Properties

Label 735.2.j.e.638.7
Level $735$
Weight $2$
Character 735.638
Analytic conductor $5.869$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [735,2,Mod(197,735)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("735.197"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(735, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 1, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 735 = 3 \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 735.j (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.86900454856\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(i)\)
Twist minimal: no (minimal twist has level 105)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 638.7
Character \(\chi\) \(=\) 735.638
Dual form 735.2.j.e.197.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.218381 + 0.218381i) q^{2} +(1.69540 - 0.354425i) q^{3} -1.90462i q^{4} +(2.16448 + 0.561256i) q^{5} +(0.447643 + 0.292843i) q^{6} +(0.852694 - 0.852694i) q^{8} +(2.74877 - 1.20179i) q^{9} +(0.350114 + 0.595249i) q^{10} -0.762466i q^{11} +(-0.675045 - 3.22909i) q^{12} +(2.27077 + 2.27077i) q^{13} +(3.86859 + 0.184406i) q^{15} -3.43682 q^{16} +(-3.43677 - 3.43677i) q^{17} +(0.862724 + 0.337831i) q^{18} +1.63691i q^{19} +(1.06898 - 4.12252i) q^{20} +(0.166508 - 0.166508i) q^{22} +(-5.40988 + 5.40988i) q^{23} +(1.14344 - 1.74787i) q^{24} +(4.36998 + 2.42966i) q^{25} +0.991783i q^{26} +(4.23432 - 3.01174i) q^{27} -4.94251 q^{29} +(0.804555 + 0.885097i) q^{30} +5.92827 q^{31} +(-2.45592 - 2.45592i) q^{32} +(-0.270237 - 1.29269i) q^{33} -1.50105i q^{34} +(-2.28894 - 5.23535i) q^{36} +(-2.50059 + 2.50059i) q^{37} +(-0.357470 + 0.357470i) q^{38} +(4.65467 + 3.04504i) q^{39} +(2.32422 - 1.36706i) q^{40} -4.35963i q^{41} +(2.69037 + 2.69037i) q^{43} -1.45221 q^{44} +(6.62417 - 1.05849i) q^{45} -2.36283 q^{46} +(-3.03177 - 3.03177i) q^{47} +(-5.82678 + 1.21809i) q^{48} +(0.423730 + 1.48491i) q^{50} +(-7.04478 - 4.60862i) q^{51} +(4.32494 - 4.32494i) q^{52} +(-4.91465 + 4.91465i) q^{53} +(1.58240 + 0.266987i) q^{54} +(0.427939 - 1.65035i) q^{55} +(0.580162 + 2.77522i) q^{57} +(-1.07935 - 1.07935i) q^{58} +7.69002 q^{59} +(0.351222 - 7.36819i) q^{60} -4.39397 q^{61} +(1.29462 + 1.29462i) q^{62} +5.80098i q^{64} +(3.64056 + 6.18952i) q^{65} +(0.223283 - 0.341312i) q^{66} +(0.0345049 - 0.0345049i) q^{67} +(-6.54574 + 6.54574i) q^{68} +(-7.25451 + 11.0893i) q^{69} -12.4172i q^{71} +(1.31910 - 3.36861i) q^{72} +(-0.981264 - 0.981264i) q^{73} -1.09216 q^{74} +(8.27000 + 2.57041i) q^{75} +3.11769 q^{76} +(0.351513 + 1.68147i) q^{78} +4.23554i q^{79} +(-7.43893 - 1.92893i) q^{80} +(6.11142 - 6.60685i) q^{81} +(0.952060 - 0.952060i) q^{82} +(5.05351 - 5.05351i) q^{83} +(-5.50993 - 9.36774i) q^{85} +1.17505i q^{86} +(-8.37953 + 1.75175i) q^{87} +(-0.650150 - 0.650150i) q^{88} -0.907199 q^{89} +(1.67774 + 1.21544i) q^{90} +(10.3038 + 10.3038i) q^{92} +(10.0508 - 2.10113i) q^{93} -1.32416i q^{94} +(-0.918726 + 3.54307i) q^{95} +(-5.03421 - 3.29333i) q^{96} +(-3.73061 + 3.73061i) q^{97} +(-0.916321 - 2.09584i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 2 q^{3} + 12 q^{6} - 8 q^{10} - 10 q^{12} + 8 q^{13} + 2 q^{15} + 8 q^{16} - 14 q^{18} - 4 q^{22} - 4 q^{25} - 20 q^{27} - 40 q^{30} - 24 q^{31} - 4 q^{33} + 4 q^{36} - 4 q^{37} - 16 q^{40} + 8 q^{43}+ \cdots + 60 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/735\mathbb{Z}\right)^\times\).

\(n\) \(346\) \(442\) \(491\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.218381 + 0.218381i 0.154419 + 0.154419i 0.780088 0.625670i \(-0.215174\pi\)
−0.625670 + 0.780088i \(0.715174\pi\)
\(3\) 1.69540 0.354425i 0.978840 0.204628i
\(4\) 1.90462i 0.952310i
\(5\) 2.16448 + 0.561256i 0.967987 + 0.251001i
\(6\) 0.447643 + 0.292843i 0.182749 + 0.119553i
\(7\) 0 0
\(8\) 0.852694 0.852694i 0.301473 0.301473i
\(9\) 2.74877 1.20179i 0.916255 0.400595i
\(10\) 0.350114 + 0.595249i 0.110716 + 0.188234i
\(11\) 0.762466i 0.229892i −0.993372 0.114946i \(-0.963330\pi\)
0.993372 0.114946i \(-0.0366695\pi\)
\(12\) −0.675045 3.22909i −0.194869 0.932159i
\(13\) 2.27077 + 2.27077i 0.629797 + 0.629797i 0.948017 0.318220i \(-0.103085\pi\)
−0.318220 + 0.948017i \(0.603085\pi\)
\(14\) 0 0
\(15\) 3.86859 + 0.184406i 0.998866 + 0.0476133i
