Properties

Label 735.2.p.g.374.30
Level $735$
Weight $2$
Character 735.374
Analytic conductor $5.869$
Analytic rank $0$
Dimension $64$
Inner twists $16$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [735,2,Mod(374,735)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("735.374"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(735, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 3, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 735 = 3 \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 735.p (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [64,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.86900454856\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(32\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 374.30
Character \(\chi\) \(=\) 735.374
Dual form 735.2.p.g.509.30

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.10453 + 1.91310i) q^{2} +(-0.216070 + 1.71852i) q^{3} +(-1.43998 + 2.49412i) q^{4} +(2.22140 + 0.255732i) q^{5} +(-3.52637 + 1.48480i) q^{6} -1.94389 q^{8} +(-2.90663 - 0.742640i) q^{9} +(1.96436 + 4.53223i) q^{10} +(3.30554 + 1.90846i) q^{11} +(-3.97506 - 3.01354i) q^{12} -6.50161 q^{13} +(-0.919457 + 3.76226i) q^{15} +(0.732874 + 1.26937i) q^{16} +(-2.54654 - 1.47025i) q^{17} +(-1.78971 - 6.38095i) q^{18} +(-1.76224 + 1.01743i) q^{19} +(-3.83659 + 5.17218i) q^{20} +8.43180i q^{22} +(1.50029 + 2.59858i) q^{23} +(0.420016 - 3.34061i) q^{24} +(4.86920 + 1.13616i) q^{25} +(-7.18123 - 12.4383i) q^{26} +(1.90428 - 4.83464i) q^{27} -2.25259i q^{29} +(-8.21317 + 2.39652i) q^{30} +(5.77216 + 3.33256i) q^{31} +(-3.56285 + 6.17104i) q^{32} +(-3.99395 + 5.26828i) q^{33} -6.49574i q^{34} +(6.03772 - 6.18009i) q^{36} +(2.91560 - 1.68332i) q^{37} +(-3.89289 - 2.24756i) q^{38} +(1.40480 - 11.1732i) q^{39} +(-4.31815 - 0.497115i) q^{40} +3.51094 q^{41} -7.03729i q^{43} +(-9.51983 + 5.49628i) q^{44} +(-6.26685 - 2.39302i) q^{45} +(-3.31424 + 5.74043i) q^{46} +(-4.34120 + 2.50639i) q^{47} +(-2.33980 + 0.985185i) q^{48} +(3.20459 + 10.5702i) q^{50} +(3.07688 - 4.05861i) q^{51} +(9.36219 - 16.2158i) q^{52} +(0.967113 - 1.67509i) q^{53} +(11.3525 - 1.69693i) q^{54} +(6.85487 + 5.08477i) q^{55} +(-1.36770 - 3.24827i) q^{57} +(4.30944 - 2.48806i) q^{58} +(3.96509 - 6.86774i) q^{59} +(-8.05952 - 7.71082i) q^{60} +(11.8342 - 6.83249i) q^{61} +14.7237i q^{62} -12.8096 q^{64} +(-14.4427 - 1.66267i) q^{65} +(-14.4902 - 1.82186i) q^{66} +(9.34121 + 5.39315i) q^{67} +(7.33395 - 4.23426i) q^{68} +(-4.78988 + 2.01681i) q^{69} -10.9926i q^{71} +(5.65016 + 1.44361i) q^{72} +(1.65449 - 2.86566i) q^{73} +(6.44074 + 3.71856i) q^{74} +(-3.00461 + 8.12233i) q^{75} -5.86030i q^{76} +(22.9271 - 9.65357i) q^{78} +(2.92489 + 5.06605i) q^{79} +(1.30338 + 3.00720i) q^{80} +(7.89697 + 4.31716i) q^{81} +(3.87795 + 6.71680i) q^{82} -2.66330i q^{83} +(-5.28089 - 3.91724i) q^{85} +(13.4631 - 7.77291i) q^{86} +(3.87112 + 0.486717i) q^{87} +(-6.42561 - 3.70983i) q^{88} +(6.75793 + 11.7051i) q^{89} +(-2.34385 - 14.6323i) q^{90} -8.64156 q^{92} +(-6.97425 + 9.19951i) q^{93} +(-9.58999 - 5.53678i) q^{94} +(-4.17481 + 1.80945i) q^{95} +(-9.83524 - 7.45621i) q^{96} -4.46688 q^{97} +(-8.19069 - 8.00200i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64 q - 16 q^{4} - 40 q^{9} + 32 q^{15} + 16 q^{16} - 64 q^{25} - 56 q^{30} - 32 q^{36} + 56 q^{39} + 32 q^{46} + 40 q^{51} - 8 q^{60} - 352 q^{64} - 48 q^{79} + 40 q^{81} - 128 q^{85} + 80 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/735\mathbb{Z}\right)^\times\).

\(n\) \(346\) \(442\) \(491\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.10453 + 1.91310i 0.781022 + 1.35277i 0.931347 + 0.364133i \(0.118635\pi\)
−0.150325 + 0.988637i \(0.548032\pi\)
\(3\) −0.216070 + 1.71852i −0.124748 + 0.992188i
\(4\) −1.43998 + 2.49412i −0.719990 + 1.24706i
\(5\) 2.22140 + 0.255732i 0.993439 + 0.114367i
\(6\) −3.52637 + 1.48480i −1.43963 + 0.606166i
\(7\) 0 0
\(8\) −1.94389 −0.687269
\(9\) −2.90663 0.742640i −0.968876 0.247547i
\(10\) 1.96436 + 4.53223i 0.621185 + 1.43322i
\(11\) 3.30554 + 1.90846i 0.996659 + 0.575421i 0.907258 0.420575i \(-0.138172\pi\)
0.0894006 + 0.995996i \(0.471505\pi\)
\(12\) −3.97506 3.01354i −1.14750 0.869934i
\(13\) −6.50161 −1.80322 −0.901611 0.432548i \(-0.857615\pi\)
−0.901611 + 0.432548i \(0.857615\pi\)
\(14\) 0 0
\(15\) −0.919457 + 3.76226i −0.237403 + 0.971411i
\(16\) 0.732874 + 1.26937i 0.183218 + 0.317344i
\(17\) −2.54654 1.47025i −0.617628 0.356587i 0.158317 0.987388i \(-0.449393\pi\)
−0.775945 + 0.630801i \(0.782726\pi\)
\(18\) −1.78971 6.38095i −0.421839 1.50401i
\(19\) −1.76224 + 1.01743i −0.404285 + 0.233414i −0.688331 0.725397i \(-0.741656\pi\)
0.284046 + 0.958811i \(0.408323\pi\)
\(20\) −3.83659 + 5.17218i −0.857888 + 1.15653i
\(21\) 0 0
\(22\) 8.43180i 1.79767i
\(23\) 1.50029 + 2.59858i 0.312832 + 0.541842i 0.978974 0.203983i \(-0.0653888\pi\)
−0.666142 + 0.745825i \(0.732056\pi\)
\(24\) 0.420016 3.34061i 0.0857353 0.681900i
\(25\) 4.86920 + 1.13616i 0.973840 + 0.227233i
\(26\) −7.18123 12.4383i −1.40836 2.43934i
\(27\) 1.90428 4.83464i 0.366478 0.930427i
\(28\) 0 0
\(29\) 2.25259i 0.418296i −0.977884 0.209148i \(-0.932931\pi\)
0.977884 0.209148i \(-0.0670690\pi\)
\(30\) −8.21317 + 2.39652i −1.49951 + 0.437542i
\(31\) 5.77216 + 3.33256i 1.03671 + 0.598545i 0.918900 0.394491i \(-0.129079\pi\)
0.117810 + 0.993036i \(0.462413\pi\)
\(32\) −3.56285 + 6.17104i −0.629829 + 1.09090i
\(33\) −3.99395 + 5.26828i −0.695257 + 0.917091i
\(34\) 6.49574i 1.11401i
\(35\) 0 0
\(36\) 6.03772 6.18009i 1.00629 1.03001i
\(37\) 2.91560 1.68332i 0.479321 0.276736i −0.240812 0.970572i \(-0.577414\pi\)
0.720134 + 0.693835i \(0.244081\pi\)
\(38\) −3.89289 2.24756i −0.631510 0.364603i
\(39\) 1.40480 11.1732i 0.224948 1.78914i
\(40\) −4.31815 0.497115i −0.682759 0.0786008i
\(41\) 3.51094 0.548317 0.274158 0.961685i \(-0.411601\pi\)
0.274158 + 0.961685i \(0.411601\pi\)
\(42\) 0 0
\(43\) 7.03729i 1.07318i −0.843844 0.536588i \(-0.819713\pi\)
0.843844 0.536588i \(-0.180287\pi\)
\(44\) −9.51983 + 5.49628i −1.43517 + 0.828595i
\(45\) −6.26685 2.39302i −0.934208 0.356730i
\(46\) −3.31424 + 5.74043i −0.488658 + 0.846380i
\(47\) −4.34120 + 2.50639i −0.633229 + 0.365595i −0.782002 0.623276i \(-0.785801\pi\)
0.148772 + 0.988871i \(0.452468\pi\)
\(48\) −2.33980 + 0.985185i −0.337721 + 0.142199i
\(49\) 0 0
\(50\) 3.20459 + 10.5702i 0.453197 + 1.49486i
\(51\) 3.07688 4.05861i 0.430850 0.568319i
\(52\) 9.36219 16.2158i 1.29830 2.24873i
\(53\) 0.967113 1.67509i 0.132843 0.230091i −0.791928 0.610614i \(-0.790923\pi\)
0.924771 + 0.380523i \(0.124256\pi\)
\(54\) 11.3525 1.69693i 1.54488 0.230923i
\(55\) 6.85487 + 5.08477i 0.924310 + 0.685630i
\(56\) 0 0
\(57\) −1.36770 3.24827i −0.181157 0.430244i
\(58\) 4.30944 2.48806i 0.565858 0.326698i
\(59\) 3.96509 6.86774i 0.516211 0.894104i −0.483612 0.875283i \(-0.660675\pi\)
0.999823 0.0188214i \(-0.00599139\pi\)
\(60\) −8.05952 7.71082i −1.04048 0.995462i
\(61\) 11.8342 6.83249i 1.51522 0.874810i 0.515375 0.856965i \(-0.327653\pi\)
0.999841 0.0178455i \(-0.00568070\pi\)
\(62\) 14.7237i 1.86991i
