i
\(794\) −13.2719 + 22.9876i −0.471001 + 0.815798i
\(795\) −7.19134 2.09836i −0.255051 0.0744211i
\(796\) 25.1974 14.5477i 0.893099 0.515631i
\(797\) 55.9724i 1.98264i −0.131462 0.991321i \(-0.541967\pi\)
0.131462 0.991321i \(-0.458033\pi\)
\(798\) 0 0
\(799\) 14.7401 0.521466
\(800\) 34.6965 8.09598i 1.22671 0.286236i
\(801\) −39.2856 + 10.0374i −1.38809 + 0.354655i
\(802\) 58.9813 + 34.0529i 2.08270 + 1.20245i
\(803\) 10.9380 6.31503i 0.385992 0.222853i
\(804\) 20.8794 49.5882i 0.736359 1.74884i
\(805\) 0 0
\(806\) 95.7274i 3.37186i
\(807\) −4.10702 32.6654i −0.144574 1.14988i
\(808\) −8.62160 + 14.9331i −0.303307 + 0.525343i
\(809\) −36.4604 21.0504i −1.28188 0.740094i −0.304689 0.952452i \(-0.598553\pi\)
−0.977192 + 0.212358i \(0.931886\pi\)
\(810\) −40.3670 18.6249i −1.41835 0.654413i
\(811\) 1.35051i 0.0474227i −0.999719 0.0237113i \(-0.992452\pi\)
0.999719 0.0237113i \(-0.00754826\pi\)
\(812\) 0 0
\(813\) 7.96388 18.9141i 0.279306 0.663346i
\(814\) 14.1934 + 24.5837i 0.497479 + 0.861659i
\(815\) −4.38758 38.1123i −0.153690 1.33502i
\(816\) −4.50993 5.94890i −0.157879 0.208253i
\(817\) −7.15993 12.4014i −0.250494 0.433869i
\(818\) 34.6141i 1.21025i
\(819\) 0 0
\(820\) −13.4701 18.1592i −0.470395 0.634147i
\(821\) −9.82457 + 5.67222i −0.342880 + 0.197962i −0.661545 0.749906i \(-0.730099\pi\)
0.318665 + 0.947867i \(0.396765\pi\)
\(822\) −3.33471 + 2.52809i −0.116312 + 0.0881771i
\(823\) −26.1348 15.0889i −0.911002 0.525967i −0.0302488 0.999542i \(-0.509630\pi\)
−0.880754 + 0.473575i \(0.842963\pi\)
\(824\) 1.28533 + 2.22626i 0.0447766 + 0.0775554i
\(825\) 25.4330 + 21.1146i 0.885463 + 0.735114i
\(826\) 0 0
\(827\) 34.7911 1.20981 0.604903 0.796299i \(-0.293212\pi\)
0.604903 + 0.796299i \(0.293212\pi\)
\(828\) −7.00112 + 24.9614i −0.243306 + 0.867470i
\(829\) 3.50678 + 2.02464i 0.121796 + 0.0703187i 0.559660 0.828722i \(-0.310932\pi\)
−0.437864 + 0.899041i \(0.644265\pi\)
\(830\) −1.50458 13.0694i −0.0522246 0.453645i
\(831\) 28.3867 3.56906i 0.984725 0.123809i
\(832\) −83.2833 −2.88733
\(833\) 0 0
\(834\) 10.9276 25.9529i 0.378393 0.898676i
\(835\) −19.7079 8.54181i −0.682021 0.295602i
\(836\) −11.1841 + 19.3715i −0.386811 + 0.669977i
\(837\) 5.11992 34.2524i 0.176970 1.18394i
\(838\) 21.6460 + 37.4920i 0.747749 + 1.29514i
\(839\) 25.8653 0.892969 0.446485 0.894791i \(-0.352676\pi\)
0.446485 + 0.894791i \(0.352676\pi\)
\(840\) 0 0
\(841\) 23.9258 0.825029