\(16\) −3.43682 −0.859204
\(17\) −3.43677 3.43677i −0.833539 0.833539i 0.154460 0.987999i \(-0.450636\pi\)
−0.987999 + 0.154460i \(0.950636\pi\)
\(18\) 0.862724 + 0.337831i 0.203346 + 0.0796275i
\(19\) 1.63691i 0.375533i 0.982214 + 0.187767i \(0.0601248\pi\)
−0.982214 + 0.187767i \(0.939875\pi\)
\(20\) 1.06898 4.12252i 0.239031 0.921823i
\(21\) 0 0
\(22\) 0.166508 0.166508i 0.0354996 0.0354996i
\(23\) −5.40988 + 5.40988i −1.12804 + 1.12804i −0.137542 + 0.990496i \(0.543920\pi\)
−0.990496 + 0.137542i \(0.956080\pi\)
\(24\) 1.14344 1.74787i 0.233404 0.356783i
\(25\) 4.36998 + 2.42966i 0.873997 + 0.485932i
\(26\) 0.991783i 0.194505i
\(27\) 4.23432 3.01174i 0.814894 0.579610i
\(28\) 0 0
\(29\) −4.94251 −0.917801 −0.458900 0.888488i \(-0.651757\pi\)
−0.458900 + 0.888488i \(0.651757\pi\)
\(30\) 0.804555 + 0.885097i 0.146891 + 0.161596i
\(31\) 5.92827 1.06475 0.532374 0.846509i \(-0.321300\pi\)
0.532374 + 0.846509i \(0.321300\pi\)
\(32\) −2.45592 2.45592i −0.434150 0.434150i
\(33\) −0.270237 1.29269i −0.0470423 0.225028i
\(34\) 1.50105i 0.257428i
\(35\) 0 0
\(36\) −2.28894 5.23535i −0.381491 0.872559i
\(37\) −2.50059 + 2.50059i −0.411095 + 0.411095i −0.882120 0.471025i \(-0.843884\pi\)
0.471025 + 0.882120i \(0.343884\pi\)
\(38\) −0.357470 + 0.357470i −0.0579893 + 0.0579893i
\(39\) 4.65467 + 3.04504i 0.745344 + 0.487597i
\(40\) 2.32422 1.36706i 0.367492 0.216152i
\(41\) 4.35963i 0.680860i −0.940270 0.340430i \(-0.889427\pi\)
0.940270 0.340430i \(-0.110573\pi\)
\(42\) 0 0
\(43\) 2.69037 + 2.69037i 0.410277 + 0.410277i 0.881835 0.471558i \(-0.156308\pi\)
−0.471558 + 0.881835i \(0.656308\pi\)
\(44\) −1.45221 −0.218929
\(45\) 6.62417 1.05849i 0.987473 0.157790i
\(46\) −2.36283 −0.348380
\(47\) −3.03177 3.03177i −0.442230 0.442230i 0.450531 0.892761i \(-0.351235\pi\)
−0.892761 + 0.450531i \(0.851235\pi\)
\(48\) −5.82678 + 1.21809i −0.841023 + 0.175817i
\(49\) 0 0
\(50\) 0.423730 + 1.48491i 0.0599244 + 0.209998i
\(51\) −7.04478 4.60862i −0.986466 0.645336i
\(52\) 4.32494 4.32494i 0.599762 0.599762i
\(53\) −4.91465 + 4.91465i −0.675080 + 0.675080i −0.958883 0.283803i \(-0.908404\pi\)
0.283803 + 0.958883i \(0.408404\pi\)
\(54\) 1.58240 + 0.266987i 0.215337 + 0.0363323i
\(55\) 0.427939 1.65035i 0.0577032 0.222533i
\(56\) 0 0
\(57\) 0.580162 + 2.77522i 0.0768444 + 0.367587i
\(58\) −1.07935 1.07935i −0.141725 0.141725i
\(59\) 7.69002 1.00115 0.500577 0.865692i \(-0.333121\pi\)
0.500577 + 0.865692i \(0.333121\pi\)
\(60\) 0.351222 7.36819i 0.0453426 0.951230i
\(61\) −4.39397 −0.562591 −0.281295 0.959621i \(-0.590764\pi\)
−0.281295 + 0.959621i \(0.590764\pi\)
\(62\) 1.29462 + 1.29462i 0.164417 + 0.164417i
\(63\) 0 0
\(64\) 5.80098i 0.725122i
\(65\) 3.64056 + 6.18952i 0.451555 + 0.767715i
\(66\) 0.223283 0.341312i 0.0274842 0.0420126i
\(67\) 0.0345049 0.0345049i 0.00421544 0.00421544i −0.704996 0.709211i \(-0.749051\pi\)
0.709211 + 0.704996i \(0.249051\pi\)
\(68\) −6.54574 + 6.54574i −0.793787 + 0.793787i
\(69\) −7.25451 + 11.0893i −0.873341 + 1.33500i
\(70\) 0 0
\(71\) 12.4172i 1.47365i −0.676082 0.736826i \(-0.736324\pi\)
0.676082 0.736826i \(-0.263676\pi\)
\(72\) 1.31910 3.36861i 0.155457 0.396995i
\(73\) −0.981264 0.981264i −0.114848 0.114848i 0.647347 0.762195i \(-0.275878\pi\)
−0.762195 + 0.647347i \(0.775878\pi\)
\(74\) −1.09216 −0.126961
\(75\) 8.27000 + 2.57041i 0.954938 + 0.296806i
\(76\) 3.11769 0.357624
\(77\) 0 0
\(78\) 0.351513 + 1.68147i 0.0398010 + 0.190389i
\(79\) 4.23554i 0.476535i 0.971200 + 0.238268i \(0.0765795\pi\)
−0.971200 + 0.238268i \(0.923420\pi\)
\(80\) −7.43893 1.92893i −0.831698 0.215661i
\(81\) 6.11142 6.60685i 0.679047 0.734095i
\(82\) 0.952060 0.952060i 0.105137 0.105137i
\(83\) 5.05351 5.05351i 0.554695 0.554695i −0.373097 0.927792i \(-0.621704\pi\)
0.927792 + 0.373097i \(0.121704\pi\)
\(84\) 0 0
\(85\) −5.50993 9.36774i −0.597635 1.01607i
\(86\) 1.17505i 0.126709i
\(87\) −8.37953 + 1.75175i −0.898380 + 0.187807i
\(88\) −0.650150 0.650150i −0.0693062 0.0693062i
\(89\) −0.907199 −0.0961629 −0.0480815 0.998843i \(-0.515311\pi\)
−0.0480815 + 0.998843i \(0.515311\pi\)
\(90\) 1.67774 + 1.21544i 0.176850 + 0.128118i
\(91\) 0 0
\(92\) 10.3038 + 10.3038i 1.07424 + 1.07424i
\(93\) 10.0508 2.10113i 1.04222 0.217877i
