Properties

Label 735.2.p.b.509.1
Level $735$
Weight $2$
Character 735.509
Analytic conductor $5.869$
Analytic rank $0$
Dimension $8$
CM discriminant -35
Inner twists $16$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [735,2,Mod(374,735)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("735.374"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(735, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 3, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 735 = 3 \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 735.p (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.86900454856\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: 8.0.31116960000.2
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + x^{6} - 8x^{4} + 9x^{2} + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 105)
Sato-Tate group: $\mathrm{U}(1)[D_{6}]$

Embedding invariants

Embedding label 509.1
Root \(0.306808 - 1.70466i\) of defining polynomial
Character \(\chi\) \(=\) 735.509
Dual form 735.2.p.b.374.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.62968 - 0.586627i) q^{3} +(1.00000 + 1.73205i) q^{4} +(1.93649 + 1.11803i) q^{5} +(2.31174 + 1.91203i) q^{9} +(5.12348 - 2.95804i) q^{11} +(-0.613616 - 3.40932i) q^{12} -2.64575 q^{13} +(-2.50000 - 2.95804i) q^{15} +(-2.00000 + 3.46410i) q^{16} +(1.93649 - 1.11803i) q^{17} +4.47214i q^{20} +(2.50000 + 4.33013i) q^{25} +(-2.64575 - 4.47214i) q^{27} +5.91608i q^{29} +(-10.0849 + 1.81510i) q^{33} +(-1.00000 + 5.91608i) q^{36} +(4.31174 + 1.55207i) q^{39} +(10.2470 + 5.91608i) q^{44} +(2.33894 + 6.28724i) q^{45} +(9.68246 + 5.59017i) q^{47} +(5.29150 - 4.47214i) q^{48} +(-3.81174 + 0.686044i) q^{51} +(-2.64575 - 4.58258i) q^{52} +13.2288 q^{55} +(2.62348 - 7.28817i) q^{60} -8.00000 q^{64} +(-5.12348 - 2.95804i) q^{65} +(3.87298 + 2.23607i) q^{68} -11.8322i q^{71} +(5.29150 + 9.16515i) q^{73} +(-1.53404 - 8.52330i) q^{75} +(0.500000 - 0.866025i) q^{79} +(-7.74597 + 4.47214i) q^{80} +(1.68826 + 8.84024i) q^{81} +8.94427i q^{83} +5.00000 q^{85} +(3.47053 - 9.64134i) q^{87} -18.5203 q^{97} +(17.5000 + 2.95804i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 8 q^{4} - 2 q^{9} - 20 q^{15} - 16 q^{16} + 20 q^{25} - 8 q^{36} + 14 q^{39} - 10 q^{51} - 20 q^{60} - 64 q^{64} + 4 q^{79} + 34 q^{81} + 40 q^{85} + 140 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/735\mathbb{Z}\right)^\times\).

\(n\) \(346\) \(442\) \(491\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(3\) −1.62968 0.586627i −0.940898 0.338689i
\(4\) 1.00000 + 1.73205i 0.500000 + 0.866025i
\(5\) 1.93649 + 1.11803i 0.866025 + 0.500000i
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 2.31174 + 1.91203i 0.770579 + 0.637344i
\(10\) 0 0
\(11\) 5.12348 2.95804i 1.54479 0.891883i 0.546259 0.837616i \(-0.316051\pi\)
0.998526 0.0542666i \(-0.0172821\pi\)
\(12\) −0.613616 3.40932i −0.177136 0.984186i
\(13\) −2.64575 −0.733799 −0.366900 0.930261i \(-0.619581\pi\)
−0.366900 + 0.930261i \(0.619581\pi\)
\(14\) 0 0
\(15\) −2.50000 2.95804i −0.645497 0.763763i
\(16\) −2.00000 + 3.46410i −0.500000 + 0.866025i
\(17\) 1.93649 1.11803i 0.469668 0.271163i −0.246433 0.969160i \(-0.579258\pi\)
0.716101 + 0.697997i \(0.245925\pi\)
\(18\) 0 0
\(19\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(20\) 4.47214i 1.00000i
\(21\) 0 0
\(22\) 0 0
\(23\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(24\) 0 0
\(25\) 2.50000 + 4.33013i 0.500000 + 0.866025i
\(26\) 0 0
\(27\) −2.64575 4.47214i −0.509175 0.860663i
\(28\) 0 0
\(29\) 5.91608i 1.09859i 0.835629 + 0.549294i \(0.185103\pi\)
−0.835629 + 0.549294i \(0.814897\pi\)
\(30\) 0 0
\(31\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(32\) 0 0
\(33\) −10.0849 + 1.81510i −1.75556 + 0.315968i
\(34\) 0 0
\(35\) 0 0
\(36\) −1.00000 + 5.91608i −0.166667 + 0.986013i
\(37\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(38\) 0 0
\(39\) 4.31174 + 1.55207i 0.690431 + 0.248530i
\(40\) 0 0
\(41\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(44\) 10.2470 + 5.91608i 1.54479 + 0.891883i
\(45\) 2.33894 + 6.28724i 0.348669 + 0.937246i
\(46\) 0 0