\(842\) −35.9846 62.3272i −1.24011 2.14794i
\(843\) −10.5764 13.9510i −0.364271 0.480497i
\(844\) −15.3816 + 26.6417i −0.529457 + 0.917047i
\(845\) 26.0285 60.0537i 0.895408 2.06591i
\(846\) −23.7627 + 23.2153i −0.816978 + 0.798158i
\(847\) 0 0
\(848\) 2.83509 0.0973573
\(849\) 1.29686 + 10.3146i 0.0445080 + 0.353997i
\(850\) −23.7015 + 22.2060i −0.812953 + 0.761660i
\(851\) −8.74849 5.05094i −0.299894 0.173144i
\(852\) −54.4052 + 6.84036i −1.86389 + 0.234347i
\(853\) −37.5709 −1.28640 −0.643201 0.765697i \(-0.722394\pi\)
−0.643201 + 0.765697i \(0.722394\pi\)
\(854\) 0 0
\(855\) 13.4784 + 2.15901i 0.460952 + 0.0738366i
\(856\) 3.23117 + 5.59655i 0.110439 + 0.191286i
\(857\) −19.8563 11.4640i −0.678278 0.391604i 0.120928 0.992661i \(-0.461413\pi\)
−0.799206 + 0.601057i \(0.794746\pi\)
\(858\) −57.3630 75.6656i −1.95834 2.58318i
\(859\) −16.2512 + 9.38264i −0.554484 + 0.320132i −0.750929 0.660383i \(-0.770394\pi\)
0.196444 + 0.980515i \(0.437060\pi\)
\(860\) −36.3981 + 26.9992i −1.24117 + 0.920666i
\(861\) 0 0
\(862\) 61.6092i 2.09842i
\(863\) 4.23086 + 7.32807i 0.144020 + 0.249450i 0.929007 0.370062i \(-0.120664\pi\)
−0.784987 + 0.619512i \(0.787330\pi\)
\(864\) 36.6194 + 5.47373i 1.24582 + 0.186220i
\(865\) −2.60144 22.5972i −0.0884517 0.768329i
\(866\) 3.83659 + 6.64517i 0.130373 + 0.225812i
\(867\) −13.3348 5.61470i −0.452874 0.190685i
\(868\) 0 0
\(869\) 22.3281i 0.757428i
\(870\) 13.3231 + 13.9256i 0.451694 + 0.472121i
\(871\) −60.7329 35.0641i −2.05785 1.18810i
\(872\) 11.9535 20.7041i 0.404797 0.701129i
\(873\) 3.61892 12.9027i 0.122482 0.436691i
\(874\) 13.4880i 0.456238i
\(875\) 0 0
\(876\) −15.2125 6.40529i −0.513981 0.216415i
\(877\) 3.27867 1.89294i 0.110713 0.0639201i −0.443621 0.896214i \(-0.646306\pi\)
0.554334 + 0.832294i \(0.312973\pi\)
\(878\) −7.55301 4.36073i −0.254902 0.147168i
\(879\) 3.71852 + 4.90498i 0.125423 + 0.165441i
\(880\) −11.4782 4.97490i −0.386931 0.167704i
\(881\) 54.6531 1.84131 0.920654 0.390379i \(-0.127656\pi\)
0.920654 + 0.390379i \(0.127656\pi\)
\(882\) 0 0
\(883\) 28.1492i 0.947295i −0.880715 0.473647i \(-0.842937\pi\)
0.880715 0.473647i \(-0.157063\pi\)
\(884\) 47.6824 27.5295i 1.60373 0.925916i
\(885\) 29.4840 + 8.60311i 0.991093 + 0.289191i
\(886\) 17.7065 30.6686i 0.594862 1.03033i
\(887\) 26.0011 15.0117i 0.873032 0.504045i 0.00467726 0.999989i \(-0.498511\pi\)
0.868355 + 0.495944i \(0.165178\pi\)