\(94\) 1.32416i 0.136577i
\(95\) −0.918726 + 3.54307i −0.0942593 + 0.363511i
\(96\) −5.03421 3.29333i −0.513802 0.336124i
\(97\) −3.73061 + 3.73061i −0.378786 + 0.378786i −0.870664 0.491878i \(-0.836311\pi\)
0.491878 + 0.870664i \(0.336311\pi\)
\(98\) 0 0
\(99\) −0.916321 2.09584i −0.0920937 0.210640i
\(100\) 4.62758 8.32316i 0.462758 0.832316i
\(101\) 18.9884i 1.88942i 0.327913 + 0.944708i \(0.393655\pi\)
−0.327913 + 0.944708i \(0.606345\pi\)
\(102\) −0.532010 2.54488i −0.0526768 0.251981i
\(103\) 8.93165 + 8.93165i 0.880061 + 0.880061i 0.993540 0.113479i \(-0.0361995\pi\)
−0.113479 + 0.993540i \(0.536200\pi\)
\(104\) 3.87254 0.379733
\(105\) 0 0
\(106\) −2.14653 −0.208490
\(107\) −1.54196 1.54196i −0.149066 0.149066i 0.628634 0.777701i \(-0.283614\pi\)
−0.777701 + 0.628634i \(0.783614\pi\)
\(108\) −5.73622 8.06476i −0.551968 0.776032i
\(109\) 2.35971i 0.226020i 0.993594 + 0.113010i \(0.0360491\pi\)
−0.993594 + 0.113010i \(0.963951\pi\)
\(110\) 0.453857 0.266950i 0.0432736 0.0254527i
\(111\) −3.35323 + 5.12578i −0.318275 + 0.486517i
\(112\) 0 0
\(113\) −11.9386 + 11.9386i −1.12309 + 1.12309i −0.131814 + 0.991274i \(0.542080\pi\)
−0.991274 + 0.131814i \(0.957920\pi\)
\(114\) −0.479358 + 0.732751i −0.0448960 + 0.0686284i
\(115\) −14.7459 + 8.67327i −1.37506 + 0.808787i
\(116\) 9.41360i 0.874031i
\(117\) 8.97077 + 3.51283i 0.829348 + 0.324761i
\(118\) 1.67935 + 1.67935i 0.154597 + 0.154597i
\(119\) 0 0
\(120\) 3.45597 3.14148i 0.315485 0.286777i
\(121\) 10.4186 0.947150
\(122\) −0.959560 0.959560i −0.0868744 0.0868744i
\(123\) −1.54516 7.39132i −0.139323 0.666453i
\(124\) 11.2911i 1.01397i
\(125\) 8.09510 + 7.71164i 0.724048 + 0.689750i
\(126\) 0 0
\(127\) 4.46126 4.46126i 0.395873 0.395873i −0.480901 0.876775i \(-0.659691\pi\)
0.876775 + 0.480901i \(0.159691\pi\)
\(128\) −6.17867 + 6.17867i −0.546122 + 0.546122i
\(129\) 5.51478 + 3.60772i 0.485550 + 0.317642i
\(130\) −0.556644 + 2.14670i −0.0488209 + 0.188278i
\(131\) 2.14947i 0.187800i −0.995582 0.0938999i \(-0.970067\pi\)
0.995582 0.0938999i \(-0.0299334\pi\)
\(132\) −2.46207 + 0.514699i −0.214296 + 0.0447988i
\(133\) 0 0
\(134\) 0.0150704 0.00130188
\(135\) 10.8555 4.14233i 0.934290 0.356515i
\(136\) −5.86102 −0.502579
\(137\) 6.23472 + 6.23472i 0.532668 + 0.532668i 0.921365 0.388698i \(-0.127075\pi\)
−0.388698 + 0.921365i \(0.627075\pi\)
\(138\) −4.00594 + 0.837446i −0.341008 + 0.0712881i
\(139\) 10.3626i 0.878941i −0.898257 0.439471i \(-0.855166\pi\)
0.898257 0.439471i \(-0.144834\pi\)
\(140\) 0 0
\(141\) −6.21461 4.06553i −0.523364 0.342380i
\(142\) 2.71168 2.71168i 0.227559 0.227559i
\(143\) 1.73138 1.73138i 0.144785 0.144785i
\(144\) −9.44700 + 4.13031i −0.787250 + 0.344193i
\(145\) −10.6980 2.77401i −0.888419 0.230369i
\(146\) 0.428578i 0.0354694i
\(147\) 0 0
\(148\) 4.76267 + 4.76267i 0.391489 + 0.391489i
\(149\) −17.4543 −1.42991 −0.714957 0.699169i \(-0.753554\pi\)
−0.714957 + 0.699169i \(0.753554\pi\)
\(150\) 1.24468 + 2.36734i 0.101628 + 0.193292i
\(151\) −15.2157 −1.23824 −0.619119 0.785297i \(-0.712510\pi\)
−0.619119 + 0.785297i \(0.712510\pi\)
\(152\) 1.39578 + 1.39578i 0.113213 + 0.113213i
\(153\) −13.5771 5.31661i −1.09765 0.429823i
\(154\) 0 0
\(155\) 12.8316 + 3.32727i 1.03066 + 0.267253i
\(156\) 5.79964 8.86538i 0.464343 0.709799i
\(157\) −6.46046 + 6.46046i −0.515601 + 0.515601i −0.916237 0.400636i \(-0.868789\pi\)
0.400636 + 0.916237i \(0.368789\pi\)
\(158\) −0.924960 + 0.924960i −0.0735859 + 0.0735859i
\(159\) −6.59043 + 10.0742i −0.522655 + 0.798935i
\(160\) −3.93740 6.69421i −0.311279 0.529223i
\(161\) 0 0
\(162\) 2.77743 0.108192i 0.218215 0.00850040i
\(163\) 1.91437 + 1.91437i 0.149945 + 0.149945i 0.778094 0.628148i \(-0.216187\pi\)
−0.628148 + 0.778094i \(0.716187\pi\)
\(164\) −8.30344 −0.648390
\(165\) 0.140603 2.94967i 0.0109459 0.229631i
\(166\) 2.20718 0.171310
\(167\) −3.85551 3.85551i −0.298348 0.298348i 0.542018 0.840367i \(-0.317660\pi\)
−0.840367 + 0.542018i \(0.817660\pi\)
\(168\) 0 0
\(169\) 2.68725i 0.206712i
\(170\) 0.842472 3.24900i 0.0646147 0.249187i
\(171\) 1.96722 + 4.49948i 0.150437 + 0.344084i
\(172\) 5.12413 5.12413i 0.390711 0.390711i
\(173\) 0.935674 0.935674i 0.0711380 0.0711380i −0.670643 0.741781i \(-0.733982\pi\)