\(47\) 9.68246 + 5.59017i 1.41233 + 0.815410i 0.995608 0.0936230i \(-0.0298448\pi\)
0.416724 + 0.909033i \(0.363178\pi\)
\(48\) 5.29150 4.47214i 0.763763 0.645497i
\(49\) 0 0
\(50\) 0 0
\(51\) −3.81174 + 0.686044i −0.533750 + 0.0960653i
\(52\) −2.64575 4.58258i −0.366900 0.635489i
\(53\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(54\) 0 0
\(55\) 13.2288 1.78377
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(60\) 2.62348 7.28817i 0.338689 0.940898i
\(61\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) −8.00000 −1.00000
\(65\) −5.12348 2.95804i −0.635489 0.366900i
\(66\) 0 0
\(67\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(68\) 3.87298 + 2.23607i 0.469668 + 0.271163i
\(69\) 0 0
\(70\) 0 0
\(71\) 11.8322i 1.40422i −0.712069 0.702109i \(-0.752242\pi\)
0.712069 0.702109i \(-0.247758\pi\)
\(72\) 0 0
\(73\) 5.29150 + 9.16515i 0.619324 + 1.07270i 0.989609 + 0.143782i \(0.0459264\pi\)
−0.370286 + 0.928918i \(0.620740\pi\)
\(74\) 0 0
\(75\) −1.53404 8.52330i −0.177136 0.984186i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0.500000 0.866025i 0.0562544 0.0974355i −0.836527 0.547926i \(-0.815418\pi\)
0.892781 + 0.450490i \(0.148751\pi\)
\(80\) −7.74597 + 4.47214i −0.866025 + 0.500000i
\(81\) 1.68826 + 8.84024i 0.187585 + 0.982248i
\(82\) 0 0
\(83\) 8.94427i 0.981761i 0.871227 + 0.490881i \(0.163325\pi\)
−0.871227 + 0.490881i \(0.836675\pi\)
\(84\) 0 0
\(85\) 5.00000 0.542326
\(86\) 0 0
\(87\) 3.47053 9.64134i 0.372080 1.03366i
\(88\) 0 0
\(89\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −18.5203 −1.88045 −0.940224 0.340557i \(-0.889384\pi\)
−0.940224 + 0.340557i \(0.889384\pi\)
\(98\) 0 0
\(99\) 17.5000 + 2.95804i 1.75882 + 0.297294i
\(100\) −5.00000 + 8.66025i −0.500000 + 0.866025i
\(101\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(102\) 0 0
\(103\) 1.32288 2.29129i 0.130347 0.225767i −0.793463 0.608618i \(-0.791724\pi\)
0.923810 + 0.382851i \(0.125058\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(108\) 5.10022 9.05471i 0.490768 0.871290i
\(109\) −5.50000 9.52628i −0.526804 0.912452i −0.999512 0.0312328i \(-0.990057\pi\)
0.472708 0.881219i \(-0.343277\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −10.2470 + 5.91608i −0.951405 + 0.549294i
\(117\) −6.11628 5.05876i −0.565451 0.467683i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 12.0000 20.7846i 1.09091 1.88951i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 11.1803i 1.00000i
\(126\) 0 0
\(127\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(132\) −13.2288 15.6525i −1.15142 1.36237i
\(133\) 0 0
\(134\) 0 0
\(135\) −0.123475 11.6183i −0.0106271 0.999944i
\(136\) 0 0
\(137\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(140\) 0 0
\(141\) −12.5000 14.7902i −1.05269 1.24556i
\(142\) 0 0
\(143\) −13.5554 + 7.82624i −1.13356 + 0.654463i
\(144\) −11.2470 + 4.18403i −0.937246 + 0.348669i
\(145\) −6.61438 + 11.4564i −0.549294 + 0.951405i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −20.4939 11.8322i −1.67893 0.969328i −0.962348 0.271821i \(-0.912374\pi\)
−0.716578 0.697507i \(-0.754293\pi\)
\(150\) 0 0
\(151\) −8.50000 14.7224i −0.691720 1.19809i −0.971274 0.237964i \(-0.923520\pi\)
0.279554 0.960130i \(-0.409814\pi\)
\(152\) 0 0
\(153\) 6.61438 + 1.11803i 0.534741 + 0.0903877i
\(154\) 0 0
\(155\) 0 0
\(156\) 1.62348 + 9.02022i 0.129982 + 0.722195i
\(157\) −10.5830 18.3303i −0.844616 1.46292i −0.885954 0.463772i \(-0.846496\pi\)
0.0413387 0.999145i \(-0.486838\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(164\) 0 0
\(165\) −21.5587 7.76034i −1.67834 0.604142i
\(166\) 0 0
\(167\) 24.5967i 1.90335i −0.307102 0.951677i \(-0.599359\pi\)
0.307102 0.951677i \(-0.400641\pi\)
\(168\) 0 0
\(169\) −6.00000 −0.461538
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 9.68246 + 5.59017i 0.736144 + 0.425013i 0.820666 0.571409i \(-0.193603\pi\)
−0.0845218 + 0.996422i \(0.526936\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 23.6643i 1.78377i
\(177\) 0 0
\(178\) 0 0
\(179\) −10.2470 + 5.91608i −0.765893 + 0.442189i −0.831408 0.555663i \(-0.812464\pi\)
0.0655145 + 0.997852i \(0.479131\pi\)