\(888\) 4.39873 10.4469i 0.147612 0.350575i
\(889\) 0 0
\(890\) −39.7751 53.6215i −1.33326 1.79740i
\(891\) 16.4782 + 30.1420i 0.552041 + 1.00980i
\(892\) 5.94975 10.3053i 0.199212 0.345046i
\(893\) 5.10015 8.83371i 0.170670 0.295609i
\(894\) −41.0742 + 5.16426i −1.37373 + 0.172719i
\(895\) 42.4816 31.5118i 1.42000 1.05332i
\(896\) 0 0
\(897\) 31.1420 + 13.1125i 1.03980 + 0.437814i
\(898\) −40.3668 + 23.3058i −1.34706 + 0.777724i
\(899\) −7.50689 + 13.0023i −0.250369 + 0.433651i
\(900\) 1.90948 43.1572i 0.0636493 1.43857i
\(901\) −4.92559 + 2.84379i −0.164095 + 0.0947404i
\(902\) 29.6036i 0.985691i
\(903\) 0 0
\(904\) 39.7702 1.32274
\(905\) 32.0735 + 13.9013i 1.06616 + 0.462095i
\(906\) 25.2949 19.1764i 0.840367 0.637092i
\(907\) 16.8295 + 9.71653i 0.558815 + 0.322632i 0.752670 0.658398i \(-0.228766\pi\)
−0.193855 + 0.981030i \(0.562099\pi\)
\(908\) 17.8969 10.3328i 0.593931 0.342906i
\(909\) −18.5966 19.0351i −0.616809 0.631354i
\(910\) 0 0
\(911\) 53.2832i 1.76535i 0.469982 + 0.882676i \(0.344261\pi\)
−0.469982 + 0.882676i \(0.655739\pi\)
\(912\) −5.12563 + 0.644446i −0.169727 + 0.0213397i
\(913\) −5.08280 + 8.80366i −0.168216 + 0.291359i
\(914\) 18.3787 + 10.6110i 0.607914 + 0.350979i
\(915\) −36.5866 38.2412i −1.20952 1.26422i
\(916\) 30.0988i 0.994493i
\(917\) 0 0
\(918\) −31.4046 + 12.3697i −1.03650 + 0.408261i
\(919\) −22.5064 38.9822i −0.742416 1.28590i −0.951392 0.307982i \(-0.900346\pi\)
0.208976 0.977921i \(-0.432987\pi\)
\(920\) −12.9570 + 1.49163i −0.427178 + 0.0491777i
\(921\) −40.0749 + 30.3812i −1.32051 + 1.00110i
\(922\) 27.1015 + 46.9412i 0.892541 + 1.54593i
\(923\) 71.4693i 2.35244i
\(924\) 0 0
\(925\) 16.1092 + 4.88383i 0.529666 + 0.160579i
\(926\) 27.9073 16.1123i 0.917092 0.529483i
\(927\) −3.84382 + 0.982092i −0.126248 + 0.0322561i
\(928\) −13.9008 8.02565i −0.456317 0.263455i
\(929\) −21.3495 36.9785i −0.700455 1.21322i −0.968307 0.249764i \(-0.919647\pi\)
0.267852 0.963460i \(-0.413686\pi\)
\(930\) 55.3942 13.5378i 1.81645 0.443921i
\(931\) 0 0
\(932\) 11.2360 0.368048
\(933\) 1.86777 + 14.8554i 0.0611482 + 0.486345i
\(934\) −34.2800 19.7916i −1.12168 0.647600i
\(935\) 24.9321 2.87024i 0.815366 0.0938668i
\(936\) −10.2392 + 36.5065i −0.334680 + 1.19325i
\(937\) 26.4685 0.864688 0.432344 0.901709i \(-0.357687\pi\)
0.432344 + 0.901709i \(0.357687\pi\)
\(938\) 0 0
\(939\) −17.3235 7.29415i −0.565330 0.238036i
\(940\) −29.6189 12.8375i −0.966063 0.418711i