0.741781 + 0.670643i \(0.233982\pi\)
\(174\) −2.21248 1.44738i −0.167727 0.109726i
\(175\) 0 0
\(176\) 2.62045i 0.197524i
\(177\) 13.0377 2.72554i 0.979970 0.204864i
\(178\) −0.198115 0.198115i −0.0148493 0.0148493i
\(179\) −0.241671 −0.0180634 −0.00903168 0.999959i \(-0.502875\pi\)
−0.00903168 + 0.999959i \(0.502875\pi\)
\(180\) −2.01601 12.6165i −0.150265 0.940380i
\(181\) −18.6864 −1.38895 −0.694475 0.719517i \(-0.744363\pi\)
−0.694475 + 0.719517i \(0.744363\pi\)
\(182\) 0 0
\(183\) −7.44955 + 1.55734i −0.550686 + 0.115122i
\(184\) 9.22594i 0.680145i
\(185\) −6.81596 + 4.00902i −0.501119 + 0.294749i
\(186\) 2.65374 + 1.73605i 0.194582 + 0.127294i
\(187\) −2.62042 + 2.62042i −0.191624 + 0.191624i
\(188\) −5.77437 + 5.77437i −0.421140 + 0.421140i
\(189\) 0 0
\(190\) −0.974370 + 0.573106i −0.0706882 + 0.0415775i
\(191\) 14.2410i 1.03044i −0.857058 0.515220i \(-0.827710\pi\)
0.857058 0.515220i \(-0.172290\pi\)
\(192\) 2.05601 + 9.83498i 0.148380 + 0.709779i
\(193\) 4.81971 + 4.81971i 0.346931 + 0.346931i 0.858965 0.512034i \(-0.171108\pi\)
−0.512034 + 0.858965i \(0.671108\pi\)
\(194\) −1.62939 −0.116983
\(195\) 8.36592 + 9.20340i 0.599096 + 0.659069i
\(196\) 0 0
\(197\) −7.65626 7.65626i −0.545486 0.545486i 0.379646 0.925132i \(-0.376046\pi\)
−0.925132 + 0.379646i \(0.876046\pi\)
\(198\) 0.257584 0.657798i 0.0183057 0.0467477i
\(199\) 16.3800i 1.16115i −0.814208 0.580573i \(-0.802828\pi\)
0.814208 0.580573i \(-0.197172\pi\)
\(200\) 5.79801 1.65450i 0.409981 0.116991i
\(201\) 0.0462702 0.0707289i 0.00326365 0.00498884i
\(202\) −4.14670 + 4.14670i −0.291761 + 0.291761i
\(203\) 0 0
\(204\) −8.77767 + 13.4176i −0.614560 + 0.939421i
\(205\) 2.44687 9.43636i 0.170897 0.659064i
\(206\) 3.90100i 0.271796i
\(207\) −8.36897 + 21.3720i −0.581684 + 1.48546i
\(208\) −7.80420 7.80420i −0.541124 0.541124i
\(209\) 1.24809 0.0863321
\(210\) 0 0
\(211\) −25.5028 −1.75568 −0.877842 0.478950i \(-0.841018\pi\)
−0.877842 + 0.478950i \(0.841018\pi\)
\(212\) 9.36055 + 9.36055i 0.642885 + 0.642885i
\(213\) −4.40097 21.0522i −0.301550 1.44247i
\(214\) 0.673467i 0.0460372i
\(215\) 4.31327 + 7.33324i 0.294163 + 0.500123i
\(216\) 1.04248 6.17867i 0.0709320 0.420405i
\(217\) 0 0
\(218\) −0.515316 + 0.515316i −0.0349016 + 0.0349016i
\(219\) −2.01142 1.31585i −0.135919 0.0889170i
\(220\) −3.14328 0.815060i −0.211920 0.0549513i
\(221\) 15.6082i 1.04992i
\(222\) −1.85165 + 0.387090i −0.124275 + 0.0259798i
\(223\) 15.4546 + 15.4546i 1.03491 + 1.03491i 0.999368 + 0.0355465i \(0.0113172\pi\)
0.0355465 + 0.999368i \(0.488683\pi\)
\(224\) 0 0
\(225\) 14.9320 + 1.42678i 0.995466 + 0.0951186i
\(226\) −5.21432 −0.346851
\(227\) 9.08481 + 9.08481i 0.602980 + 0.602980i 0.941102 0.338122i \(-0.109792\pi\)
−0.338122 + 0.941102i \(0.609792\pi\)
\(228\) 5.28574 1.10499i 0.350056 0.0731797i
\(229\) 15.3008i 1.01110i 0.862797 + 0.505551i \(0.168711\pi\)
−0.862797 + 0.505551i \(0.831289\pi\)
\(230\) −5.11430 1.32615i −0.337227 0.0874438i
\(231\) 0 0
\(232\) −4.21445 + 4.21445i −0.276692 + 0.276692i
\(233\) 4.85174 4.85174i 0.317848 0.317848i −0.530092 0.847940i \(-0.677843\pi\)
0.847940 + 0.530092i \(0.177843\pi\)
\(234\) 1.19191 + 2.72618i 0.0779176 + 0.178216i
\(235\) −4.86062 8.26382i −0.317072 0.539072i
\(236\) 14.6466i 0.953410i
\(237\) 1.50118 + 7.18093i 0.0975122 + 0.466452i
\(238\) 0 0
\(239\) −18.7082 −1.21013 −0.605067 0.796174i \(-0.706854\pi\)
−0.605067 + 0.796174i \(0.706854\pi\)
\(240\) −13.2956 0.633768i −0.858229 0.0409095i
\(241\) 1.97213 0.127036 0.0635179 0.997981i \(-0.479768\pi\)
0.0635179 + 0.997981i \(0.479768\pi\)
\(242\) 2.27523 + 2.27523i 0.146257 + 0.146257i
\(243\) 8.01967 13.3673i 0.514462 0.857513i
\(244\) 8.36885i 0.535761i
\(245\) 0 0
\(246\) 1.27669 1.95156i 0.0813987 0.124427i
\(247\) −3.71704 + 3.71704i −0.236510 + 0.236510i
\(248\) 5.05500 5.05500i 0.320993 0.320993i
\(249\) 6.77663 10.3588i 0.429452 0.656463i
\(250\) 0.0837410 + 3.45189i 0.00529625 + 0.218317i
\(251\) 17.9016i 1.12994i −0.825112 0.564970i \(-0.808888\pi\)
0.825112 0.564970i \(-0.191112\pi\)
\(252\) 0 0
\(253\) 4.12485 + 4.12485i 0.259327 + 0.259327i
\(254\) 1.94851 0.122260
\(255\) −12.6617 13.9292i −0.792906 0.872281i
\(256\) 8.90335 0.556460