\(180\) −8.55087 + 10.3384i −0.637344 + 0.770579i
\(181\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 6.61438 11.4564i 0.483691 0.837778i
\(188\) 22.3607i 1.63082i
\(189\) 0 0
\(190\) 0 0
\(191\) −5.12348 2.95804i −0.370722 0.214036i 0.303052 0.952974i \(-0.401994\pi\)
−0.673774 + 0.738938i \(0.735328\pi\)
\(192\) 13.0375 + 4.69302i 0.940898 + 0.338689i
\(193\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(194\) 0 0
\(195\) 6.61438 + 7.82624i 0.473665 + 0.560449i
\(196\) 0 0
\(197\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(198\) 0 0
\(199\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) −5.00000 5.91608i −0.350070 0.414208i
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 5.29150 9.16515i 0.366900 0.635489i
\(209\) 0 0
\(210\) 0 0
\(211\) 23.0000 1.58339 0.791693 0.610920i \(-0.209200\pi\)
0.791693 + 0.610920i \(0.209200\pi\)
\(212\) 0 0
\(213\) −6.94106 + 19.2827i −0.475594 + 1.32123i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) −3.24695 18.0404i −0.219409 1.21906i
\(220\) 13.2288 + 22.9129i 0.891883 + 1.54479i
\(221\) −5.12348 + 2.95804i −0.344642 + 0.198979i
\(222\) 0 0
\(223\) 29.1033 1.94890 0.974449 0.224607i \(-0.0721099\pi\)
0.974449 + 0.224607i \(0.0721099\pi\)
\(224\) 0 0
\(225\) −2.50000 + 14.7902i −0.166667 + 0.986013i
\(226\) 0 0
\(227\) 25.1744 14.5344i 1.67088 0.964685i 0.703738 0.710460i \(-0.251513\pi\)
0.967145 0.254225i \(-0.0818204\pi\)
\(228\) 0 0
\(229\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(234\) 0 0
\(235\) 12.5000 + 21.6506i 0.815410 + 1.41233i
\(236\) 0 0
\(237\) −1.32288 + 1.11803i −0.0859300 + 0.0726241i
\(238\) 0 0
\(239\) 29.5804i 1.91340i −0.291081 0.956698i \(-0.594015\pi\)
0.291081 0.956698i \(-0.405985\pi\)
\(240\) 15.2470 2.74417i 0.984186 0.177136i
\(241\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(242\) 0 0
\(243\) 2.43459 15.3972i 0.156179 0.987729i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 5.24695 14.5763i 0.332512 0.923738i
\(250\) 0 0
\(251\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) −8.14842 2.93313i −0.510274 0.183680i
\(256\) −8.00000 13.8564i −0.500000 0.866025i
\(257\) 3.87298 + 2.23607i 0.241590 + 0.139482i 0.615907 0.787819i \(-0.288790\pi\)
−0.374317 + 0.927301i \(0.622123\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 11.8322i 0.733799i
\(261\) −11.3117 + 13.6764i −0.700179 + 0.846549i
\(262\) 0 0
\(263\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(270\) 0 0
\(271\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(272\) 8.94427i 0.542326i
\(273\) 0 0
\(274\) 0 0
\(275\) 25.6174 + 14.7902i 1.54479 + 0.891883i
\(276\) 0 0
\(277\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 5.91608i 0.352924i 0.984307 + 0.176462i \(0.0564652\pi\)
−0.984307 + 0.176462i \(0.943535\pi\)
\(282\) 0 0
\(283\) 1.32288 + 2.29129i 0.0786368 + 0.136203i 0.902662 0.430350i \(-0.141610\pi\)
−0.824025 + 0.566553i \(0.808277\pi\)
\(284\) 20.4939 11.8322i 1.21609 0.702109i
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −6.00000 + 10.3923i −0.352941 + 0.611312i
\(290\) 0 0
\(291\) 30.1822 + 10.8645i 1.76931 + 0.636887i
\(292\) −10.5830 + 18.3303i −0.619324 + 1.07270i
\(293\) 24.5967i 1.43696i −0.695549 0.718479i \(-0.744839\pi\)
0.695549 0.718479i \(-0.255161\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −26.7842 15.0866i −1.55418 0.875416i
\(298\) 0 0
\(299\) 0 0
\(300\) 13.2288 11.1803i 0.763763 0.645497i
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −34.3948 −1.96301 −0.981507 0.191429i \(-0.938688\pi\)
−0.981507 + 0.191429i \(0.938688\pi\)
\(308\) 0 0
\(309\) −3.50000 + 2.95804i −0.199108 + 0.168277i
\(310\) 0 0
\(311\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(312\) 0 0
\(313\) −14.5516 + 25.2042i −0.822507 + 1.42462i 0.0813030 + 0.996689i \(0.474092\pi\)
−0.903810 + 0.427934i \(0.859241\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 2.00000 0.112509
\(317\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(318\) 0 0
\(319\) 17.5000 + 30.3109i 0.979812 + 1.69708i
\(320\) −15.4919 8.94427i −0.866025 0.500000i