\(63\) 0 0
\(64\) −12.8096 −1.60121
\(65\) −14.4427 1.66267i −1.79139 0.206229i
\(66\) −14.4902 1.82186i −1.78362 0.224255i
\(67\) 9.34121 + 5.39315i 1.14121 + 0.658878i 0.946730 0.322029i \(-0.104365\pi\)
0.194480 + 0.980906i \(0.437698\pi\)
\(68\) 7.33395 4.23426i 0.889372 0.513479i
\(69\) −4.78988 + 2.01681i −0.576634 + 0.242795i
\(70\) 0 0
\(71\) 10.9926i 1.30458i −0.757971 0.652288i \(-0.773809\pi\)
0.757971 0.652288i \(-0.226191\pi\)
\(72\) 5.65016 + 1.44361i 0.665878 + 0.170131i
\(73\) 1.65449 2.86566i 0.193643 0.335400i −0.752812 0.658236i \(-0.771303\pi\)
0.946455 + 0.322836i \(0.104636\pi\)
\(74\) 6.44074 + 3.71856i 0.748721 + 0.432274i
\(75\) −3.00461 + 8.12233i −0.346942 + 0.937886i
\(76\) 5.86030i 0.672223i
\(77\) 0 0
\(78\) 22.9271 9.65357i 2.59598 1.09305i
\(79\) 2.92489 + 5.06605i 0.329075 + 0.569975i 0.982329 0.187164i \(-0.0599296\pi\)
−0.653253 + 0.757140i \(0.726596\pi\)
\(80\) 1.30338 + 3.00720i 0.145723 + 0.336215i
\(81\) 7.89697 + 4.31716i 0.877441 + 0.479684i
\(82\) 3.87795 + 6.71680i 0.428248 + 0.741746i
\(83\) 2.66330i 0.292336i −0.989260 0.146168i \(-0.953306\pi\)
0.989260 0.146168i \(-0.0466939\pi\)
\(84\) 0 0
\(85\) −5.28089 3.91724i −0.572793 0.424884i
\(86\) 13.4631 7.77291i 1.45176 0.838175i
\(87\) 3.87112 + 0.486717i 0.415028 + 0.0521815i
\(88\) −6.42561 3.70983i −0.684972 0.395469i
\(89\) 6.75793 + 11.7051i 0.716339 + 1.24074i 0.962441 + 0.271492i \(0.0875170\pi\)
−0.246101 + 0.969244i \(0.579150\pi\)
\(90\) −2.34385 14.6323i −0.247063 1.54238i
\(91\) 0 0
\(92\) −8.64156 −0.900945
\(93\) −6.97425 + 9.19951i −0.723196 + 0.953944i
\(94\) −9.58999 5.53678i −0.989132 0.571075i
\(95\) −4.17481 + 1.80945i −0.428327 + 0.185646i
\(96\) −9.83524 7.45621i −1.00381 0.760997i
\(97\) −4.46688 −0.453543 −0.226771 0.973948i \(-0.572817\pi\)
−0.226771 + 0.973948i \(0.572817\pi\)
\(98\) 0 0
\(99\) −8.19069 8.00200i −0.823195 0.804231i
\(100\) −9.84529 + 10.5083i −0.984529 + 1.05083i
\(101\) −4.43523 + 7.68205i −0.441322 + 0.764392i −0.997788 0.0664781i \(-0.978824\pi\)
0.556466 + 0.830871i \(0.312157\pi\)
\(102\) 11.1631 + 1.40353i 1.10531 + 0.138970i
\(103\) 0.661216 + 1.14526i 0.0651516 + 0.112846i 0.896761 0.442515i \(-0.145914\pi\)
−0.831610 + 0.555361i \(0.812580\pi\)
\(104\) 12.6384 1.23930
\(105\) 0 0
\(106\) 4.27283 0.415014
\(107\) −1.66222 2.87905i −0.160693 0.278328i 0.774425 0.632666i \(-0.218040\pi\)
−0.935117 + 0.354338i \(0.884706\pi\)
\(108\) 9.31604 + 11.7113i 0.896437 + 1.12692i
\(109\) −6.14927 + 10.6509i −0.588994 + 1.02017i 0.405371 + 0.914152i \(0.367142\pi\)
−0.994365 + 0.106015i \(0.966191\pi\)
\(110\) −2.15628 + 18.7304i −0.205593 + 1.78587i
\(111\) 2.26285 + 5.37423i 0.214780 + 0.510099i
\(112\) 0 0
\(113\) −20.4591 −1.92463 −0.962314 0.271941i \(-0.912334\pi\)
−0.962314 + 0.271941i \(0.912334\pi\)
\(114\) 4.70362 6.20438i 0.440534 0.581094i
\(115\) 2.66820 + 6.15615i 0.248811 + 0.574064i
\(116\) 5.61823 + 3.24369i 0.521640 + 0.301169i
\(117\) 18.8978 + 4.82836i 1.74710 + 0.446382i
\(118\) 17.5183 1.61269
\(119\) 0 0
\(120\) 1.78732 7.31342i 0.163160 0.667620i
\(121\) 1.78441 + 3.09068i 0.162219 + 0.280971i
\(122\) 26.1425 + 15.0934i 2.36683 + 1.36649i
\(123\) −0.758608 + 6.03363i −0.0684014 + 0.544034i
\(124\) −16.6236 + 9.59763i −1.49284 + 0.861893i
\(125\) 10.5259 + 3.76908i 0.941463 + 0.337117i
\(126\) 0 0
\(127\) 0.597329i 0.0530044i −0.999649 0.0265022i \(-0.991563\pi\)
0.999649 0.0265022i \(-0.00843689\pi\)
\(128\) −7.02295 12.1641i −0.620747 1.07517i
\(129\) 12.0937 + 1.52055i 1.06479 + 0.133877i
\(130\) −12.7715 29.4668i −1.12013 2.58441i
\(131\) −2.90591 5.03319i −0.253891 0.439752i 0.710703 0.703492i \(-0.248377\pi\)
−0.964594 + 0.263741i \(0.915044\pi\)
\(132\) −7.38852 17.5476i −0.643088 1.52732i
\(133\) 0 0
\(134\) 23.8276i 2.05839i
\(135\) 5.46653 10.2527i 0.470484 0.882409i
\(136\) 4.95020 + 2.85800i 0.424476 + 0.245071i
\(137\) −0.546844 + 0.947161i −0.0467200 + 0.0809215i −0.888440 0.458993i \(-0.848210\pi\)
0.841720 + 0.539915i \(0.181544\pi\)
\(138\) −9.14894 6.93592i −0.778810 0.590425i
\(139\) 7.35968i 0.624240i −0.950043 0.312120i \(-0.898961\pi\)
0.950043 0.312120i \(-0.101039\pi\)
\(140\) 0 0
\(141\) −3.36929 8.00200i −0.283745 0.673890i
\(142\) 21.0299 12.1416i 1.76479 1.01890i
\(143\) −21.4913 12.4080i −1.79720 1.03761i
\(144\) −1.18750 4.23386i −0.0989585 0.352822i
\(145\) 0.576060 5.00390i 0.0478392 0.415551i
\(146\) 7.30973 0.604958
\(147\) 0 0
\(148\) 9.69579i 0.796989i
\(149\) 9.36993 5.40973i 0.767615 0.443183i −0.0644082 0.997924i \(-0.520516\pi\)
0.832023 + 0.554741i \(0.187183\pi\)
\(150\) −18.8576 + 3.22324i −1.53971 + 0.263177i
\(151\) 4.14799 7.18453i 0.337559 0.584669i −0.646414 0.762987i \(-0.723732\pi\)
0.983973 + 0.178318i \(0.0570655\pi\)
\(152\) 3.42559 1.97777i 0.277852 0.160418i
\(153\) 6.30999 + 6.16463i 0.510132 + 0.498381i
\(154\) 0 0
\(155\) 11.9700 + 8.87905i 0.961454 + 0.713183i
\(156\) 25.8443 + 19.5929i 2.06920 + 1.56868i
\(157\) −2.70593 + 4.68680i −0.215957 + 0.374048i −0.953568 0.301178i \(-0.902620\pi\)
0.737612 + 0.675225i \(0.235954\pi\)
\(158\) −6.46126 + 11.1912i −0.514030 + 0.890326i
\(159\) 2.66971 + 2.02394i 0.211722 + 0.160509i
\(160\) −9.49264 + 12.7972i −0.750459 + 1.01171i
\(161\) 0 0
\(162\) 0.463276 + 19.8762i 0.0363984 + 1.56162i
\(163\) −14.8583 + 8.57846i −1.16379 + 0.671917i −0.952210 0.305443i \(-0.901195\pi\)
−0.211584 + 0.977360i \(0.567862\pi\)
\(164\) −5.05569 + 8.75671i −0.394783 + 0.683784i
\(165\) −10.2194 + 10.6816i −0.795580 + 0.831559i
\(166\) 5.09518 2.94170i 0.395463 0.228320i
\(167\) 9.60588i 0.743325i −0.928368 0.371663i \(-0.878788\pi\)
0.928368 0.371663i \(-0.121212\pi\)
\(168\) 0 0
\(169\) 29.2709 2.25161
\(170\) 1.66117 14.4296i 0.127406 1.10670i
\(171\) 5.87775 1.64858i 0.449483 0.126070i
\(172\) 17.5518 + 10.1336i 1.33832 + 0.772677i
\(173\) 8.80967 5.08627i 0.669787 0.386702i −0.126209 0.992004i \(-0.540281\pi\)
0.795996 + 0.605302i \(0.206948\pi\)
\(174\) 3.34464 + 7.94346i 0.253556 + 0.602192i
\(175\) 0 0
\(176\) 5.59463i 0.421711i
\(177\) 10.9456 + 8.29801i 0.822724 + 0.623716i
\(178\) −14.9287 + 25.8573i −1.11895 + 1.93808i
\(179\) −20.4854 11.8273i −1.53115 0.884011i −0.999309 0.0371678i \(-0.988166\pi\)
−0.531843 0.846843i \(-0.678500\pi\)
\(180\) 14.9926 12.1844i 1.11748 0.908170i
\(181\) 15.6330i 1.16199i 0.813906 + 0.580997i \(0.197337\pi\)
−0.813906 + 0.580997i \(0.802663\pi\)
\(182\) 0 0
\(183\) 9.18476 + 21.8136i 0.678957 + 1.61251i
\(184\) −2.91640 5.05135i −0.215000 0.372391i
\(185\) 6.90717 2.99371i 0.507826 0.220102i
\(186\) −25.3029 3.18134i −1.85530 0.233267i
\(187\) −5.61181 9.71993i −0.410376 0.710792i
\(188\) 14.4366i 1.05290i
\(189\) 0 0
\(190\) −8.07288 5.98826i −0.585668 0.434434i
\(191\) −9.33503 + 5.38958i −0.675459 + 0.389976i −0.798142 0.602470i \(-0.794183\pi\)
0.122683 + 0.992446i \(0.460850\pi\)
\(192\) 2.76778 22.0136i 0.199747 1.58870i
\(193\) −1.59886 0.923104i −0.115089 0.0664465i 0.441351 0.897335i \(-0.354500\pi\)
−0.556439 + 0.830888i \(0.687833\pi\)
\(194\) −4.93381 8.54561i −0.354227 0.613539i
\(195\) 5.97795 24.4607i 0.428090 1.75167i