\(257\) 13.9432 + 13.9432i 0.869756 + 0.869756i 0.992445 0.122689i \(-0.0391519\pi\)
−0.122689 + 0.992445i \(0.539152\pi\)
\(258\) 0.416467 + 1.99218i 0.0259281 + 0.124028i
\(259\) 0 0
\(260\) 11.7887 6.93387i 0.731102 0.430021i
\(261\) −13.5858 + 5.93984i −0.840940 + 0.367667i
\(262\) 0.469402 0.469402i 0.0289998 0.0289998i
\(263\) −3.92341 + 3.92341i −0.241928 + 0.241928i −0.817647 0.575719i \(-0.804722\pi\)
0.575719 + 0.817647i \(0.304722\pi\)
\(264\) −1.33269 0.871835i −0.0820217 0.0536577i
\(265\) −13.3961 + 7.87931i −0.822914 + 0.484022i
\(266\) 0 0
\(267\) −1.53807 + 0.321534i −0.0941281 + 0.0196776i
\(268\) −0.0657186 0.0657186i −0.00401440 0.00401440i
\(269\) 10.0464 0.612541 0.306270 0.951945i \(-0.400919\pi\)
0.306270 + 0.951945i \(0.400919\pi\)
\(270\) 3.27523 + 1.46602i 0.199324 + 0.0892191i
\(271\) 5.64055 0.342639 0.171320 0.985216i \(-0.445197\pi\)
0.171320 + 0.985216i \(0.445197\pi\)
\(272\) 11.8115 + 11.8115i 0.716180 + 0.716180i
\(273\) 0 0
\(274\) 2.72309i 0.164508i
\(275\) 1.85253 3.33196i 0.111712 0.200925i
\(276\) 21.1209 + 13.8171i 1.27133 + 0.831691i
\(277\) 7.95130 7.95130i 0.477747 0.477747i −0.426663 0.904411i \(-0.640311\pi\)
0.904411 + 0.426663i \(0.140311\pi\)
\(278\) 2.26299 2.26299i 0.135725 0.135725i
\(279\) 16.2954 7.12451i 0.975581 0.426533i
\(280\) 0 0
\(281\) 1.92831i 0.115033i −0.998345 0.0575167i \(-0.981682\pi\)
0.998345 0.0575167i \(-0.0183183\pi\)
\(282\) −0.469316 2.24498i −0.0279474 0.133687i
\(283\) 18.6429 + 18.6429i 1.10821 + 1.10821i 0.993386 + 0.114822i \(0.0366298\pi\)
0.114822 + 0.993386i \(0.463370\pi\)
\(284\) −23.6501 −1.40337
\(285\) −0.301855 + 6.33254i −0.0178804 + 0.375107i
\(286\) 0.756201 0.0447151
\(287\) 0 0
\(288\) −9.70225 3.79926i −0.571710 0.223874i
\(289\) 6.62276i 0.389574i
\(290\) −1.73044 2.94203i −0.101615 0.172762i
\(291\) −5.00266 + 7.64711i −0.293261 + 0.448281i
\(292\) −1.86894 + 1.86894i −0.109371 + 0.109371i
\(293\) −7.83332 + 7.83332i −0.457627 + 0.457627i −0.897876 0.440249i \(-0.854890\pi\)
0.440249 + 0.897876i \(0.354890\pi\)
\(294\) 0 0
\(295\) 16.6449 + 4.31607i 0.969105 + 0.251291i
\(296\) 4.26448i 0.247868i
\(297\) −2.29635 3.22852i −0.133248 0.187338i
\(298\) −3.81169 3.81169i −0.220805 0.220805i
\(299\) −24.5691 −1.42087
\(300\) 4.89566 15.7512i 0.282651 0.909397i
\(301\) 0 0
\(302\) −3.32282 3.32282i −0.191207 0.191207i
\(303\) 6.72997 + 32.1929i 0.386627 + 1.84944i
\(304\) 5.62576i 0.322659i
\(305\) −9.51069 2.46614i −0.544580 0.141211i
\(306\) −1.80394 4.12603i −0.103124 0.235869i
\(307\) 17.0769 17.0769i 0.974628 0.974628i −0.0250576 0.999686i \(-0.507977\pi\)
0.999686 + 0.0250576i \(0.00797691\pi\)
\(308\) 0 0
\(309\) 18.3083 + 11.9771i 1.04152 + 0.681354i
\(310\) 2.07557 + 3.52880i 0.117885 + 0.200422i
\(311\) 23.6479i 1.34095i −0.741932 0.670475i \(-0.766090\pi\)
0.741932 0.670475i \(-0.233910\pi\)
\(312\) 6.56550 1.37252i 0.371698 0.0777039i
\(313\) 8.75372 + 8.75372i 0.494790 + 0.494790i 0.909812 0.415022i \(-0.136226\pi\)
−0.415022 + 0.909812i \(0.636226\pi\)
\(314\) −2.82168 −0.159237
\(315\) 0 0
\(316\) 8.06709 0.453809
\(317\) 3.10591 + 3.10591i 0.174445 + 0.174445i 0.788929 0.614484i \(-0.210636\pi\)
−0.614484 + 0.788929i \(0.710636\pi\)
\(318\) −3.63923 + 0.760785i −0.204078 + 0.0426627i
\(319\) 3.76850i 0.210995i
\(320\) −3.25583 + 12.5561i −0.182007 + 0.701909i
\(321\) −3.16074 2.06772i −0.176415 0.115409i
\(322\) 0 0
\(323\) 5.62568 5.62568i 0.313021 0.313021i
\(324\) −12.5835 11.6399i −0.699086 0.646663i
\(325\) 4.40602 + 15.4404i 0.244402 + 0.856479i
\(326\) 0.836125i 0.0463087i
\(327\) 0.836342 + 4.00066i 0.0462498 + 0.221237i
\(328\) −3.71743 3.71743i −0.205261 0.205261i
\(329\) 0 0
\(330\) 0.674856 0.613446i 0.0371496 0.0337691i
\(331\) −6.21866 −0.341808 −0.170904 0.985288i \(-0.554669\pi\)
−0.170904 + 0.985288i \(0.554669\pi\)
\(332\) −9.62501 9.62501i −0.528241 0.528241i
\(333\) −3.86836 + 9.87871i −0.211985 + 0.541350i
\(334\) 1.68394i 0.0921411i
\(335\) 0.0940513 0.0553192i 0.00513857 0.00302241i
\(336\) 0 0
\(337\) 15.0501 15.0501i 0.819833 0.819833i −0.166250 0.986084i \(-0.553166\pi\)
0.986084 + 0.166250i \(0.0531659\pi\)
\(338\) 0.586844 0.586844i 0.0319201 0.0319201i
\(339\) −16.0094 + 24.4720i −0.869509 + 1.32914i