\(941\) 15.8545 27.4609i 0.516843 0.895199i −0.482965 0.875640i \(-0.660440\pi\)
0.999809 0.0195596i \(-0.00622642\pi\)
\(942\) 16.5010 12.5096i 0.537633 0.407586i
\(943\) −5.26744 9.12347i −0.171531 0.297101i
\(944\) −11.6237 −0.378318
\(945\) 0 0
\(946\) 59.3370 1.92921
\(947\) 5.97276 + 10.3451i 0.194089 + 0.336171i 0.946601 0.322406i \(-0.104492\pi\)
−0.752513 + 0.658578i \(0.771158\pi\)
\(948\) −23.2532 + 17.6285i −0.755229 + 0.572548i
\(949\) −10.7568 + 18.6314i −0.349181 + 0.604800i
\(950\) 5.10720 + 21.8877i 0.165699 + 0.710130i
\(951\) −14.9111 6.27839i −0.483524 0.203591i
\(952\) 0 0
\(953\) 1.76384 0.0571364 0.0285682 0.999592i \(-0.490905\pi\)
0.0285682 + 0.999592i \(0.490905\pi\)
\(954\) 3.46171 12.3422i 0.112077 0.399594i
\(955\) −2.75658 23.9448i −0.0892008 0.774835i
\(956\) −59.3284 34.2532i −1.91882 1.10783i
\(957\) −1.85775 14.7757i −0.0600527 0.477632i
\(958\) −6.54980 −0.211614
\(959\) 0 0
\(960\) 11.7779 + 48.1932i 0.380131 + 1.55543i
\(961\) 6.71186 + 11.6253i 0.216511 + 0.375009i
\(962\) −41.8752 24.1766i −1.35011 0.779486i
\(963\) −9.66291 + 2.46886i −0.311383 + 0.0795580i
\(964\) 33.1282 19.1266i 1.06699 0.616026i
\(965\) 3.31564 2.45946i 0.106734 0.0791728i
\(966\) 0 0
\(967\) 53.4014i 1.71727i −0.512584 0.858637i \(-0.671312\pi\)
0.512584 0.858637i \(-0.328688\pi\)
\(968\) −3.46869 6.00795i −0.111488 0.193103i
\(969\) 8.25869 6.26101i 0.265307 0.201133i
\(970\) 21.9199 2.52347i 0.703805 0.0810236i
\(971\) 23.9577 + 41.4959i 0.768838 + 1.33167i 0.938193 + 0.346111i \(0.112498\pi\)
−0.169356 + 0.985555i \(0.554169\pi\)
\(972\) 18.3810 40.9588i 0.589571 1.31375i
\(973\) 0 0
\(974\) 73.4642i 2.35394i
\(975\) −55.5007 9.48649i −1.77744 0.303811i
\(976\) 17.3460 + 10.0147i 0.555231 + 0.320563i
\(977\) −4.07411 + 7.05657i −0.130342 + 0.225760i −0.923809 0.382855i \(-0.874941\pi\)
0.793466 + 0.608614i \(0.208274\pi\)
\(978\) 65.1332 8.18920i 2.08273 0.261862i
\(979\) 51.5889i 1.64879i
\(980\) 0 0
\(981\) 25.7834 + 26.3914i 0.823201 + 0.842612i
\(982\) 48.7636 28.1537i 1.55611 0.898420i
\(983\) 12.6460 + 7.30116i 0.403344 + 0.232871i 0.687926 0.725781i \(-0.258521\pi\)
−0.284582 + 0.958652i \(0.591855\pi\)
\(984\) 9.42003 7.14143i 0.300300 0.227661i
\(985\) 7.20222 16.6172i 0.229482 0.529467i
\(986\) 14.6322 0.465986
\(987\) 0 0
\(988\) 38.1014i 1.21217i
\(989\) −18.2870 + 10.5580i −0.581492 + 0.335725i
\(990\) −35.6728 + 43.8946i −1.13376 + 1.39506i