\(196\) 0 0
\(197\) 8.09941 0.577059 0.288530 0.957471i \(-0.406834\pi\)
0.288530 + 0.957471i \(0.406834\pi\)
\(198\) 6.26180 24.5081i 0.445006 1.74172i
\(199\) −8.74922 5.05137i −0.620216 0.358082i 0.156737 0.987640i \(-0.449902\pi\)
−0.776953 + 0.629559i \(0.783236\pi\)
\(200\) −9.46519 2.20858i −0.669290 0.156170i
\(201\) −11.2866 + 14.8878i −0.796094 + 1.05010i
\(202\) −19.5954 −1.37873
\(203\) 0 0
\(204\) 5.69201 + 13.5184i 0.398521 + 0.946480i
\(205\) 7.79919 + 0.897861i 0.544719 + 0.0627093i
\(206\) −1.46067 + 2.52995i −0.101770 + 0.176270i
\(207\) −2.43098 8.66729i −0.168965 0.602418i
\(208\) −4.76486 8.25298i −0.330383 0.572241i
\(209\) −7.76686 −0.537245
\(210\) 0 0
\(211\) 10.6818 0.735367 0.367684 0.929951i \(-0.380151\pi\)
0.367684 + 0.929951i \(0.380151\pi\)
\(212\) 2.78525 + 4.82419i 0.191292 + 0.331327i
\(213\) 18.8909 + 2.37516i 1.29439 + 0.162743i
\(214\) 3.67195 6.36000i 0.251009 0.434761i
\(215\) 1.79966 15.6326i 0.122736 1.06614i
\(216\) −3.70170 + 9.39800i −0.251869 + 0.639453i
\(217\) 0 0
\(218\) −27.1683 −1.84007
\(219\) 4.56720 + 3.46245i 0.308623 + 0.233971i
\(220\) −22.5529 + 9.77488i −1.52052 + 0.659023i
\(221\) 16.5566 + 9.55898i 1.11372 + 0.643006i
\(222\) −7.78207 + 10.2651i −0.522299 + 0.688947i
\(223\) 4.13183 0.276688 0.138344 0.990384i \(-0.455822\pi\)
0.138344 + 0.990384i \(0.455822\pi\)
\(224\) 0 0
\(225\) −13.3092 6.91848i −0.887280 0.461232i
\(226\) −22.5977 39.1404i −1.50318 2.60358i
\(227\) −6.21430 3.58783i −0.412458 0.238132i 0.279388 0.960178i \(-0.409869\pi\)
−0.691845 + 0.722046i \(0.743202\pi\)
\(228\) 10.0711 + 1.26623i 0.666972 + 0.0838584i
\(229\) −9.05093 + 5.22556i −0.598102 + 0.345315i −0.768295 0.640096i \(-0.778894\pi\)
0.170192 + 0.985411i \(0.445561\pi\)
\(230\) −8.83025 + 11.9042i −0.582250 + 0.784941i
\(231\) 0 0
\(232\) 4.37879i 0.287481i
\(233\) −1.95072 3.37875i −0.127796 0.221349i 0.795026 0.606575i \(-0.207457\pi\)
−0.922822 + 0.385226i \(0.874124\pi\)
\(234\) 11.6360 + 41.4865i 0.760670 + 2.71206i
\(235\) −10.2845 + 4.45751i −0.670886 + 0.290776i
\(236\) 11.4193 + 19.7788i 0.743334 + 1.28749i
\(237\) −9.33810 + 3.93186i −0.606574 + 0.255402i
\(238\) 0 0
\(239\) 23.7873i 1.53867i −0.638844 0.769336i \(-0.720587\pi\)
0.638844 0.769336i \(-0.279413\pi\)
\(240\) −5.44956 + 1.59013i −0.351768 + 0.102642i
\(241\) −11.5030 6.64126i −0.740974 0.427801i 0.0814495 0.996677i \(-0.474045\pi\)
−0.822423 + 0.568876i \(0.807378\pi\)
\(242\) −3.94187 + 6.82752i −0.253393 + 0.438889i
\(243\) −9.12542 + 12.6383i −0.585396 + 0.810747i
\(244\) 39.3546i 2.51942i
\(245\) 0 0
\(246\) −12.3809 + 5.21303i −0.789375 + 0.332371i
\(247\) 11.4574 6.61492i 0.729015 0.420897i
\(248\) −11.2204 6.47812i −0.712498 0.411361i
\(249\) 4.57694 + 0.575459i 0.290052 + 0.0364682i
\(250\) 4.41551 + 24.3002i 0.279261 + 1.53688i
\(251\) 9.12747 0.576121 0.288060 0.957612i \(-0.406990\pi\)
0.288060 + 0.957612i \(0.406990\pi\)
\(252\) 0 0
\(253\) 11.4530i 0.720041i
\(254\) 1.14275 0.659769i 0.0717027 0.0413976i
\(255\) 7.87289 8.22893i 0.493020 0.515315i
\(256\) 2.70450 4.68433i 0.169031 0.292770i
\(257\) 5.79051 3.34315i 0.361202 0.208540i −0.308406 0.951255i \(-0.599795\pi\)
0.669608 + 0.742715i \(0.266462\pi\)
\(258\) 10.4489 + 24.8161i 0.650523 + 1.54498i
\(259\) 0 0
\(260\) 24.9440 33.6275i 1.54696 2.08549i
\(261\) −1.67287 + 6.54744i −0.103548 + 0.405277i
\(262\) 6.41935 11.1186i 0.396588 0.686911i
\(263\) 12.0642 20.8958i 0.743908 1.28849i −0.206795 0.978384i \(-0.566303\pi\)
0.950703 0.310103i \(-0.100363\pi\)
\(264\) 7.76379 10.2410i 0.477828 0.630288i
\(265\) 2.57672 3.47371i 0.158286 0.213389i
\(266\) 0 0
\(267\) −21.5756 + 9.08453i −1.32041 + 0.555964i
\(268\) −26.9023 + 15.5321i −1.64332 + 0.948771i
\(269\) −9.50393 + 16.4613i −0.579465 + 1.00366i 0.416076 + 0.909330i \(0.363405\pi\)
−0.995541 + 0.0943328i \(0.969928\pi\)
\(270\) 25.6524 0.866351i 1.56115 0.0527244i
\(271\) 10.2612 5.92429i 0.623321 0.359875i −0.154840 0.987940i \(-0.549486\pi\)
0.778161 + 0.628065i \(0.216153\pi\)
\(272\) 4.31002i 0.261334i
\(273\) 0 0
\(274\) −2.41603 −0.145957
\(275\) 13.9270 + 13.0483i 0.839832 + 0.786842i
\(276\) 1.86718 14.8507i 0.112391 0.893907i
\(277\) −14.3051 8.25906i −0.859511 0.496239i 0.00433762 0.999991i \(-0.498619\pi\)
−0.863848 + 0.503752i \(0.831953\pi\)
\(278\) 14.0798 8.12900i 0.844452 0.487545i
\(279\) −14.3026 13.9731i −0.856275 0.836550i
\(280\) 0 0
\(281\) 10.1076i 0.602968i 0.953471 + 0.301484i \(0.0974820\pi\)
−0.953471 + 0.301484i \(0.902518\pi\)
\(282\) 11.5872 15.2843i 0.690007 0.910165i
\(283\) 3.00101 5.19791i 0.178392 0.308984i −0.762938 0.646472i \(-0.776244\pi\)
0.941330 + 0.337488i \(0.109577\pi\)
\(284\) 27.4167 + 15.8291i 1.62688 + 0.939282i
\(285\) −2.20753 7.56547i −0.130763 0.448140i
\(286\) 54.8203i 3.24159i
\(287\) 0 0
\(288\) 14.9388 15.2910i 0.880275 0.901031i
\(289\) −4.17674 7.23433i −0.245691 0.425549i
\(290\) 10.2093 4.42490i 0.599508 0.259839i
\(291\) 0.965157 7.67642i 0.0565785 0.450000i
\(292\) 4.76486 + 8.25298i 0.278842 + 0.482969i
\(293\) 3.55369i 0.207609i 0.994598 + 0.103805i \(0.0331016\pi\)
−0.994598 + 0.103805i \(0.966898\pi\)
\(294\) 0 0
\(295\) 10.5643 14.2420i 0.615080 0.829200i
\(296\) −5.66760 + 3.27219i −0.329422 + 0.190192i
\(297\) 15.5214 12.3469i 0.900641 0.716438i
\(298\) 20.6988 + 11.9504i 1.19905 + 0.692271i
\(299\) −9.75431 16.8950i −0.564106 0.977061i
\(300\) −15.9315 19.1899i −0.919805 1.10793i
\(301\) 0 0
\(302\) 18.3264 1.05456
\(303\) −12.2434 9.28190i −0.703367 0.533231i
\(304\) −2.58299 1.49129i −0.148145 0.0855314i
\(305\) 28.0358 12.1513i 1.60532 0.695780i
\(306\) −4.82400 + 18.8807i −0.275770 + 1.07934i
\(307\) 29.0345 1.65709 0.828544 0.559923i \(-0.189169\pi\)
0.828544 + 0.559923i \(0.189169\pi\)
\(308\) 0 0
\(309\) −2.11102 + 0.888858i −0.120092 + 0.0505654i
\(310\) −3.76531 + 32.7071i −0.213855 + 1.85764i
\(311\) 4.32216 7.48620i 0.245087 0.424503i −0.717069 0.697002i \(-0.754517\pi\)
0.962156 + 0.272499i \(0.0878501\pi\)
\(312\) −2.73078 + 21.7194i −0.154600 + 1.22962i
\(313\) 5.42607 + 9.39824i 0.306700 + 0.531220i 0.977638 0.210293i \(-0.0674419\pi\)
−0.670938 + 0.741513i \(0.734109\pi\)
\(314\) −11.9551 −0.674667
\(315\) 0 0
\(316\) −16.8471 −0.947724
\(317\) −4.67046 8.08947i −0.262319 0.454350i 0.704539 0.709665i \(-0.251154\pi\)
−0.966858 + 0.255316i \(0.917821\pi\)
\(318\) −0.923229 + 7.34294i −0.0517721 + 0.411772i
\(319\) 4.29897 7.44604i 0.240696 0.416898i
\(320\) −28.4553 3.27584i −1.59070 0.183125i
\(321\) 5.30686 2.23448i 0.296200 0.124717i
\(322\) 0 0
\(323\) 5.98348 0.332930
\(324\) −22.1390 + 13.4794i −1.22994 + 0.748853i
\(325\) −31.6576 7.38690i −1.75605 0.409752i
\(326\) −32.8230 18.9504i −1.81790 1.04956i
\(327\) −16.9750 12.8690i −0.938722 0.711656i
\(328\) −6.82488 −0.376841
\(329\) 0 0
\(330\) −31.7226 7.75268i −1.74627 0.426771i
\(331\) −1.45459 2.51942i −0.0799515 0.138480i 0.823277 0.567639i \(-0.192143\pi\)
−0.903229 + 0.429159i \(0.858810\pi\)
\(332\) 6.64260 + 3.83511i 0.364560 + 0.210479i
\(333\) −9.72466 + 2.72755i −0.532908 + 0.149469i