\(340\) −17.8420 + 10.4943i −0.967617 + 0.569134i
\(341\) 4.52010i 0.244777i
\(342\) −0.552999 + 1.41220i −0.0299027 + 0.0763632i
\(343\) 0 0
\(344\) 4.58812 0.247375
\(345\) −21.9262 + 19.9310i −1.18047 + 1.07305i
\(346\) 0.408667 0.0219701
\(347\) −13.6203 13.6203i −0.731178 0.731178i 0.239675 0.970853i \(-0.422959\pi\)
−0.970853 + 0.239675i \(0.922959\pi\)
\(348\) 3.33642 + 15.9598i 0.178851 + 0.855536i
\(349\) 9.24369i 0.494803i −0.968913 0.247402i \(-0.920423\pi\)
0.968913 0.247402i \(-0.0795767\pi\)
\(350\) 0 0
\(351\) 16.4541 + 2.77618i 0.878254 + 0.148182i
\(352\) −1.87256 + 1.87256i −0.0998076 + 0.0998076i
\(353\) 8.35049 8.35049i 0.444452 0.444452i −0.449053 0.893505i \(-0.648239\pi\)
0.893505 + 0.449053i \(0.148239\pi\)
\(354\) 3.44238 + 2.25197i 0.182960 + 0.119691i
\(355\) 6.96923 26.8769i 0.369889 1.42648i
\(356\) 1.72787i 0.0915769i
\(357\) 0 0
\(358\) −0.0527764 0.0527764i −0.00278932 0.00278932i
\(359\) 13.9626 0.736917 0.368459 0.929644i \(-0.379886\pi\)
0.368459 + 0.929644i \(0.379886\pi\)
\(360\) 4.74582 6.55095i 0.250127 0.345265i
\(361\) 16.3205 0.858975
\(362\) −4.08075 4.08075i −0.214480 0.214480i
\(363\) 17.6638 3.69263i 0.927108 0.193813i
\(364\) 0 0
\(365\) −1.57319 2.67467i −0.0823446 0.139999i
\(366\) −1.96693 1.28675i −0.102813 0.0672593i
\(367\) 10.6651 10.6651i 0.556714 0.556714i −0.371657 0.928370i \(-0.621210\pi\)
0.928370 + 0.371657i \(0.121210\pi\)
\(368\) 18.5928 18.5928i 0.969214 0.969214i
\(369\) −5.23934 11.9836i −0.272749 0.623842i
\(370\) −2.36397 0.612982i −0.122897 0.0318674i
\(371\) 0 0
\(372\) −4.00185 19.1429i −0.207486 0.992515i
\(373\) −24.6331 24.6331i −1.27545 1.27545i −0.943184 0.332271i \(-0.892185\pi\)
−0.332271 0.943184i \(-0.607815\pi\)
\(374\) −1.14450 −0.0591806
\(375\) 16.4576 + 10.2052i 0.849869 + 0.526995i
\(376\) −5.17035 −0.266640
\(377\) −11.2233 11.2233i −0.578028 0.578028i
\(378\) 0 0
\(379\) 19.0602i 0.979056i −0.871988 0.489528i \(-0.837169\pi\)
0.871988 0.489528i \(-0.162831\pi\)
\(380\) 6.74820 + 1.74982i 0.346175 + 0.0897640i
\(381\) 5.98244 9.14481i 0.306490 0.468503i
\(382\) 3.10996 3.10996i 0.159119 0.159119i
\(383\) 7.18147 7.18147i 0.366956 0.366956i −0.499410 0.866366i \(-0.666450\pi\)
0.866366 + 0.499410i \(0.166450\pi\)
\(384\) −8.28544 + 12.6652i −0.422815 + 0.646318i
\(385\) 0 0
\(386\) 2.10507i 0.107145i
\(387\) 10.6284 + 4.16194i 0.540274 + 0.211564i
\(388\) 7.10540 + 7.10540i 0.360722 + 0.360722i
\(389\) 37.2580 1.88906 0.944528 0.328431i \(-0.106520\pi\)
0.944528 + 0.328431i \(0.106520\pi\)
\(390\) −0.182890 + 3.83680i −0.00926101 + 0.194284i
\(391\) 37.1850 1.88053
\(392\) 0 0
\(393\) −0.761825 3.64421i −0.0384290 0.183826i
\(394\) 3.34396i 0.168466i
\(395\) −2.37722 + 9.16776i −0.119611 + 0.461280i
\(396\) −3.99178 + 1.74524i −0.200594 + 0.0877017i
\(397\) 6.28581 6.28581i 0.315476 0.315476i −0.531551 0.847027i \(-0.678390\pi\)
0.847027 + 0.531551i \(0.178390\pi\)
\(398\) 3.57708 3.57708i 0.179303 0.179303i
\(399\) 0 0
\(400\) −15.0188 8.35029i −0.750941 0.417514i
\(401\) 4.65150i 0.232285i −0.993233 0.116142i \(-0.962947\pi\)
0.993233 0.116142i \(-0.0370529\pi\)
\(402\) 0.0255504 0.00534133i 0.00127434 0.000266401i
\(403\) 13.4617 + 13.4617i 0.670575 + 0.670575i
\(404\) 36.1657 1.79931
\(405\) 16.9362 10.8704i 0.841567 0.540152i
\(406\) 0 0
\(407\) 1.90662 + 1.90662i 0.0945074 + 0.0945074i
\(408\) −9.93678 + 2.07729i −0.491944 + 0.102841i
\(409\) 26.5589i 1.31325i −0.754217 0.656626i \(-0.771983\pi\)
0.754217 0.656626i \(-0.228017\pi\)
\(410\) 2.59507 1.52637i 0.128161 0.0753820i
\(411\) 12.7801 + 8.36060i 0.630395 + 0.412398i
\(412\) 17.0114 17.0114i 0.838091 0.838091i
\(413\) 0 0
\(414\) −6.49486 + 2.83961i −0.319205 + 0.139559i
\(415\) 13.7746 8.10193i 0.676166 0.397708i
\(416\) 11.1536i 0.546852i
\(417\) −3.67275 17.5687i −0.179856 0.860343i
\(418\) 0.272559 + 0.272559i 0.0133313 + 0.0133313i
\(419\) −25.8278 −1.26177 −0.630885 0.775876i \(-0.717308\pi\)
−0.630885 + 0.775876i \(0.717308\pi\)
\(420\) 0 0
\(421\) 0.432430 0.0210753 0.0105377 0.999944i \(-0.496646\pi\)
0.0105377 + 0.999944i \(0.496646\pi\)
\(422\) −5.56932 5.56932i −0.271110 0.271110i
\(423\) −11.9772 4.69009i −0.582350 0.228040i
\(424\) 8.38139i 0.407036i
\(425\) −6.66845 23.3688i −0.323467 1.13355i