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) −13.6235 + 11.7644i −0.756860 + 0.653577i
\(325\) −6.61438 11.4564i −0.366900 0.635489i
\(326\) 0 0
\(327\) 3.37489 + 18.7513i 0.186632 + 1.03695i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −4.00000 + 6.92820i −0.219860 + 0.380808i −0.954765 0.297361i \(-0.903893\pi\)
0.734905 + 0.678170i \(0.237227\pi\)
\(332\) −15.4919 + 8.94427i −0.850230 + 0.490881i
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 5.00000 + 8.66025i 0.271163 + 0.469668i
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(348\) 20.1698 3.63020i 1.08122 0.194599i
\(349\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(350\) 0 0
\(351\) 7.00000 + 11.8322i 0.373632 + 0.631554i
\(352\) 0 0
\(353\) 25.1744 14.5344i 1.33990 0.773590i 0.353106 0.935583i \(-0.385126\pi\)
0.986792 + 0.161993i \(0.0517922\pi\)
\(354\) 0 0
\(355\) 13.2288 22.9129i 0.702109 1.21609i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 10.2470 + 5.91608i 0.540813 + 0.312239i 0.745409 0.666608i \(-0.232254\pi\)
−0.204595 + 0.978847i \(0.565588\pi\)
\(360\) 0 0
\(361\) −9.50000 16.4545i −0.500000 0.866025i
\(362\) 0 0
\(363\) −31.7490 + 26.8328i −1.66639 + 1.40836i
\(364\) 0 0
\(365\) 23.6643i 1.23865i
\(366\) 0 0
\(367\) 9.26013 + 16.0390i 0.483375 + 0.837230i 0.999818 0.0190919i \(-0.00607750\pi\)
−0.516443 + 0.856322i \(0.672744\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(374\) 0 0
\(375\) 6.55869 18.2204i 0.338689 0.940898i
\(376\) 0 0
\(377\) 15.6525i 0.806144i
\(378\) 0 0
\(379\) −16.0000 −0.821865 −0.410932 0.911666i \(-0.634797\pi\)
−0.410932 + 0.911666i \(0.634797\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −30.9839 17.8885i −1.58320 0.914062i −0.994388 0.105793i \(-0.966262\pi\)
−0.588813 0.808269i \(-0.700405\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) −18.5203 32.0780i −0.940224 1.62852i
\(389\) 5.12348 2.95804i 0.259771 0.149979i −0.364459 0.931219i \(-0.618746\pi\)
0.624230 + 0.781241i \(0.285413\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 1.93649 1.11803i 0.0974355 0.0562544i
\(396\) 12.3765 + 33.2689i 0.621944 + 1.67183i
\(397\) 17.1974 29.7867i 0.863112 1.49495i −0.00579782 0.999983i \(-0.501846\pi\)
0.868910 0.494971i \(-0.164821\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) −20.0000 −1.00000
\(401\) 25.6174 + 14.7902i 1.27927 + 0.738587i 0.976714 0.214544i \(-0.0688266\pi\)
0.302556 + 0.953131i \(0.402160\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) −6.61438 + 19.0066i −0.328671 + 0.944444i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 5.29150 0.260694
\(413\) 0 0
\(414\) 0 0
\(415\) −10.0000 + 17.3205i −0.490881 + 0.850230i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(420\) 0 0
\(421\) −37.0000 −1.80327 −0.901635 0.432498i \(-0.857632\pi\)
−0.901635 + 0.432498i \(0.857632\pi\)
\(422\) 0 0
\(423\) 11.6947 + 31.4362i 0.568617 + 1.52848i
\(424\) 0 0
\(425\) 9.68246 + 5.59017i 0.469668 + 0.271163i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 26.6822 4.80230i 1.28823 0.231857i
\(430\) 0 0
\(431\) 35.8643 20.7063i 1.72752 0.997386i 0.827636 0.561266i \(-0.189685\pi\)
0.899888 0.436121i \(-0.143648\pi\)
\(432\) 20.7834 0.220879i 0.999944 0.0106271i
\(433\) −10.5830 −0.508587 −0.254293 0.967127i \(-0.581843\pi\)
−0.254293 + 0.967127i \(0.581843\pi\)
\(434\) 0 0
\(435\) 17.5000 14.7902i 0.839061 0.709136i
\(436\) 11.0000 19.0526i 0.526804 0.912452i
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 26.4575 + 31.3050i 1.25140 + 1.48067i
\(448\) 0 0
\(449\) 41.4126i 1.95438i 0.212368 + 0.977190i \(0.431882\pi\)
−0.212368 + 0.977190i \(0.568118\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 5.21574 + 28.9792i 0.245057 + 1.36156i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(458\) 0 0
\(459\) −10.1235 5.70221i −0.472523 0.266157i
\(460\) 0 0
\(461\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(462\) 0 0
\(463\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(464\) −20.4939 11.8322i −0.951405 0.549294i
\(465\) 0 0
\(466\) 0 0
\(467\) −36.7933 21.2426i −1.70259 0.982992i −0.943119 0.332454i \(-0.892123\pi\)