\(334\) 18.3771 10.6100i 1.00555 0.580553i
\(335\) 19.3713 + 14.3692i 1.05837 + 0.785071i
\(336\) 0 0
\(337\) 15.2910i 0.832954i −0.909146 0.416477i \(-0.863265\pi\)
0.909146 0.416477i \(-0.136735\pi\)
\(338\) 32.3307 + 55.9983i 1.75856 + 3.04591i
\(339\) 4.42059 35.1593i 0.240093 1.90959i
\(340\) 17.3744 7.53043i 0.942261 0.408395i
\(341\) 12.7201 + 22.0318i 0.688830 + 1.19309i
\(342\) 9.64606 + 9.42384i 0.521599 + 0.509583i
\(343\) 0 0
\(344\) 13.6797i 0.737561i
\(345\) −11.1560 + 3.25520i −0.600618 + 0.175254i
\(346\) 19.4611 + 11.2359i 1.04624 + 0.604045i
\(347\) −15.7892 + 27.3477i −0.847609 + 1.46810i 0.0357279 + 0.999362i \(0.488625\pi\)
−0.883336 + 0.468739i \(0.844708\pi\)
\(348\) −6.78827 + 8.95418i −0.363890 + 0.479995i
\(349\) 8.25024i 0.441625i −0.975316 0.220813i \(-0.929129\pi\)
0.975316 0.220813i \(-0.0708709\pi\)
\(350\) 0 0
\(351\) −12.3809 + 31.4329i −0.660842 + 1.67777i
\(352\) −23.5543 + 13.5991i −1.25545 + 0.724834i
\(353\) 3.71360 + 2.14405i 0.197655 + 0.114116i 0.595561 0.803310i \(-0.296930\pi\)
−0.397906 + 0.917426i \(0.630263\pi\)
\(354\) −3.78517 + 30.1055i −0.201180 + 1.60009i
\(355\) 2.81115 24.4188i 0.149200 1.29602i
\(356\) −38.9252 −2.06303
\(357\) 0 0
\(358\) 52.2543i 2.76173i
\(359\) 6.17938 3.56767i 0.326135 0.188294i −0.327989 0.944682i \(-0.606371\pi\)
0.654124 + 0.756387i \(0.273037\pi\)
\(360\) 12.1821 + 4.65176i 0.642052 + 0.245169i
\(361\) −7.42968 + 12.8686i −0.391036 + 0.677294i
\(362\) −29.9076 + 17.2672i −1.57191 + 0.907542i
\(363\) −5.69696 + 2.39874i −0.299013 + 0.125901i
\(364\) 0 0
\(365\) 4.40811 5.94265i 0.230731 0.311053i
\(366\) −31.5869 + 41.6653i −1.65107 + 2.17788i
\(367\) 12.1957 21.1235i 0.636609 1.10264i −0.349563 0.936913i \(-0.613670\pi\)
0.986172 0.165726i \(-0.0529969\pi\)
\(368\) −2.19905 + 3.80886i −0.114633 + 0.198551i
\(369\) −10.2050 2.60737i −0.531251 0.135734i
\(370\) 13.3565 + 9.90750i 0.694370 + 0.515067i
\(371\) 0 0
\(372\) −12.9019 30.6417i −0.668931 1.58870i
\(373\) 19.0999 11.0273i 0.988956 0.570974i 0.0839940 0.996466i \(-0.473232\pi\)
0.904962 + 0.425492i \(0.139899\pi\)
\(374\) 12.3968 21.4719i 0.641025 1.11029i
\(375\) −8.75157 + 17.2745i −0.451929 + 0.892054i
\(376\) 8.43881 4.87215i 0.435199 0.251262i
\(377\) 14.6455i 0.754280i
\(378\) 0 0
\(379\) 1.15801 0.0594828 0.0297414 0.999558i \(-0.490532\pi\)
0.0297414 + 0.999558i \(0.490532\pi\)
\(380\) 1.49867 13.0181i 0.0768800 0.667812i
\(381\) 1.02652 + 0.129065i 0.0525903 + 0.00661218i
\(382\) −20.6217 11.9059i −1.05510 0.609160i
\(383\) 1.84403 1.06465i 0.0942255 0.0544011i −0.452147 0.891944i \(-0.649342\pi\)
0.546372 + 0.837542i \(0.316008\pi\)
\(384\) 22.4217 9.44079i 1.14420 0.481773i
\(385\) 0 0
\(386\) 4.07839i 0.207585i
\(387\) −5.22618 + 20.4548i −0.265662 + 1.03978i
\(388\) 6.43222 11.1409i 0.326546 0.565595i
\(389\) −20.9207 12.0785i −1.06072 0.612406i −0.135088 0.990834i \(-0.543132\pi\)
−0.925631 + 0.378427i \(0.876465\pi\)
\(390\) 53.3988 15.5812i 2.70395 0.788985i
\(391\) 8.82320i 0.446208i
\(392\) 0 0
\(393\) 9.27752 3.90635i 0.467989 0.197049i
\(394\) 8.94606 + 15.4950i 0.450696 + 0.780628i
\(395\) 5.20178 + 12.0017i 0.261730 + 0.603871i
\(396\) 31.7524 8.90582i 1.59562 0.447534i
\(397\) −6.00792 10.4060i −0.301529 0.522263i 0.674954 0.737860i \(-0.264164\pi\)
−0.976482 + 0.215597i \(0.930830\pi\)
\(398\) 22.3176i 1.11868i
\(399\) 0 0
\(400\) 2.12629 + 7.01351i 0.106315 + 0.350675i
\(401\) −26.6997 + 15.4151i −1.33332 + 0.769792i −0.985807 0.167883i \(-0.946307\pi\)
−0.347513 + 0.937675i \(0.612974\pi\)
\(402\) −40.9482 5.14842i −2.04231 0.256780i
\(403\) −37.5283 21.6670i −1.86942 1.07931i
\(404\) −12.7733 22.1240i −0.635495 1.10071i
\(405\) 16.4383 + 11.6096i 0.816824 + 0.576887i
\(406\) 0 0
\(407\) 12.8502 0.636959
\(408\) −5.98112 + 7.88949i −0.296109 + 0.390588i
\(409\) 13.5699 + 7.83456i 0.670986 + 0.387394i 0.796450 0.604704i \(-0.206709\pi\)
−0.125464 + 0.992098i \(0.540042\pi\)
\(410\) 6.89675 + 15.9124i 0.340606 + 0.785857i
\(411\) −1.50956 1.14442i −0.0744611 0.0564498i
\(412\) −3.80855 −0.187634
\(413\) 0 0
\(414\) 13.8963 14.2240i 0.682968 0.699072i
\(415\) 0.681092 5.91625i 0.0334335 0.290417i
\(416\) 23.1643 40.1217i 1.13572 1.96713i
\(417\) 12.6478 + 1.59020i 0.619363 + 0.0778726i
\(418\) −8.57874 14.8588i −0.419600 0.726769i
\(419\) −19.5975 −0.957399 −0.478699 0.877979i \(-0.658892\pi\)
−0.478699 + 0.877979i \(0.658892\pi\)
\(420\) 0 0
\(421\) −32.5791 −1.58781 −0.793903 0.608044i \(-0.791954\pi\)
−0.793903 + 0.608044i \(0.791954\pi\)
\(422\) 11.7984 + 20.4355i 0.574338 + 0.994782i
\(423\) 14.4796 4.06120i 0.704023 0.197462i
\(424\) −1.87996 + 3.25619i −0.0912990 + 0.158134i
\(425\) −10.7292 10.0522i −0.520442 0.487605i
\(426\) 16.3217 + 38.7638i 0.790789 + 1.87811i
\(427\) 0 0
\(428\) 9.57425 0.462789
\(429\) 25.9671 34.2523i 1.25370 1.65372i
\(430\) 31.8946 13.8238i 1.53809 0.666642i
\(431\) −24.1528 13.9447i −1.16340 0.671690i −0.211285 0.977425i \(-0.567765\pi\)
−0.952117 + 0.305734i \(0.901098\pi\)
\(432\) 7.53256 1.12594i 0.362410 0.0541717i
\(433\) −3.47350 −0.166926 −0.0834629 0.996511i \(-0.526598\pi\)
−0.0834629 + 0.996511i \(0.526598\pi\)
\(434\) 0 0
\(435\) 8.47483 + 2.07116i 0.406337 + 0.0993046i
\(436\) −17.7097 30.6740i −0.848139 1.46902i
\(437\) −5.28774 3.05288i −0.252947 0.146039i
\(438\) −1.57941 + 12.5619i −0.0754672 + 0.600232i
\(439\) −3.41910 + 1.97402i −0.163185 + 0.0942147i −0.579368 0.815066i \(-0.696701\pi\)
0.416184 + 0.909281i \(0.363367\pi\)
\(440\) −13.3251 9.88423i −0.635249 0.471212i
\(441\) 0 0
\(442\) 42.2328i 2.00881i
\(443\) −8.01539 13.8831i −0.380823 0.659604i 0.610357 0.792126i \(-0.291026\pi\)
−0.991180 + 0.132522i \(0.957693\pi\)
\(444\) −16.6624 2.09497i −0.790764 0.0994227i
\(445\) 12.0187 + 27.7298i 0.569740 + 1.31452i
\(446\) 4.56373 + 7.90462i 0.216099 + 0.374295i
\(447\) 7.27218 + 17.2713i 0.343962 + 0.816905i
\(448\) 0 0
\(449\) 21.1001i 0.995777i −0.867241 0.497889i \(-0.834109\pi\)
0.867241 0.497889i \(-0.165891\pi\)
\(450\) −1.46466 33.1036i −0.0690447 1.56052i
\(451\) 11.6056 + 6.70048i 0.546485 + 0.315513i
\(452\) 29.4607 51.0274i 1.38571 2.40013i
\(453\) 11.4505 + 8.68077i 0.537992 + 0.407858i
\(454\) 15.8515i 0.743947i
\(455\) 0 0
\(456\) 2.65867 + 6.31429i 0.124503 + 0.295694i
\(457\) −8.31969 + 4.80338i −0.389179 + 0.224692i −0.681804 0.731535i \(-0.738804\pi\)
0.292625 + 0.956227i \(0.405471\pi\)
\(458\) −19.9941 11.5436i −0.934262 0.539397i
\(459\) −11.9574 + 9.51186i −0.558126 + 0.443975i
\(460\) −19.1963 2.20993i −0.895034 0.103038i
\(461\) −24.5367 −1.14279 −0.571393 0.820676i \(-0.693597\pi\)
−0.571393 + 0.820676i \(0.693597\pi\)
\(462\) 0 0
\(463\) 14.5875i 0.677937i 0.940798 + 0.338968i \(0.110078\pi\)
−0.940798 + 0.338968i \(0.889922\pi\)
\(464\) 2.85938 1.65086i 0.132743 0.0766395i
\(465\) −17.8452 + 18.6522i −0.827551 + 0.864975i
\(466\) 4.30927 7.46387i 0.199623 0.345757i
\(467\) −15.5179 + 8.95926i −0.718083 + 0.414585i −0.814047 0.580800i \(-0.802740\pi\)
0.0959639 + 0.995385i \(0.469407\pi\)
\(468\) −39.2549 + 40.1805i −1.81456 + 1.85735i
\(469\) 0 0