\(426\) 3.63630 5.55847i 0.176179 0.269309i
\(427\) 0 0
\(428\) −2.93684 + 2.93684i −0.141957 + 0.141957i
\(429\) 2.32174 3.54903i 0.112095 0.171349i
\(430\) −0.659503 + 2.54338i −0.0318041 + 0.122652i
\(431\) 16.3117i 0.785708i −0.919601 0.392854i \(-0.871488\pi\)
0.919601 0.392854i \(-0.128512\pi\)
\(432\) −14.5526 + 10.3508i −0.700160 + 0.498003i
\(433\) 0.514238 + 0.514238i 0.0247127 + 0.0247127i 0.719355 0.694642i \(-0.244437\pi\)
−0.694642 + 0.719355i \(0.744437\pi\)
\(434\) 0 0
\(435\) −19.1205 0.911426i −0.916760 0.0436995i
\(436\) 4.49436 0.215241
\(437\) −8.85549 8.85549i −0.423615 0.423615i
\(438\) −0.151899 0.726612i −0.00725802 0.0347189i
\(439\) 15.2983i 0.730150i −0.930978 0.365075i \(-0.881043\pi\)
0.930978 0.365075i \(-0.118957\pi\)
\(440\) −1.04234 1.77214i −0.0496916 0.0844835i
\(441\) 0 0
\(442\) 3.40853 3.40853i 0.162127 0.162127i
\(443\) 6.45258 6.45258i 0.306572 0.306572i −0.537007 0.843578i \(-0.680445\pi\)
0.843578 + 0.537007i \(0.180445\pi\)
\(444\) 9.76265 + 6.38663i 0.463315 + 0.303096i
\(445\) −1.96362 0.509171i −0.0930845 0.0241370i
\(446\) 6.74996i 0.319620i
\(447\) −29.5921 + 6.18625i −1.39966 + 0.292600i
\(448\) 0 0
\(449\) 9.40891 0.444034 0.222017 0.975043i \(-0.428736\pi\)
0.222017 + 0.975043i \(0.428736\pi\)
\(450\) 2.94928 + 3.57244i 0.139030 + 0.168406i
\(451\) −3.32407 −0.156524
\(452\) 22.7385 + 22.7385i 1.06953 + 1.06953i
\(453\) −25.7967 + 5.39284i −1.21204 + 0.253378i
\(454\) 3.96789i 0.186222i
\(455\) 0 0
\(456\) 2.86111 + 1.87171i 0.133984 + 0.0876509i
\(457\) −24.4154 + 24.4154i −1.14210 + 1.14210i −0.154038 + 0.988065i \(0.549228\pi\)
−0.988065 + 0.154038i \(0.950772\pi\)
\(458\) −3.34139 + 3.34139i −0.156133 + 0.156133i
\(459\) −24.9030 4.20171i −1.16237 0.196119i
\(460\) 16.5193 + 28.0854i 0.770216 + 1.30949i
\(461\) 36.9326i 1.72012i 0.510192 + 0.860061i \(0.329574\pi\)
−0.510192 + 0.860061i \(0.670426\pi\)
\(462\) 0 0
\(463\) 26.3687 + 26.3687i 1.22546 + 1.22546i 0.965664 + 0.259794i \(0.0836548\pi\)
0.259794 + 0.965664i \(0.416345\pi\)
\(464\) 16.9865 0.788578
\(465\) 22.9340 + 1.09321i 1.06354 + 0.0506962i
\(466\) 2.11906 0.0981633
\(467\) −7.21204 7.21204i −0.333733 0.333733i 0.520269 0.854002i \(-0.325832\pi\)
−0.854002 + 0.520269i \(0.825832\pi\)
\(468\) 6.69060 17.0859i 0.309273 0.789797i
\(469\) 0 0
\(470\) 0.743194 2.86613i 0.0342810 0.132205i
\(471\) −8.66332 + 13.2428i −0.399185 + 0.610197i
\(472\) 6.55723 6.55723i 0.301821 0.301821i
\(473\) 2.05131 2.05131i 0.0943195 0.0943195i
\(474\) −1.24035 + 1.89601i −0.0569711 + 0.0870865i
\(475\) −3.97713 + 7.15327i −0.182483 + 0.328215i
\(476\) 0 0
\(477\) −7.60287 + 19.4156i −0.348112 + 0.888979i
\(478\) −4.08552 4.08552i −0.186867 0.186867i
\(479\) 13.7070 0.626289 0.313144 0.949706i \(-0.398618\pi\)
0.313144 + 0.949706i \(0.398618\pi\)
\(480\) −9.04807 9.95384i −0.412986 0.454329i
\(481\) −11.3565 −0.517812
\(482\) 0.430674 + 0.430674i 0.0196167 + 0.0196167i
\(483\) 0 0
\(484\) 19.8436i 0.901980i
\(485\) −10.1687 + 5.98102i −0.461736 + 0.271584i
\(486\) 4.67051 1.16782i 0.211858 0.0529734i
\(487\) −16.1645 + 16.1645i −0.732484 + 0.732484i −0.971111 0.238627i \(-0.923303\pi\)
0.238627 + 0.971111i \(0.423303\pi\)
\(488\) −3.74672 + 3.74672i −0.169606 + 0.169606i
\(489\) 3.92413 + 2.56713i 0.177455 + 0.116090i
\(490\) 0 0
\(491\) 23.7476i 1.07172i −0.844308 0.535858i \(-0.819988\pi\)
0.844308 0.535858i \(-0.180012\pi\)
\(492\) −14.0777 + 2.94295i −0.634670 + 0.132678i
\(493\) 16.9863 + 16.9863i 0.765023 + 0.765023i
\(494\) −1.62346 −0.0730429
\(495\) −0.807059 5.05070i −0.0362746 0.227012i
\(496\) −20.3744 −0.914836
\(497\) 0 0
\(498\) 3.74205 0.782280i 0.167685 0.0350548i
\(499\) 3.23532i 0.144833i −0.997374 0.0724165i \(-0.976929\pi\)
0.997374 0.0724165i \(-0.0230711\pi\)
\(500\) 14.6877 15.4181i 0.656856 0.689518i
\(501\) −7.90313 5.17015i −0.353086 0.230985i
\(502\) 3.90937 3.90937i 0.174484 0.174484i
\(503\) 2.62851 2.62851i 0.117199 0.117199i −0.646075 0.763274i \(-0.723591\pi\)
0.763274 + 0.646075i \(0.223591\pi\)
\(504\) 0 0
\(505\) −10.6573 + 41.1001i −0.474246 + 1.82893i
\(506\) 1.80158i 0.0800898i
\(507\) −0.952430 4.55597i −0.0422989 0.202338i
\(508\) −8.49701 8.49701i −0.376994 0.376994i