−0.759473 0.650538i \(-0.774543\pi\)
\(468\) 2.64575 15.6525i 0.122300 0.723536i
\(469\) 0 0
\(470\) 0 0
\(471\) 6.49390 + 36.0809i 0.299223 + 1.66252i
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 48.0000 2.18182
\(485\) −35.8643 20.7063i −1.62852 0.940224i
\(486\) 0 0
\(487\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 29.5804i 1.33494i −0.744635 0.667472i \(-0.767376\pi\)
0.744635 0.667472i \(-0.232624\pi\)
\(492\) 0 0
\(493\) 6.61438 + 11.4564i 0.297897 + 0.515972i
\(494\) 0 0
\(495\) 30.5814 + 25.2938i 1.37453 + 1.13687i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −20.5000 + 35.5070i −0.917706 + 1.58951i −0.114816 + 0.993387i \(0.536628\pi\)
−0.802890 + 0.596127i \(0.796706\pi\)
\(500\) −19.3649 + 11.1803i −0.866025 + 0.500000i
\(501\) −14.4291 + 40.0849i −0.644645 + 1.79086i
\(502\) 0 0
\(503\) 38.0132i 1.69492i −0.530857 0.847461i \(-0.678130\pi\)
0.530857 0.847461i \(-0.321870\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 9.77810 + 3.51976i 0.434261 + 0.156318i
\(508\) 0 0
\(509\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 5.12348 2.95804i 0.225767 0.130347i
\(516\) 0 0
\(517\) 66.1438 2.90900
\(518\) 0 0
\(519\) −12.5000 14.7902i −0.548689 0.649218i
\(520\) 0 0
\(521\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(522\) 0 0
\(523\) −18.5203 + 32.0780i −0.809834 + 1.40267i 0.103144 + 0.994666i \(0.467110\pi\)
−0.912978 + 0.408008i \(0.866224\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 13.8821 38.5654i 0.604142 1.67834i
\(529\) 11.5000 + 19.9186i 0.500000 + 0.866025i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 20.1698 3.63020i 0.870392 0.156655i
\(538\) 0 0
\(539\) 0 0
\(540\) 20.0000 11.8322i 0.860663 0.509175i
\(541\) 21.5000 37.2391i 0.924357 1.60103i 0.131765 0.991281i \(-0.457935\pi\)
0.792592 0.609753i \(-0.208731\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 24.5967i 1.05361i
\(546\) 0 0
\(547\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) −17.5000 + 14.7902i −0.738851 + 0.624443i
\(562\) 0 0
\(563\) −38.7298 + 22.3607i −1.63227 + 0.942390i −0.648876 + 0.760894i \(0.724761\pi\)
−0.983392 + 0.181496i \(0.941906\pi\)
\(564\) 13.1174 36.4408i 0.552341 1.53444i
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 40.9878 + 23.6643i 1.71830 + 0.992060i 0.922032 + 0.387113i \(0.126528\pi\)
0.796266 + 0.604947i \(0.206806\pi\)
\(570\) 0 0
\(571\) −16.0000 27.7128i −0.669579 1.15975i −0.978022 0.208502i \(-0.933141\pi\)
0.308443 0.951243i \(-0.400192\pi\)
\(572\) −27.1109 15.6525i −1.13356 0.654463i
\(573\) 6.61438 + 7.82624i 0.276320 + 0.326946i
\(574\) 0 0
\(575\) 0 0
\(576\) −18.4939 15.2963i −0.770579 0.637344i
\(577\) 17.1974 + 29.7867i 0.715936 + 1.24004i 0.962597 + 0.270936i \(0.0873333\pi\)
−0.246661 + 0.969102i \(0.579333\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) −26.4575 −1.09859
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) −6.18826 16.6345i −0.255853 0.687750i
\(586\) 0 0
\(587\) 8.94427i 0.369170i 0.982817 + 0.184585i \(0.0590940\pi\)
−0.982817 + 0.184585i \(0.940906\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −36.7933 21.2426i −1.51092 0.872331i −0.999919 0.0127518i \(-0.995941\pi\)
−0.511003 0.859579i \(-0.670726\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 47.3286i 1.93866i
\(597\) 0 0
\(598\) 0 0
\(599\) −25.6174 + 14.7902i −1.04670 + 0.604311i −0.921723 0.387849i \(-0.873218\pi\)
−0.124975 + 0.992160i \(0.539885\pi\)
\(600\) 0 0
\(601\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 17.0000 29.4449i 0.691720 1.19809i
\(605\) 46.4758 26.8328i 1.88951 1.09091i
\(606\) 0 0
\(607\) −22.4889 + 38.9519i −0.912796 + 1.58101i −0.102699 + 0.994712i \(0.532748\pi\)
−0.810097 + 0.586296i \(0.800586\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −25.6174 14.7902i −1.03637 0.598347i
\(612\) 4.67789 + 12.5745i 0.189092 + 0.508293i
\(613\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(618\) 0 0
\(619\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) −14.0000 + 11.8322i −0.560449 + 0.473665i
\(625\) −12.5000 + 21.6506i −0.500000 + 0.866025i