\(470\) −19.8872 14.7519i −0.917330 0.680452i
\(471\) −7.46970 5.66287i −0.344186 0.260931i
\(472\) −7.70770 + 13.3501i −0.354776 + 0.614490i
\(473\) 13.4304 23.2621i 0.617529 1.06959i
\(474\) −17.8363 13.5219i −0.819247 0.621081i
\(475\) −9.73665 + 2.95187i −0.446748 + 0.135441i
\(476\) 0 0
\(477\) −4.05503 + 4.15064i −0.185667 + 0.190045i
\(478\) 45.5076 26.2738i 2.08147 1.20174i
\(479\) 1.48248 2.56774i 0.0677364 0.117323i −0.830168 0.557513i \(-0.811756\pi\)
0.897905 + 0.440190i \(0.145089\pi\)
\(480\) −19.9412 19.0784i −0.910186 0.870805i
\(481\) −18.9561 + 10.9443i −0.864322 + 0.499017i
\(482\) 29.3419i 1.33649i
\(483\) 0 0
\(484\) −10.2780 −0.467184
\(485\) −9.92271 1.14232i −0.450567 0.0518703i
\(486\) −34.2577 3.49849i −1.55396 0.158695i
\(487\) 28.8004 + 16.6279i 1.30507 + 0.753482i 0.981269 0.192644i \(-0.0617061\pi\)
0.323800 + 0.946125i \(0.395039\pi\)
\(488\) −23.0044 + 13.2816i −1.04136 + 0.601230i
\(489\) −11.5318 27.3879i −0.521487 1.23852i
\(490\) 0 0
\(491\) 25.4892i 1.15031i 0.818043 + 0.575157i \(0.195059\pi\)
−0.818043 + 0.575157i \(0.804941\pi\)
\(492\) −13.9562 10.5804i −0.629194 0.477000i
\(493\) −3.31187 + 5.73632i −0.149159 + 0.258351i
\(494\) 25.3101 + 14.6128i 1.13875 + 0.657460i
\(495\) −16.1484 19.8702i −0.725816 0.893101i
\(496\) 9.76937i 0.438658i
\(497\) 0 0
\(498\) 3.95447 + 9.39179i 0.177204 + 0.420856i
\(499\) 16.8358 + 29.1604i 0.753673 + 1.30540i 0.946031 + 0.324076i \(0.105053\pi\)
−0.192358 + 0.981325i \(0.561613\pi\)
\(500\) −24.5576 + 20.8254i −1.09825 + 0.931339i
\(501\) 16.5079 + 2.07554i 0.737519 + 0.0927283i
\(502\) 10.0816 + 17.4618i 0.449963 + 0.779358i
\(503\) 35.2418i 1.57135i −0.618637 0.785677i \(-0.712315\pi\)
0.618637 0.785677i \(-0.287685\pi\)
\(504\) 0 0
\(505\) −11.8170 + 15.9306i −0.525848 + 0.708904i
\(506\) −21.9107 + 12.6502i −0.974050 + 0.562368i
\(507\) −6.32456 + 50.3027i −0.280884 + 2.23402i
\(508\) 1.48981 + 0.860142i 0.0660996 + 0.0381626i
\(509\) 11.5914 + 20.0770i 0.513782 + 0.889896i 0.999872 + 0.0159875i \(0.00508920\pi\)
−0.486090 + 0.873908i \(0.661577\pi\)
\(510\) 24.4387 + 5.97256i 1.08216 + 0.264469i
\(511\) 0 0
\(512\) −16.1430 −0.713426
\(513\) 1.56311 + 10.4572i 0.0690129 + 0.461698i
\(514\) 12.7916 + 7.38523i 0.564213 + 0.325749i
\(515\) 1.17594 + 2.71317i 0.0518183 + 0.119557i
\(516\) −21.2072 + 27.9737i −0.933593 + 1.23147i
\(517\) −19.1334 −0.841484
\(518\) 0 0
\(519\) 6.83735 + 16.2386i 0.300126 + 0.712795i
\(520\) 28.0749 + 3.23205i 1.23117 + 0.141735i
\(521\) −7.18762 + 12.4493i −0.314895 + 0.545415i −0.979415 0.201856i \(-0.935303\pi\)
0.664520 + 0.747271i \(0.268636\pi\)
\(522\) −14.3737 + 4.03149i −0.629119 + 0.176454i
\(523\) 12.6242 + 21.8658i 0.552018 + 0.956124i 0.998129 + 0.0611461i \(0.0194755\pi\)
−0.446110 + 0.894978i \(0.647191\pi\)
\(524\) 16.7378 0.731195
\(525\) 0 0
\(526\) 53.3010 2.32403
\(527\) −9.79936 16.9730i −0.426867 0.739355i
\(528\) −9.61448 1.20883i −0.418417 0.0526075i
\(529\) 6.99825 12.1213i 0.304272 0.527014i
\(530\) 9.49164 + 1.09270i 0.412291 + 0.0474638i
\(531\) −16.6253 + 17.0173i −0.721477 + 0.738489i
\(532\) 0 0
\(533\) −22.8268 −0.988737
\(534\) −41.2106 31.2422i −1.78336 1.35198i
\(535\) −2.95618 6.82059i −0.127807 0.294880i
\(536\) −18.1583 10.4837i −0.784318 0.452826i
\(537\) 24.7517 32.6491i 1.06811 1.40891i
\(538\) −41.9896 −1.81030
\(539\) 0 0
\(540\) 17.6997 + 28.3978i 0.761673 + 1.22205i
\(541\) −7.88973 13.6654i −0.339206 0.587522i 0.645078 0.764117i \(-0.276825\pi\)
−0.984284 + 0.176595i \(0.943492\pi\)
\(542\) 22.6676 + 13.0871i 0.973655 + 0.562140i
\(543\) −26.8657 3.37782i −1.15292 0.144956i
\(544\) 18.1459 10.4766i 0.778000 0.449179i
\(545\) −16.3837 + 22.0872i −0.701802 + 0.946112i
\(546\) 0 0
\(547\) 8.23195i 0.351973i 0.984393 + 0.175986i \(0.0563115\pi\)
−0.984393 + 0.175986i \(0.943689\pi\)
\(548\) −1.57489 2.72779i −0.0672759 0.116525i
\(549\) −39.4717 + 11.0709i −1.68461 + 0.472496i
\(550\) −9.57991 + 41.0561i −0.408489 + 1.75064i
\(551\) 2.29185 + 3.96960i 0.0976360 + 0.169111i
\(552\) 9.31100 3.92045i 0.396303 0.166865i
\(553\) 0 0
\(554\) 36.4896i 1.55029i
\(555\) 3.65232 + 12.5170i 0.155032 + 0.531316i
\(556\) 18.3559 + 10.5978i 0.778464 + 0.449446i
\(557\) 14.4676 25.0586i 0.613011 1.06177i −0.377719 0.925920i \(-0.623292\pi\)
0.990730 0.135845i \(-0.0433750\pi\)
\(558\) 10.9344 42.7962i 0.462889 1.81171i
\(559\) 45.7537i 1.93518i
\(560\) 0 0
\(561\) 17.9164 7.54382i 0.756433 0.318500i
\(562\) −19.3369 + 11.1641i −0.815677 + 0.470931i
\(563\) 5.39368 + 3.11404i 0.227316 + 0.131241i 0.609333 0.792914i \(-0.291437\pi\)
−0.382017 + 0.924155i \(0.624770\pi\)
\(564\) 24.8097 + 3.11932i 1.04467 + 0.131347i
\(565\) −45.4477 5.23204i −1.91200 0.220114i
\(566\) 13.2589 0.557312
\(567\) 0 0
\(568\) 21.3683i 0.896594i
\(569\) −8.56862 + 4.94710i −0.359215 + 0.207393i −0.668736 0.743500i \(-0.733165\pi\)
0.309521 + 0.950893i \(0.399831\pi\)
\(570\) 12.0353 12.5795i 0.504102 0.526899i
\(571\) −9.60472 + 16.6359i −0.401945 + 0.696189i −0.993961 0.109737i \(-0.964999\pi\)
0.592015 + 0.805927i \(0.298332\pi\)
\(572\) 61.8942 35.7347i 2.58793 1.49414i
\(573\) −7.24509 17.2070i −0.302668 0.718831i
\(574\) 0 0
\(575\) 4.35281 + 14.3576i 0.181525 + 0.598753i
\(576\) 37.2329 + 9.51296i 1.55137 + 0.396373i
\(577\) −19.0377 + 32.9742i −0.792549 + 1.37273i 0.131835 + 0.991272i \(0.457913\pi\)
−0.924384 + 0.381463i \(0.875420\pi\)
\(578\) 9.22669 15.9811i 0.383780 0.664726i
\(579\) 1.93184 2.54823i 0.0802845 0.105901i
\(580\) 11.6508 + 8.64228i 0.483773 + 0.358851i
\(581\) 0 0
\(582\) 15.7519 6.63241i 0.652935 0.274922i
\(583\) 6.39367 3.69139i 0.264799 0.152882i
\(584\) −3.21614 + 5.57052i −0.133085 + 0.230510i
\(585\) 40.7446 + 15.5585i 1.68458 + 0.643263i
\(586\) −6.79859 + 3.92517i −0.280847 + 0.162147i
\(587\) 11.9232i 0.492124i 0.969254 + 0.246062i \(0.0791367\pi\)
−0.969254 + 0.246062i \(0.920863\pi\)
\(588\) 0 0
\(589\) −13.5625 −0.558835
\(590\) 38.9151 + 4.47999i 1.60211 + 0.184438i
\(591\) −1.75004 + 13.9190i −0.0719869 + 0.572552i
\(592\) 4.27353 + 2.46732i 0.175641 + 0.101406i
\(593\) −14.5994 + 8.42896i −0.599525 + 0.346136i −0.768855 0.639424i \(-0.779173\pi\)
0.169330 + 0.985559i \(0.445840\pi\)
\(594\) 40.7647 + 16.0565i 1.67260 + 0.658806i
\(595\) 0 0
\(596\) 31.1596i 1.27635i
\(597\) 10.5713 13.9443i 0.432655 0.570701i
\(598\) 21.5479 37.3220i 0.881159 1.52621i
\(599\) −11.7736 6.79751i −0.481058 0.277739i 0.239800 0.970822i \(-0.422918\pi\)
−0.720857 + 0.693084i \(0.756252\pi\)
\(600\) 5.84063 15.7889i 0.238443 0.644580i
\(601\) 46.2155i 1.88517i −0.333966 0.942585i \(-0.608387\pi\)
0.333966 0.942585i \(-0.391613\pi\)
\(602\) 0 0
\(603\) −23.1462 22.6130i −0.942588 0.920874i
\(604\) 11.9461 + 20.6912i 0.486078 + 0.841912i
\(605\) 3.17349 + 7.32196i 0.129021 + 0.297680i
\(606\) 4.23398 33.6751i 0.171994 1.36796i
\(607\) 4.37164 + 7.57190i 0.177439 + 0.307334i 0.941003 0.338399i \(-0.109885\pi\)
−0.763563 + 0.645733i \(0.776552\pi\)
\(608\) 14.4998i 0.588044i
\(609\) 0 0
\(610\) 54.2130 + 40.2139i 2.19502 + 1.62821i
\(611\) 28.2248 16.2956i 1.14185 0.659249i