\(991\) −7.84118 + 13.5813i −0.249083 + 0.431425i −0.963272 0.268529i \(-0.913463\pi\)
0.714188 + 0.699953i \(0.246796\pi\)
\(992\) −41.1307 + 23.7468i −1.30590 + 0.753962i
\(993\) −4.64398 1.95537i −0.147372 0.0620519i
\(994\) 0 0
\(995\) −18.1437 + 13.4585i −0.575194 + 0.426664i
\(996\) 13.1814 1.65730i 0.417669 0.0525136i
\(997\) 13.5211 23.4192i 0.428218 0.741695i −0.568497 0.822685i \(-0.692475\pi\)
0.996715 + 0.0809903i \(0.0258083\pi\)
\(998\) −37.1913 + 64.4173i −1.17727 + 2.03909i
\(999\) 13.6904 + 10.8903i 0.433144 + 0.344555i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 735.2.p.g.374.32 64
3.2 odd 2 inner 735.2.p.g.374.3 64
5.4 even 2 inner 735.2.p.g.374.1 64
7.2 even 3 inner 735.2.p.g.509.31 64
7.3 odd 6 735.2.g.c.734.4 yes 32
7.4 even 3 735.2.g.c.734.1 32
7.5 odd 6 inner 735.2.p.g.509.30 64
7.6 odd 2 inner 735.2.p.g.374.29 64
15.14 odd 2 inner 735.2.p.g.374.30 64
21.2 odd 6 inner 735.2.p.g.509.4 64
21.5 even 6 inner 735.2.p.g.509.1 64
21.11 odd 6 735.2.g.c.734.30 yes 32
21.17 even 6 735.2.g.c.734.31 yes 32
21.20 even 2 inner 735.2.p.g.374.2 64
35.4 even 6 735.2.g.c.734.32 yes 32
35.9 even 6 inner 735.2.p.g.509.2 64
35.19 odd 6 inner 735.2.p.g.509.3 64
35.24 odd 6 735.2.g.c.734.29 yes 32
35.34 odd 2 inner 735.2.p.g.374.4 64
105.44 odd 6 inner 735.2.p.g.509.29 64
105.59 even 6 735.2.g.c.734.2 yes 32
105.74 odd 6 735.2.g.c.734.3 yes 32
105.89 even 6 inner 735.2.p.g.509.32 64
105.104 even 2 inner 735.2.p.g.374.31 64
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
735.2.g.c.734.1 32 7.4 even 3
735.2.g.c.734.2 yes 32 105.59 even 6
735.2.g.c.734.3 yes 32 105.74 odd 6
735.2.g.c.734.4 yes 32 7.3 odd 6
735.2.g.c.734.29 yes 32 35.24 odd 6
735.2.g.c.734.30 yes 32 21.11 odd 6
735.2.g.c.734.31 yes 32 21.17 even 6
735.2.g.c.734.32 yes 32 35.4 even 6
735.2.p.g.374.1 64 5.4 even 2 inner
735.2.p.g.374.2 64 21.20 even 2 inner
735.2.p.g.374.3 64 3.2 odd 2 inner
735.2.p.g.374.4 64 35.34 odd 2 inner
735.2.p.g.374.29 64 7.6 odd 2 inner
735.2.p.g.374.30 64 15.14 odd 2 inner
735.2.p.g.374.31 64 105.104 even 2 inner
735.2.p.g.374.32 64 1.1 even 1 trivial
735.2.p.g.509.1 64 21.5 even 6 inner
735.2.p.g.509.2 64 35.9 even 6 inner
735.2.p.g.509.3 64 35.19 odd 6 inner
735.2.p.g.509.4 64 21.2 odd 6 inner
735.2.p.g.509.29 64 105.44 odd 6 inner
735.2.p.g.509.30 64 7.5 odd 6 inner
735.2.p.g.509.31 64 7.2 even 3 inner
735.2.p.g.509.32 64 105.89 even 6 inner