\(626\) 0 0
\(627\) 0 0
\(628\) 21.1660 36.6606i 0.844616 1.46292i
\(629\) 0 0
\(630\) 0 0
\(631\) 47.0000 1.87104 0.935520 0.353273i \(-0.114931\pi\)
0.935520 + 0.353273i \(0.114931\pi\)
\(632\) 0 0
\(633\) −37.4827 13.4924i −1.48980 0.536276i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 22.6235 27.3528i 0.894971 1.08206i
\(640\) 0 0
\(641\) −40.9878 + 23.6643i −1.61892 + 0.934684i −0.631721 + 0.775196i \(0.717651\pi\)
−0.987200 + 0.159489i \(0.949015\pi\)
\(642\) 0 0
\(643\) −50.2693 −1.98243 −0.991213 0.132273i \(-0.957772\pi\)
−0.991213 + 0.132273i \(0.957772\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −15.4919 + 8.94427i −0.609051 + 0.351636i −0.772594 0.634901i \(-0.781041\pi\)
0.163543 + 0.986536i \(0.447708\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −5.29150 + 31.3050i −0.206441 + 1.22132i
\(658\) 0 0
\(659\) 5.91608i 0.230458i 0.993339 + 0.115229i \(0.0367601\pi\)
−0.993339 + 0.115229i \(0.963240\pi\)
\(660\) −8.11738 45.1011i −0.315968 1.75556i
\(661\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(662\) 0 0
\(663\) 10.0849 1.81510i 0.391665 0.0704927i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 42.6028 24.5967i 1.64835 0.951677i
\(669\) −47.4291 17.0728i −1.83372 0.660071i
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(674\) 0 0
\(675\) 12.7505 22.6368i 0.490768 0.871290i
\(676\) −6.00000 10.3923i −0.230769 0.399704i
\(677\) 44.5393 + 25.7148i 1.71178 + 0.988299i 0.932156 + 0.362058i \(0.117926\pi\)
0.779629 + 0.626242i \(0.215408\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −49.5526 + 8.91857i −1.89886 + 0.341760i
\(682\) 0 0
\(683\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(692\) 22.3607i 0.850026i
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 41.4126i 1.56413i 0.623196 + 0.782065i \(0.285834\pi\)
−0.623196 + 0.782065i \(0.714166\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) −40.9878 + 23.6643i −1.54479 + 0.891883i
\(705\) −7.67020 42.6165i −0.288876 1.60503i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 0.500000 0.866025i 0.0187779 0.0325243i −0.856484 0.516174i \(-0.827356\pi\)
0.875262 + 0.483650i \(0.160689\pi\)
\(710\) 0 0
\(711\) 2.81174 1.04601i 0.105448 0.0392283i
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) −35.0000 −1.30893
\(716\) −20.4939 11.8322i −0.765893 0.442189i
\(717\) −17.3527 + 48.2067i −0.648047 + 1.80031i
\(718\) 0 0
\(719\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(720\) −26.4575 4.47214i −0.986013 0.166667i
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −25.6174 + 14.7902i −0.951405 + 0.549294i
\(726\) 0 0
\(727\) 5.29150 0.196251 0.0981255 0.995174i \(-0.468715\pi\)
0.0981255 + 0.995174i \(0.468715\pi\)
\(728\) 0 0
\(729\) −13.0000 + 23.6643i −0.481481 + 0.876456i
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 25.1346 43.5345i 0.928369 1.60798i 0.142318 0.989821i \(-0.454545\pi\)
0.786051 0.618161i \(-0.212122\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) −5.50000 9.52628i −0.202321 0.350430i 0.746955 0.664875i \(-0.231515\pi\)
−0.949276 + 0.314445i \(0.898182\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(744\) 0 0
\(745\) −26.4575 45.8258i −0.969328 1.67893i
\(746\) 0 0
\(747\) −17.1017 + 20.6768i −0.625720 + 0.756525i
\(748\) 26.4575 0.967382
\(749\) 0 0
\(750\) 0 0
\(751\) 6.50000 11.2583i 0.237188 0.410822i −0.722718 0.691143i \(-0.757107\pi\)
0.959906 + 0.280321i \(0.0904408\pi\)
\(752\) −38.7298 + 22.3607i −1.41233 + 0.815410i
\(753\) 0 0
\(754\) 0 0
\(755\) 38.0132i 1.38344i
\(756\) 0 0
\(757\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 11.8322i 0.428073i
\(765\) 11.5587 + 9.56016i 0.417905 + 0.345648i
\(766\) 0 0
\(767\) 0 0
\(768\) 4.90893 + 27.2746i 0.177136 + 0.984186i
\(769\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(770\) 0 0
\(771\) −5.00000 5.91608i −0.180071 0.213062i
\(772\) 0 0
\(773\) 1.93649 1.11803i 0.0696508 0.0402129i −0.464770 0.885431i \(-0.653863\pi\)
0.534421 + 0.845218i \(0.320530\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) −6.94106 + 19.2827i −0.248530 + 0.690431i