\(612\) −24.4616 + 6.86092i −0.988801 + 0.277336i
\(613\) 21.0938 + 12.1785i 0.851970 + 0.491885i 0.861315 0.508071i \(-0.169641\pi\)
−0.00934480 + 0.999956i \(0.502975\pi\)
\(614\) 32.0696 + 55.5461i 1.29422 + 2.24166i
\(615\) −3.22816 + 13.2091i −0.130172 + 0.532641i
\(616\) 0 0
\(617\) 25.3125 1.01904 0.509522 0.860458i \(-0.329822\pi\)
0.509522 + 0.860458i \(0.329822\pi\)
\(618\) −4.03217 3.05684i −0.162198 0.122964i
\(619\) 26.2018 + 15.1276i 1.05314 + 0.608029i 0.923526 0.383535i \(-0.125294\pi\)
0.129612 + 0.991565i \(0.458627\pi\)
\(620\) −39.3820 + 17.0690i −1.58162 + 0.685506i
\(621\) 15.4202 2.30495i 0.618790 0.0924944i
\(622\) 19.0958 0.765673
\(623\) 0 0
\(624\) 15.2125 6.40529i 0.608986 0.256417i
\(625\) 22.4183 + 11.0644i 0.896730 + 0.442577i
\(626\) −11.9865 + 20.7613i −0.479079 + 0.829788i
\(627\) 1.67818 13.3475i 0.0670202 0.533048i
\(628\) −7.79296 13.4978i −0.310973 0.538621i
\(629\) −9.89959 −0.394723
\(630\) 0 0
\(631\) −5.90652 −0.235135 −0.117568 0.993065i \(-0.537510\pi\)
−0.117568 + 0.993065i \(0.537510\pi\)
\(632\) −5.68566 9.84784i −0.226163 0.391726i
\(633\) −2.30802 + 18.3569i −0.0917355 + 0.729623i
\(634\) 10.3173 17.8701i 0.409754 0.709714i
\(635\) 0.152756 1.32690i 0.00606194 0.0526566i
\(636\) −8.89228 + 3.74415i −0.352602 + 0.148465i
\(637\) 0 0
\(638\) 18.9934 0.751956
\(639\) −8.16352 + 31.9513i −0.322944 + 1.26397i
\(640\) −12.4900 28.8173i −0.493711 1.13910i
\(641\) 0.111457 + 0.0643495i 0.00440227 + 0.00254165i 0.502200 0.864752i \(-0.332524\pi\)
−0.497797 + 0.867293i \(0.665858\pi\)
\(642\) 10.1364 + 7.68452i 0.400052 + 0.303284i
\(643\) −0.150563 −0.00593763 −0.00296881 0.999996i \(-0.500945\pi\)
−0.00296881 + 0.999996i \(0.500945\pi\)
\(644\) 0 0
\(645\) 26.4761 + 6.47049i 1.04250 + 0.254775i
\(646\) 6.60894 + 11.4470i 0.260025 + 0.450377i
\(647\) −35.8147 20.6776i −1.40802 0.812920i −0.412822 0.910812i \(-0.635457\pi\)
−0.995197 + 0.0978912i \(0.968790\pi\)
\(648\) −15.3508 8.39208i −0.603038 0.329672i
\(649\) 26.2136 15.1344i 1.02897 0.594078i
\(650\) −20.8350 68.7235i −0.817214 2.69556i
\(651\) 0 0
\(652\) 49.4113i 1.93509i
\(653\) −14.7304 25.5138i −0.576446 0.998433i −0.995883 0.0906487i \(-0.971106\pi\)
0.419437 0.907784i \(-0.362227\pi\)
\(654\) 5.87024 46.6892i 0.229545 1.82569i
\(655\) −5.16804 11.9238i −0.201932 0.465903i
\(656\) 2.57308 + 4.45670i 0.100462 + 0.174005i
\(657\) −6.93713 + 7.10071i −0.270643 + 0.277025i
\(658\) 0 0
\(659\) 22.4678i 0.875220i 0.899165 + 0.437610i \(0.144175\pi\)
−0.899165 + 0.437610i \(0.855825\pi\)
\(660\) −11.9253 40.8697i −0.464193 1.59085i
\(661\) 20.3164 + 11.7297i 0.790218 + 0.456233i 0.840039 0.542526i \(-0.182532\pi\)
−0.0498213 + 0.998758i \(0.515865\pi\)
\(662\) 3.21328 5.56557i 0.124888 0.216312i
\(663\) −20.0047 + 26.3875i −0.776918 + 1.02481i
\(664\) 5.17717i 0.200913i
\(665\) 0 0
\(666\) −15.9593 15.5916i −0.618409 0.604163i
\(667\) 5.85354 3.37954i 0.226650 0.130856i
\(668\) 23.9582 + 13.8323i 0.926971 + 0.535187i
\(669\) −0.892762 + 7.10063i −0.0345162 + 0.274526i
\(670\) −6.09349 + 52.9306i −0.235412 + 2.04489i
\(671\) 52.1580 2.01354
\(672\) 0 0
\(673\) 44.5504i 1.71729i 0.512570 + 0.858645i \(0.328693\pi\)
−0.512570 + 0.858645i \(0.671307\pi\)
\(674\) 29.2533 16.8894i 1.12680 0.650555i
\(675\) 14.7653 21.3773i 0.568315 0.822811i
\(676\) −42.1496 + 73.0052i −1.62114 + 2.80789i
\(677\) −39.5783 + 22.8505i −1.52112 + 0.878217i −0.521427 + 0.853296i \(0.674600\pi\)
−0.999689 + 0.0249214i \(0.992066\pi\)
\(678\) 72.1462 30.3776i 2.77076 1.16664i
\(679\) 0 0
\(680\) 10.2655 + 7.61467i 0.393663 + 0.292009i
\(681\) 7.50848 9.90418i 0.287725 0.379529i
\(682\) −28.0994 + 48.6697i −1.07598 + 1.86366i
\(683\) −19.3444 + 33.5055i −0.740192 + 1.28205i 0.212215 + 0.977223i \(0.431932\pi\)
−0.952407 + 0.304828i \(0.901401\pi\)
\(684\) −4.35210 + 17.0337i −0.166407 + 0.651300i
\(685\) −1.45698 + 1.96418i −0.0556682 + 0.0750473i
\(686\) 0 0
\(687\) −7.02460 16.6833i −0.268005 0.636508i
\(688\) 8.93296 5.15745i 0.340566 0.196626i
\(689\) −6.28779 + 10.8908i −0.239546 + 0.414905i
\(690\) −18.5497 17.7471i −0.706175 0.675621i
\(691\) 16.6768 9.62834i 0.634415 0.366279i −0.148045 0.988981i \(-0.547298\pi\)
0.782460 + 0.622701i \(0.213965\pi\)
\(692\) 29.2965i 1.11369i
\(693\) 0 0
\(694\) −69.7587 −2.64800
\(695\) 1.88211 16.3488i 0.0713923 0.620144i
\(696\) −7.52504 0.946123i −0.285236 0.0358627i
\(697\) −8.94077 5.16195i −0.338656 0.195523i
\(698\) 15.7836 9.11265i 0.597417 0.344919i
\(699\) 6.22794 2.62231i 0.235562 0.0991849i
\(700\) 0 0
\(701\) 6.75777i 0.255238i 0.991823 + 0.127619i \(0.0407334\pi\)
−0.991823 + 0.127619i \(0.959267\pi\)
\(702\) −73.8096 + 11.0328i −2.78576 + 0.416405i
\(703\) −3.42531 + 5.93282i −0.129188 + 0.223760i
\(704\) −42.3428 24.4466i −1.59586 0.921367i
\(705\) −5.43815 18.6372i −0.204813 0.701919i
\(706\) 9.47268i 0.356509i
\(707\) 0 0
\(708\) −36.4577 + 15.3507i −1.37016 + 0.576916i
\(709\) −2.44586 4.23635i −0.0918561 0.159099i 0.816436 0.577436i \(-0.195947\pi\)
−0.908292 + 0.418336i \(0.862613\pi\)
\(710\) 49.8208 21.5933i 1.86974 0.810384i
\(711\) −4.73930 16.8973i −0.177738 0.633697i
\(712\) −13.1367 22.7534i −0.492318 0.852719i
\(713\) 19.9992i 0.748977i
\(714\) 0 0
\(715\) −44.5677 33.0592i −1.66674 1.23634i
\(716\) 58.9972 34.0620i 2.20483 1.27296i
\(717\) 40.8790 + 5.13971i 1.52665 + 0.191946i
\(718\) 13.6506 + 7.88121i 0.509438 + 0.294124i
\(719\) −19.0108 32.9277i −0.708985 1.22800i −0.965234 0.261387i \(-0.915820\pi\)
0.256249 0.966611i \(-0.417513\pi\)
\(720\) −1.55518 9.70876i −0.0579581 0.361824i
\(721\) 0 0
\(722\) −32.8253 −1.22163
\(723\) 13.8986 18.3332i 0.516894 0.681818i
\(724\) −38.9906 22.5112i −1.44907 0.836624i
\(725\) 2.55931 10.9683i 0.0950506 0.407353i
\(726\) −10.8815 8.24940i −0.403851 0.306164i
\(727\) −18.6502 −0.691699 −0.345849 0.938290i \(-0.612409\pi\)
−0.345849 + 0.938290i \(0.612409\pi\)
\(728\) 0 0
\(729\) −19.7475 18.4130i −0.731387 0.681962i
\(730\) 16.2378 + 1.86933i 0.600988 + 0.0691872i
\(731\) −10.3466 + 17.9208i −0.382681 + 0.662824i
\(732\) −67.6317 8.50333i −2.49974 0.314292i
\(733\) 18.7967 + 32.5568i 0.694271 + 1.20251i 0.970426 + 0.241399i \(0.0776062\pi\)
−0.276155 + 0.961113i \(0.589060\pi\)
\(734\) 53.8821 1.98882
\(735\) 0 0
\(736\) −21.3813 −0.788124
\(737\) 20.5852 + 35.6546i 0.758264 + 1.31335i
\(738\) −6.28358 22.4032i −0.231302 0.824672i
\(739\) 24.7189 42.8144i 0.909300 1.57495i 0.0942603 0.995548i \(-0.469951\pi\)
0.815039 0.579406i \(-0.196715\pi\)
\(740\) −2.47953 + 21.5382i −0.0911492 + 0.791760i
\(741\) 8.89228 + 21.1190i 0.326666 + 0.775826i
\(742\) 0 0
\(743\) 42.7477 1.56826 0.784131 0.620596i \(-0.213109\pi\)
0.784131 + 0.620596i \(0.213109\pi\)
\(744\) 13.5572 17.8828i 0.497030 0.655616i
\(745\) 22.1978 9.62097i 0.813264 0.352485i
\(746\) 42.1929 + 24.3601i 1.54479 + 0.891886i
\(747\) −1.97788 + 7.74123i −0.0723667 + 0.283237i
\(748\) 32.3236 1.18187
\(749\) 0 0
\(750\) −42.7144 + 2.33761i −1.55971 + 0.0853575i
\(751\) −2.79526 4.84152i −0.102000 0.176670i 0.810508 0.585727i \(-0.199191\pi\)
−0.912509 + 0.409057i \(0.865858\pi\)