\(781\) −35.0000 60.6218i −1.25240 2.16922i
\(782\) 0 0
\(783\) 26.4575 15.6525i 0.945514 0.559374i
\(784\) 0 0
\(785\) 47.3286i 1.68923i
\(786\) 0 0
\(787\) −22.4889 38.9519i −0.801642 1.38849i −0.918535 0.395340i \(-0.870627\pi\)
0.116892 0.993145i \(-0.462707\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 55.9017i 1.98014i 0.140576 + 0.990070i \(0.455105\pi\)
−0.140576 + 0.990070i \(0.544895\pi\)
\(798\) 0 0
\(799\) 25.0000 0.884436
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 54.2218 + 31.3050i 1.91344 + 1.10473i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 35.8643 20.7063i 1.26092 0.727994i 0.287670 0.957730i \(-0.407120\pi\)
0.973253 + 0.229736i \(0.0737862\pi\)
\(810\) 0 0
\(811\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 5.24695 14.5763i 0.183680 0.510274i
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −5.12348 2.95804i −0.178811 0.103236i 0.407923 0.913016i \(-0.366253\pi\)
−0.586734 + 0.809780i \(0.699586\pi\)
\(822\) 0 0
\(823\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(824\) 0 0
\(825\) −33.0719 39.1312i −1.15142 1.36237i
\(826\) 0 0
\(827\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(828\) 0 0
\(829\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 21.1660 0.733799
\(833\) 0 0
\(834\) 0 0
\(835\) 27.5000 47.6314i 0.951677 1.64835i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) 0 0
\(841\) −6.00000 −0.206897
\(842\) 0 0
\(843\) 3.47053 9.64134i 0.119531 0.332065i
\(844\) 23.0000 + 39.8372i 0.791693 + 1.37125i
\(845\) −11.6190 6.70820i −0.399704 0.230769i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −0.811738 4.51011i −0.0278588 0.154787i
\(850\) 0 0
\(851\) 0 0
\(852\) −40.3396 + 7.26040i −1.38201 + 0.248737i
\(853\) −42.3320 −1.44942 −0.724710 0.689054i \(-0.758026\pi\)
−0.724710 + 0.689054i \(0.758026\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 42.6028 24.5967i 1.45528 0.840209i 0.456511 0.889718i \(-0.349099\pi\)
0.998774 + 0.0495090i \(0.0157656\pi\)
\(858\) 0 0
\(859\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(864\) 0 0
\(865\) 12.5000 + 21.6506i 0.425013 + 0.736144i
\(866\) 0 0
\(867\) 15.8745 13.4164i 0.539127 0.455645i
\(868\) 0 0
\(869\) 5.91608i 0.200689i
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) −42.8140 35.4113i −1.44903 1.19849i
\(874\) 0 0
\(875\) 0 0
\(876\) 28.0000 23.6643i 0.946032 0.799543i
\(877\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(878\) 0 0
\(879\) −14.4291 + 40.0849i −0.486682 + 1.35203i
\(880\) −26.4575 + 45.8258i −0.891883 + 1.54479i
\(881\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(882\) 0 0
\(883\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(884\) −10.2470 5.91608i −0.344642 0.198979i
\(885\) 0 0
\(886\) 0 0
\(887\) −30.9839 17.8885i −1.04034 0.600639i −0.120408 0.992725i \(-0.538420\pi\)
−0.919929 + 0.392086i \(0.871754\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 34.7995 + 40.2988i 1.16583 + 1.35006i
\(892\) 29.1033 + 50.4083i 0.974449 + 1.68780i
\(893\) 0 0
\(894\) 0 0
\(895\) −26.4575 −0.884377
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) −28.1174 + 10.4601i −0.937246 + 0.348669i
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(908\) 50.3488 + 29.0689i 1.67088 + 0.964685i
\(909\) 0 0
\(910\) 0 0
\(911\) 59.1608i 1.96008i 0.198789 + 0.980042i \(0.436299\pi\)
−0.198789 + 0.980042i \(0.563701\pi\)
\(912\) 0 0
\(913\) 26.4575 + 45.8258i 0.875616 + 1.51661i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −14.5000 + 25.1147i −0.478311 + 0.828459i −0.999691 0.0248659i \(-0.992084\pi\)
0.521380 + 0.853325i \(0.325417\pi\)
\(920\) 0 0
\(921\) 56.0526 + 20.1769i 1.84700 + 0.664851i
\(922\) 0 0
\(923\) 31.3050i 1.03042i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 7.43916 2.76748i 0.244334 0.0908958i
\(928\) 0 0
\(929\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 25.6174 14.7902i 0.837778 0.483691i
\(936\) 0 0
\(937\) 60.8523 1.98796 0.993979 0.109574i \(-0.0349486\pi\)
0.993979 + 0.109574i \(0.0349486\pi\)
\(938\) 0 0
\(939\) 38.5000 32.5384i 1.25640 1.06185i
\(940\) −25.0000 + 43.3013i −0.815410 + 1.41233i