\(752\) −6.36310 3.67374i −0.232039 0.133968i
\(753\) −1.97217 + 15.6857i −0.0718698 + 0.571620i
\(754\) −28.0183 + 16.1764i −1.02037 + 0.589109i
\(755\) 11.0517 14.8989i 0.402211 0.542227i
\(756\) 0 0
\(757\) 42.9931i 1.56261i −0.624150 0.781305i \(-0.714555\pi\)
0.624150 0.781305i \(-0.285445\pi\)
\(758\) 1.27906 + 2.21539i 0.0464574 + 0.0804666i
\(759\) −19.6822 2.47464i −0.714417 0.0898237i
\(760\) 8.11537 3.51737i 0.294376 0.127588i
\(761\) −24.5715 42.5591i −0.890716 1.54277i −0.839019 0.544102i \(-0.816870\pi\)
−0.0516970 0.998663i \(-0.516463\pi\)
\(762\) 0.886912 + 2.10640i 0.0321294 + 0.0763068i
\(763\) 0 0
\(764\) 31.0436i 1.12312i
\(765\) 12.4405 + 15.3077i 0.449787 + 0.553453i
\(766\) 4.07358 + 2.35188i 0.147184 + 0.0849769i
\(767\) −25.7795 + 44.6514i −0.930843 + 1.61227i
\(768\) 7.46575 + 5.65988i 0.269397 + 0.204233i
\(769\) 27.0203i 0.974376i −0.873297 0.487188i \(-0.838023\pi\)
0.873297 0.487188i \(-0.161977\pi\)
\(770\) 0 0
\(771\) 4.49412 + 10.6735i 0.161852 + 0.384395i
\(772\) 4.60466 2.65850i 0.165725 0.0956816i
\(773\) 45.8267 + 26.4581i 1.64827 + 0.951631i 0.977758 + 0.209735i \(0.0672601\pi\)
0.670515 + 0.741896i \(0.266073\pi\)
\(774\) −44.9046 + 12.5947i −1.61406 + 0.452708i
\(775\) 24.3195 + 22.7850i 0.873581 + 0.818462i
\(776\) 8.68312 0.311706
\(777\) 0 0
\(778\) 53.3645i 1.91321i
\(779\) −6.18711 + 3.57213i −0.221676 + 0.127985i
\(780\) 52.3999 + 50.1327i 1.87622 + 1.79504i
\(781\) 20.9788 36.3364i 0.750681 1.30022i
\(782\) 16.8797 9.74550i 0.603617 0.348499i
\(783\) −10.8905 4.28956i −0.389193 0.153296i
\(784\) 0 0
\(785\) −7.20950 + 9.71926i −0.257318 + 0.346895i
\(786\) 17.7206 + 13.4342i 0.632072 + 0.479181i
\(787\) 8.37879 14.5125i 0.298672 0.517315i −0.677161 0.735835i \(-0.736790\pi\)
0.975832 + 0.218521i \(0.0701231\pi\)
\(788\) −11.6630 + 20.2009i −0.415477 + 0.719627i
\(789\) 33.3031 + 25.2475i 1.18562 + 0.898833i
\(790\) −17.2150 + 23.2078i −0.612481 + 0.825697i
\(791\) 0 0
\(792\) 15.9218 + 15.5550i 0.565756 + 0.552723i
\(793\) −76.9414 + 44.4222i −2.73227 + 1.57748i
\(794\) 13.2719 22.9876i 0.471001 0.815798i
\(795\) 5.41290 + 5.17870i 0.191976 + 0.183670i
\(796\) 25.1974 14.5477i 0.893099 0.515631i
\(797\) 55.9724i 1.98264i −0.131462 0.991321i \(-0.541967\pi\)
0.131462 0.991321i \(-0.458033\pi\)
\(798\) 0 0
\(799\) 14.7401 0.521466
\(800\) −24.3596 + 26.0001i −0.861241 + 0.919241i
\(801\) −10.9501 39.0410i −0.386904 1.37945i
\(802\) −58.9813 34.0529i −2.08270 1.20245i
\(803\) 10.9380 6.31503i 0.385992 0.222853i
\(804\) −20.8794 49.5882i −0.736359 1.74884i
\(805\) 0 0
\(806\) 95.7274i 3.37186i
\(807\) −26.2356 19.8895i −0.923536 0.700143i
\(808\) 8.62160 14.9331i 0.303307 0.525343i
\(809\) 36.4604 + 21.0504i 1.28188 + 0.740094i 0.977192 0.212358i \(-0.0681142\pi\)
0.304689 + 0.952452i \(0.401447\pi\)
\(810\) −4.05386 + 44.2713i −0.142438 + 1.55554i
\(811\) 1.35051i 0.0474227i −0.999719 0.0237113i \(-0.992452\pi\)
0.999719 0.0237113i \(-0.00754826\pi\)
\(812\) 0 0
\(813\) 7.96388 + 18.9141i 0.279306 + 0.663346i
\(814\) 14.1934 + 24.5837i 0.497479 + 0.861659i
\(815\) −35.2000 + 15.2564i −1.23300 + 0.534409i
\(816\) 7.40686 + 0.931265i 0.259292 + 0.0326008i
\(817\) 7.15993 + 12.4014i 0.250494 + 0.433869i
\(818\) 34.6141i 1.21025i
\(819\) 0 0
\(820\) −13.4701 + 18.1592i −0.470395 + 0.634147i
\(821\) 9.82457 5.67222i 0.342880 0.197962i −0.318665 0.947867i \(-0.603235\pi\)
0.661545 + 0.749906i \(0.269901\pi\)
\(822\) 0.522030 4.15199i 0.0182079 0.144817i
\(823\) 26.1348 + 15.0889i 0.911002 + 0.525967i 0.880754 0.473575i \(-0.157037\pi\)
0.0302488 + 0.999542i \(0.490370\pi\)
\(824\) −1.28533 2.22626i −0.0447766 0.0775554i
\(825\) −25.4330 + 21.1146i −0.885463 + 0.735114i
\(826\) 0 0
\(827\) 34.7911 1.20981 0.604903 0.796299i \(-0.293212\pi\)
0.604903 + 0.796299i \(0.293212\pi\)
\(828\) 25.1178 + 6.41757i 0.872904 + 0.223026i
\(829\) 3.50678 + 2.02464i 0.121796 + 0.0703187i 0.559660 0.828722i \(-0.310932\pi\)
−0.437864 + 0.899041i \(0.644265\pi\)
\(830\) 12.0707 5.23169i 0.418980 0.181595i
\(831\) 17.2843 22.7991i 0.599585 0.790892i
\(832\) 83.2833 2.88733
\(833\) 0 0
\(834\) 10.9276 + 25.9529i 0.378393 + 0.898676i
\(835\) 2.45653 21.3385i 0.0850118 0.738448i
\(836\) 11.1841 19.3715i 0.386811 0.669977i
\(837\) 27.1035 21.5602i 0.936834 0.745229i
\(838\) −21.6460 37.4920i −0.747749 1.29514i
\(839\) −25.8653 −0.892969 −0.446485 0.894791i \(-0.647324\pi\)
−0.446485 + 0.894791i \(0.647324\pi\)
\(840\) 0 0
\(841\) 23.9258 0.825029
\(842\) −35.9846 62.3272i −1.24011 2.14794i
\(843\) −17.3701 2.18394i −0.598258 0.0752190i
\(844\) −15.3816 + 26.6417i −0.529457 + 0.917047i
\(845\) 65.0223 + 7.48552i 2.23684 + 0.257510i
\(846\) 23.7627 + 23.2153i 0.816978 + 0.798158i
\(847\) 0 0
\(848\) 2.83509 0.0973573
\(849\) 8.28429 + 6.28042i 0.284316 + 0.215543i
\(850\) 7.38023 31.6291i 0.253140 1.08487i
\(851\) 8.74849 + 5.05094i 0.299894 + 0.173144i
\(852\) −33.1265 + 43.6961i −1.13490 + 1.49700i
\(853\) 37.5709 1.28640 0.643201 0.765697i \(-0.277606\pi\)
0.643201 + 0.765697i \(0.277606\pi\)
\(854\) 0 0
\(855\) 13.4784 2.15901i 0.460952 0.0738366i
\(856\) 3.23117 + 5.59655i 0.110439 + 0.191286i
\(857\) −19.8563 11.4640i −0.678278 0.391604i 0.120928 0.992661i \(-0.461413\pi\)
−0.799206 + 0.601057i \(0.794746\pi\)
\(858\) 94.2098 + 11.8450i 3.21627 + 0.404382i
\(859\) −16.2512 + 9.38264i −0.554484 + 0.320132i −0.750929 0.660383i \(-0.770394\pi\)
0.196444 + 0.980515i \(0.437060\pi\)
\(860\) 36.3981 + 26.9992i 1.24117 + 0.920666i
\(861\) 0 0
\(862\) 61.6092i 2.09842i
\(863\) 4.23086 + 7.32807i 0.144020 + 0.249450i 0.929007 0.370062i \(-0.120664\pi\)
−0.784987 + 0.619512i \(0.787330\pi\)
\(864\) 23.0501 + 28.9765i 0.784180 + 0.985800i
\(865\) 20.8705 9.04569i 0.709618 0.307563i
\(866\) −3.83659 6.64517i −0.130373 0.225812i
\(867\) 13.3348 5.61470i 0.452874 0.190685i
\(868\) 0 0
\(869\) 22.3281i 0.757428i
\(870\) 5.39837 + 18.5009i 0.183022 + 0.627240i
\(871\) −60.7329 35.0641i −2.05785 1.18810i
\(872\) 11.9535 20.7041i 0.404797 0.701129i
\(873\) 12.9836 + 3.31728i 0.439427 + 0.112273i
\(874\) 13.4880i 0.456238i
\(875\) 0 0
\(876\) −15.2125 + 6.40529i −0.513981 + 0.216415i
\(877\) −3.27867 + 1.89294i −0.110713 + 0.0639201i −0.554334 0.832294i \(-0.687027\pi\)
0.443621 + 0.896214i \(0.353694\pi\)
\(878\) −7.55301 4.36073i −0.254902 0.147168i
\(879\) −6.10710 0.767845i −0.205987 0.0258988i
\(880\) −1.43073 + 12.4279i −0.0482298 + 0.418944i
\(881\) −54.6531 −1.84131 −0.920654 0.390379i \(-0.872344\pi\)
−0.920654 + 0.390379i \(0.872344\pi\)
\(882\) 0 0
\(883\) 28.1492i 0.947295i 0.880715 + 0.473647i \(0.157063\pi\)
−0.880715 + 0.473647i \(0.842937\pi\)
\(884\) −47.6824 + 27.5295i −1.60373 + 0.925916i
\(885\) 22.1925 + 21.2323i 0.745993 + 0.713716i
\(886\) 17.7065 30.6686i 0.594862 1.03033i
\(887\) 26.0011 15.0117i 0.873032 0.504045i 0.00467726 0.999989i \(-0.498511\pi\)
0.868355 + 0.495944i \(0.165178\pi\)
\(888\) −4.39873 10.4469i −0.147612 0.350575i
\(889\) 0 0
\(890\) −39.7751 + 53.6215i −1.33326 + 1.79740i
\(891\) 17.8647 + 29.3416i 0.598489 + 0.982980i
\(892\) −5.94975 + 10.3053i −0.199212 + 0.345046i