\(941\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(948\) −3.25937 1.17325i −0.105859 0.0381055i
\(949\) −14.0000 24.2487i −0.454459 0.787146i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(954\) 0 0
\(955\) −6.61438 11.4564i −0.214036 0.370722i
\(956\) 51.2348 29.5804i 1.65705 0.956698i
\(957\) −10.7383 59.6631i −0.347119 1.92864i
\(958\) 0 0
\(959\) 0 0
\(960\) 20.0000 + 23.6643i 0.645497 + 0.763763i
\(961\) −15.5000 + 26.8468i −0.500000 + 0.866025i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(972\) 29.1033 11.1803i 0.933488 0.358610i
\(973\) 0 0
\(974\) 0 0
\(975\) 4.05869 + 22.5505i 0.129982 + 0.722195i
\(976\) 0 0
\(977\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 5.50000 32.5384i 0.175601 1.03887i
\(982\) 0 0
\(983\) 25.1744 14.5344i 0.802938 0.463577i −0.0415592 0.999136i \(-0.513233\pi\)
0.844498 + 0.535559i \(0.179899\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 26.0000 + 45.0333i 0.825917 + 1.43053i 0.901216 + 0.433370i \(0.142676\pi\)
−0.0752991 + 0.997161i \(0.523991\pi\)
\(992\) 0 0
\(993\) 10.5830 8.94427i 0.335842 0.283838i
\(994\) 0 0
\(995\) 0 0
\(996\) 30.4939 5.48835i 0.966236 0.173905i
\(997\) 9.26013 + 16.0390i 0.293271 + 0.507961i 0.974581 0.224034i \(-0.0719228\pi\)
−0.681310 + 0.731995i \(0.738589\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 735.2.p.b.509.1 8
3.2 odd 2 inner 735.2.p.b.509.3 8
5.4 even 2 inner 735.2.p.b.509.4 8
7.2 even 3 105.2.g.b.104.3 yes 4
7.3 odd 6 inner 735.2.p.b.374.2 8
7.4 even 3 inner 735.2.p.b.374.3 8
7.5 odd 6 105.2.g.b.104.2 yes 4
7.6 odd 2 inner 735.2.p.b.509.4 8
15.14 odd 2 inner 735.2.p.b.509.2 8
21.2 odd 6 105.2.g.b.104.4 yes 4
21.5 even 6 105.2.g.b.104.1 4
21.11 odd 6 inner 735.2.p.b.374.1 8
21.17 even 6 inner 735.2.p.b.374.4 8
21.20 even 2 inner 735.2.p.b.509.2 8
28.19 even 6 1680.2.k.b.209.3 4
28.23 odd 6 1680.2.k.b.209.2 4
35.2 odd 12 525.2.b.f.251.1 4
35.4 even 6 inner 735.2.p.b.374.2 8
35.9 even 6 105.2.g.b.104.2 yes 4
35.12 even 12 525.2.b.f.251.4 4
35.19 odd 6 105.2.g.b.104.3 yes 4
35.23 odd 12 525.2.b.f.251.4 4
35.24 odd 6 inner 735.2.p.b.374.3 8
35.33 even 12 525.2.b.f.251.1 4
35.34 odd 2 CM 735.2.p.b.509.1 8
84.23 even 6 1680.2.k.b.209.1 4
84.47 odd 6 1680.2.k.b.209.4 4
105.2 even 12 525.2.b.f.251.3 4
105.23 even 12 525.2.b.f.251.2 4
105.44 odd 6 105.2.g.b.104.1 4
105.47 odd 12 525.2.b.f.251.2 4
105.59 even 6 inner 735.2.p.b.374.1 8
105.68 odd 12 525.2.b.f.251.3 4
105.74 odd 6 inner 735.2.p.b.374.4 8
105.89 even 6 105.2.g.b.104.4 yes 4
105.104 even 2 inner 735.2.p.b.509.3 8
140.19 even 6 1680.2.k.b.209.2 4
140.79 odd 6 1680.2.k.b.209.3 4
420.299 odd 6 1680.2.k.b.209.1 4
420.359 even 6 1680.2.k.b.209.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
105.2.g.b.104.1 4 21.5 even 6
105.2.g.b.104.1 4 105.44 odd 6
105.2.g.b.104.2 yes 4 7.5 odd 6
105.2.g.b.104.2 yes 4 35.9 even 6
105.2.g.b.104.3 yes 4 7.2 even 3
105.2.g.b.104.3 yes 4 35.19 odd 6
105.2.g.b.104.4 yes 4 21.2 odd 6
105.2.g.b.104.4 yes 4 105.89 even 6
525.2.b.f.251.1 4 35.2 odd 12
525.2.b.f.251.1 4 35.33 even 12
525.2.b.f.251.2 4 105.23 even 12
525.2.b.f.251.2 4 105.47 odd 12
525.2.b.f.251.3 4 105.2 even 12
525.2.b.f.251.3 4 105.68 odd 12
525.2.b.f.251.4 4 35.12 even 12
525.2.b.f.251.4 4 35.23 odd 12
735.2.p.b.374.1 8 21.11 odd 6 inner
735.2.p.b.374.1 8 105.59 even 6 inner
735.2.p.b.374.2 8 7.3 odd 6 inner
735.2.p.b.374.2 8 35.4 even 6 inner
735.2.p.b.374.3 8 7.4 even 3 inner
735.2.p.b.374.3 8 35.24 odd 6 inner
735.2.p.b.374.4 8 21.17 even 6 inner
735.2.p.b.374.4 8 105.74 odd 6 inner
735.2.p.b.509.1 8 1.1 even 1 trivial
735.2.p.b.509.1 8 35.34 odd 2 CM
735.2.p.b.509.2 8 15.14 odd 2 inner
735.2.p.b.509.2 8 21.20 even 2 inner
735.2.p.b.509.3 8 3.2 odd 2 inner
735.2.p.b.509.3 8 105.104 even 2 inner
735.2.p.b.509.4 8 5.4 even 2 inner
735.2.p.b.509.4 8 7.6 odd 2 inner
1680.2.k.b.209.1 4 84.23 even 6
1680.2.k.b.209.1 4 420.299 odd 6
1680.2.k.b.209.2 4 28.23 odd 6
1680.2.k.b.209.2 4 140.19 even 6
1680.2.k.b.209.3 4 28.19 even 6
1680.2.k.b.209.3 4 140.79 odd 6
1680.2.k.b.209.4 4 84.47 odd 6
1680.2.k.b.209.4 4 420.359 even 6