\(893\) 5.10015 8.83371i 0.170670 0.295609i
\(894\) −25.0095 + 32.9892i −0.836442 + 1.10332i
\(895\) −42.4816 31.5118i −1.42000 1.05332i
\(896\) 0 0
\(897\) 31.1420 13.1125i 1.03980 0.437814i
\(898\) 40.3668 23.3058i 1.34706 0.777724i
\(899\) 7.50689 13.0023i 0.250369 0.433651i
\(900\) 36.4205 23.2323i 1.21402 0.774408i
\(901\) −4.92559 + 2.84379i −0.164095 + 0.0947404i
\(902\) 29.6036i 0.985691i
\(903\) 0 0
\(904\) 39.7702 1.32274
\(905\) −3.99787 + 34.7271i −0.132894 + 1.15437i
\(906\) −3.95977 + 31.4942i −0.131555 + 1.04633i
\(907\) −16.8295 9.71653i −0.558815 0.322632i 0.193855 0.981030i \(-0.437901\pi\)
−0.752670 + 0.658398i \(0.771234\pi\)
\(908\) 17.8969 10.3328i 0.593931 0.342906i
\(909\) 18.5966 19.0351i 0.616809 0.631354i
\(910\) 0 0
\(911\) 53.2832i 1.76535i −0.469982 0.882676i \(-0.655739\pi\)
0.469982 0.882676i \(-0.344261\pi\)
\(912\) 3.12092 4.11670i 0.103344 0.136318i
\(913\) 5.08280 8.80366i 0.168216 0.291359i
\(914\) −18.3787 10.6110i −0.607914 0.350979i
\(915\) 14.8245 + 50.8056i 0.490084 + 1.67958i
\(916\) 30.0988i 0.994493i
\(917\) 0 0
\(918\) −31.4046 12.3697i −1.03650 0.408261i
\(919\) −22.5064 38.9822i −0.742416 1.28590i −0.951392 0.307982i \(-0.900346\pi\)
0.208976 0.977921i \(-0.432987\pi\)
\(920\) −5.18669 11.9669i −0.171000 0.394536i
\(921\) −6.27348 + 49.8965i −0.206718 + 1.64414i
\(922\) −27.1015 46.9412i −0.892541 1.54593i
\(923\) 71.4693i 2.35244i
\(924\) 0 0
\(925\) 16.1092 4.88383i 0.529666 0.160579i
\(926\) −27.9073 + 16.1123i −0.917092 + 0.529483i
\(927\) −1.07139 3.81989i −0.0351892 0.125462i
\(928\) 13.9008 + 8.02565i 0.456317 + 0.263455i
\(929\) 21.3495 + 36.9785i 0.700455 + 1.21322i 0.968307 + 0.249764i \(0.0803530\pi\)
−0.267852 + 0.963460i \(0.586314\pi\)
\(930\) −55.3942 13.5378i −1.81645 0.443921i
\(931\) 0 0
\(932\) 11.2360 0.368048
\(933\) 11.9313 + 9.04526i 0.390613 + 0.296128i
\(934\) −34.2800 19.7916i −1.12168 0.647600i
\(935\) −9.98034 23.0269i −0.326392 0.753061i
\(936\) −36.7351 9.38579i −1.20073 0.306784i
\(937\) −26.4685 −0.864688 −0.432344 0.901709i \(-0.642313\pi\)
−0.432344 + 0.901709i \(0.642313\pi\)
\(938\) 0 0
\(939\) −17.3235 + 7.29415i −0.565330 + 0.238036i
\(940\) 3.69191 32.0695i 0.120417 1.04599i
\(941\) −15.8545 + 27.4609i −0.516843 + 0.895199i 0.482965 + 0.875640i \(0.339560\pi\)
−0.999809 + 0.0195596i \(0.993774\pi\)
\(942\) 2.58314 20.5451i 0.0841633 0.669397i
\(943\) 5.26744 + 9.12347i 0.171531 + 0.297101i
\(944\) 11.6237 0.378318
\(945\) 0 0
\(946\) 59.3370 1.92921
\(947\) 5.97276 + 10.3451i 0.194089 + 0.336171i 0.946601 0.322406i \(-0.104492\pi\)
−0.752513 + 0.658578i \(0.771158\pi\)
\(948\) 3.64015 28.9521i 0.118227 0.940321i
\(949\) −10.7568 + 18.6314i −0.349181 + 0.604800i
\(950\) −16.4017 15.3668i −0.532141 0.498565i
\(951\) 14.9111 6.27839i 0.483524 0.203591i
\(952\) 0 0
\(953\) 1.76384 0.0571364 0.0285682 0.999592i \(-0.490905\pi\)
0.0285682 + 0.999592i \(0.490905\pi\)
\(954\) −12.4195 3.17318i −0.402097 0.102735i
\(955\) −22.1151 + 9.58513i −0.715627 + 0.310167i
\(956\) 59.3284 + 34.2532i 1.91882 + 1.10783i
\(957\) 11.8673 + 8.99673i 0.383615 + 0.290823i
\(958\) 6.54980 0.211614
\(959\) 0 0
\(960\) 11.7779 48.1932i 0.380131 1.55543i
\(961\) 6.71186 + 11.6253i 0.216511 + 0.375009i
\(962\) −41.8752 24.1766i −1.35011 0.779486i
\(963\) 2.69336 + 9.60275i 0.0867922 + 0.309444i
\(964\) 33.1282 19.1266i 1.06699 0.616026i
\(965\) −3.31564 2.45946i −0.106734 0.0791728i
\(966\) 0 0
\(967\) 53.4014i 1.71727i 0.512584 + 0.858637i \(0.328688\pi\)
−0.512584 + 0.858637i \(0.671312\pi\)
\(968\) −3.46869 6.00795i −0.111488 0.193103i
\(969\) −1.29285 + 10.2827i −0.0415323 + 0.330329i
\(970\) −8.77456 20.2449i −0.281734 0.650025i
\(971\) −23.9577 41.4959i −0.768838 1.33167i −0.938193 0.346111i \(-0.887502\pi\)
0.169356 0.985555i \(-0.445831\pi\)
\(972\) −18.3810 40.9588i −0.589571 1.31375i
\(973\) 0 0
\(974\) 73.4642i 2.35394i
\(975\) 19.5348 52.8082i 0.625614 1.69122i
\(976\) 17.3460 + 10.0147i 0.555231 + 0.320563i
\(977\) −4.07411 + 7.05657i −0.130342 + 0.225760i −0.923809 0.382855i \(-0.874941\pi\)
0.793466 + 0.608614i \(0.208274\pi\)
\(978\) 39.6586 52.3124i 1.26814 1.67277i
\(979\) 51.5889i 1.64879i
\(980\) 0 0
\(981\) 25.7834 26.3914i 0.823201 0.842612i
\(982\) −48.7636 + 28.1537i −1.55611 + 0.898420i
\(983\) 12.6460 + 7.30116i 0.403344 + 0.232871i 0.687926 0.725781i \(-0.258521\pi\)
−0.284582 + 0.958652i \(0.591855\pi\)
\(984\) 1.47465 11.7287i 0.0470101 0.373897i
\(985\) 17.9920 + 2.07128i 0.573273 + 0.0659965i
\(986\) −14.6322 −0.465986
\(987\) 0 0
\(988\) 38.1014i 1.21217i
\(989\) 18.2870 10.5580i 0.581492 0.335725i
\(990\) 20.1774 52.8409i 0.641281 1.67939i
\(991\) −7.84118 + 13.5813i −0.249083 + 0.431425i −0.963272 0.268529i \(-0.913463\pi\)
0.714188 + 0.699953i \(0.246796\pi\)
\(992\) −41.1307 + 23.7468i −1.30590 + 0.753962i
\(993\) 4.64398 1.95537i 0.147372 0.0620519i
\(994\) 0 0
\(995\) −18.1437 13.4585i −0.575194 0.426664i
\(996\) −8.02597 + 10.5868i −0.254313 + 0.335455i
\(997\) −13.5211 + 23.4192i −0.428218 + 0.741695i −0.996715 0.0809903i \(-0.974192\pi\)
0.568497 + 0.822685i \(0.307525\pi\)
\(998\) −37.1913 + 64.4173i −1.17727 + 2.03909i
\(999\) −2.58614 17.3014i −0.0818219 0.547391i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 735.2.p.g.374.30 64
3.2 odd 2 inner 735.2.p.g.374.1 64
5.4 even 2 inner 735.2.p.g.374.3 64
7.2 even 3 inner 735.2.p.g.509.29 64
7.3 odd 6 735.2.g.c.734.2 yes 32
7.4 even 3 735.2.g.c.734.3 yes 32
7.5 odd 6 inner 735.2.p.g.509.32 64
7.6 odd 2 inner 735.2.p.g.374.31 64
15.14 odd 2 inner 735.2.p.g.374.32 64
21.2 odd 6 inner 735.2.p.g.509.2 64
21.5 even 6 inner 735.2.p.g.509.3 64
21.11 odd 6 735.2.g.c.734.32 yes 32
21.17 even 6 735.2.g.c.734.29 yes 32
21.20 even 2 inner 735.2.p.g.374.4 64
35.4 even 6 735.2.g.c.734.30 yes 32
35.9 even 6 inner 735.2.p.g.509.4 64
35.19 odd 6 inner 735.2.p.g.509.1 64
35.24 odd 6 735.2.g.c.734.31 yes 32
35.34 odd 2 inner 735.2.p.g.374.2 64
105.44 odd 6 inner 735.2.p.g.509.31 64
105.59 even 6 735.2.g.c.734.4 yes 32
105.74 odd 6 735.2.g.c.734.1 32
105.89 even 6 inner 735.2.p.g.509.30 64
105.104 even 2 inner 735.2.p.g.374.29 64
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
735.2.g.c.734.1 32 105.74 odd 6
735.2.g.c.734.2 yes 32 7.3 odd 6
735.2.g.c.734.3 yes 32 7.4 even 3
735.2.g.c.734.4 yes 32 105.59 even 6
735.2.g.c.734.29 yes 32 21.17 even 6
735.2.g.c.734.30 yes 32 35.4 even 6
735.2.g.c.734.31 yes 32 35.24 odd 6
735.2.g.c.734.32 yes 32 21.11 odd 6
735.2.p.g.374.1 64 3.2 odd 2 inner
735.2.p.g.374.2 64 35.34 odd 2 inner
735.2.p.g.374.3 64 5.4 even 2 inner
735.2.p.g.374.4 64 21.20 even 2 inner
735.2.p.g.374.29 64 105.104 even 2 inner
735.2.p.g.374.30 64 1.1 even 1 trivial
735.2.p.g.374.31 64 7.6 odd 2 inner
735.2.p.g.374.32 64 15.14 odd 2 inner
735.2.p.g.509.1 64 35.19 odd 6 inner
735.2.p.g.509.2 64 21.2 odd 6 inner
735.2.p.g.509.3 64 21.5 even 6 inner
735.2.p.g.509.4 64 35.9 even 6 inner
735.2.p.g.509.29 64 7.2 even 3 inner
735.2.p.g.509.30 64 105.89 even 6 inner
735.2.p.g.509.31 64 105.44 odd 6 inner
735.2.p.g.509.32 64 7.5 odd 6 inner