\(509\) 13.8238 0.612728 0.306364 0.951914i \(-0.400887\pi\)
0.306364 + 0.951914i \(0.400887\pi\)
\(510\) 0.276802 5.80694i 0.0122570 0.257136i
\(511\) 0 0
\(512\) 14.3017 + 14.3017i 0.632050 + 0.632050i
\(513\) 4.92995 + 6.93120i 0.217663 + 0.306020i
\(514\) 6.08987i 0.268613i
\(515\) 14.3195 + 24.3453i 0.630991 + 1.07278i
\(516\) 6.87133 10.5036i 0.302493 0.462394i
\(517\) −2.31162 + 2.31162i −0.101665 + 0.101665i
\(518\) 0 0
\(519\) 1.25472 1.91797i 0.0550759 0.0841895i
\(520\) 8.38204 + 2.17348i 0.367577 + 0.0953135i
\(521\) 10.9599i 0.480162i 0.970753 + 0.240081i \(0.0771741\pi\)
−0.970753 + 0.240081i \(0.922826\pi\)
\(522\) −4.26402 1.66973i −0.186631 0.0730822i
\(523\) −9.69371 9.69371i −0.423876 0.423876i 0.462660 0.886536i \(-0.346895\pi\)
−0.886536 + 0.462660i \(0.846895\pi\)
\(524\) −4.09392 −0.178844
\(525\) 0 0
\(526\) −1.71360 −0.0747163
\(527\) −20.3741 20.3741i −0.887509 0.887509i
\(528\) 0.928755 + 4.44272i 0.0404189 + 0.193345i
\(529\) 35.5336i 1.54494i
\(530\) −4.64614 1.20475i −0.201815 0.0523312i
\(531\) 21.1381 9.24175i 0.917313 0.401058i
\(532\) 0 0
\(533\) 9.89970 9.89970i 0.428804 0.428804i
\(534\) −0.406101 0.265667i −0.0175737 0.0114965i
\(535\) −2.47211 4.20297i −0.106878 0.181710i
\(536\) 0.0588442i 0.00254168i
\(537\) −0.409730 + 0.0856544i −0.0176811 + 0.00369626i
\(538\) 2.19394 + 2.19394i 0.0945876 + 0.0945876i
\(539\) 0 0
\(540\) −7.88956 20.6755i −0.339513 0.889733i
\(541\) 7.06552 0.303770 0.151885 0.988398i \(-0.451466\pi\)
0.151885 + 0.988398i \(0.451466\pi\)
\(542\) 1.23179 + 1.23179i 0.0529098 + 0.0529098i
\(543\) −31.6809 + 6.62293i −1.35956 + 0.284217i
\(544\) 16.8809i 0.723762i
\(545\) −1.32440 + 5.10756i −0.0567312 + 0.218784i
\(546\) 0 0
\(547\) −19.7665 + 19.7665i −0.845154 + 0.845154i −0.989524 0.144370i \(-0.953885\pi\)
0.144370 + 0.989524i \(0.453885\pi\)
\(548\) 11.8748 11.8748i 0.507265 0.507265i
\(549\) −12.0780 + 5.28061i −0.515477 + 0.225371i
\(550\) 1.13219 0.323079i 0.0482769 0.0137762i
\(551\) 8.09045i 0.344665i
\(552\) 3.26991 + 15.6417i 0.139176 + 0.665753i
\(553\) 0 0
\(554\) 3.47282 0.147546
\(555\) −10.1349 + 9.21264i −0.430202 + 0.391055i
\(556\) −19.7367 −0.837024
\(557\) −30.9586 30.9586i −1.31176 1.31176i −0.920119 0.391638i \(-0.871908\pi\)
−0.391638 0.920119i \(-0.628092\pi\)
\(558\) 5.11446 + 2.00275i 0.216512 + 0.0847832i
\(559\) 12.2184i 0.516783i
\(560\) 0 0
\(561\) −3.51392 + 5.37140i −0.148358 + 0.226781i
\(562\) 0.421106 0.421106i 0.0177633 0.0177633i
\(563\) −7.84399 + 7.84399i −0.330585 + 0.330585i −0.852808 0.522224i \(-0.825103\pi\)
0.522224 + 0.852808i \(0.325103\pi\)
\(564\) −7.74329 + 11.8365i −0.326051 + 0.498405i
\(565\) −32.5415 + 19.1403i −1.36903 + 0.805238i
\(566\) 8.14252i 0.342256i
\(567\) 0 0
\(568\) −10.5881 10.5881i −0.444266 0.444266i
\(569\) 13.8064 0.578793 0.289396 0.957209i \(-0.406545\pi\)
0.289396 + 0.957209i \(0.406545\pi\)
\(570\) −1.44882 + 1.31699i −0.0606846 + 0.0551624i
\(571\) −13.1252 −0.549272 −0.274636 0.961548i \(-0.588557\pi\)
−0.274636 + 0.961548i \(0.588557\pi\)
\(572\) −3.29762 3.29762i −0.137881 0.137881i
\(573\) −5.04736 24.1442i −0.210857 1.00864i
\(574\) 0 0
\(575\) −36.7852 + 10.4969i −1.53405 + 0.437752i
\(576\) 6.97153 + 15.9455i 0.290480 + 0.664397i
\(577\) 10.7854 10.7854i 0.449001 0.449001i −0.446021 0.895022i \(-0.647159\pi\)
0.895022 + 0.446021i \(0.147159\pi\)
\(578\) −1.44628 + 1.44628i −0.0601575 + 0.0601575i
\(579\) 9.87957 + 6.46312i 0.410581 + 0.268598i
\(580\) −5.28344 + 20.3756i −0.219383 + 0.846050i
\(581\) 0 0
\(582\) −2.76247 + 0.577496i −0.114508 + 0.0239380i
\(583\) 3.74726 + 3.74726i 0.155196 + 0.155196i
\(584\) −1.67344 −0.0692473
\(585\) 17.4455 + 12.6384i 0.721283 + 0.522532i
\(586\) −3.42129 −0.141332
\(587\) 5.54217 + 5.54217i 0.228750 + 0.228750i 0.812170 0.583421i \(-0.198286\pi\)
−0.583421 + 0.812170i \(0.698286\pi\)
\(588\) 0 0
\(589\) 9.70404i 0.399848i
\(590\) 2.69238 + 4.57748i 0.110844 + 0.188452i
\(591\) −15.6940 10.2669i −0.645565 0.422322i
\(592\) 8.59407 8.59407i 0.353214 0.353214i
\(593\) −6.13323 + 6.13323i −0.251861 + 0.251861i −0.821733 0.569872i \(-0.806993\pi\)
0.569872 + 0.821733i \(0.306993\pi\)
\(594\) 0.203568 1.20653i 0.00835252 0.0495043i
\(595\) 0 0
\(596\) 33.2438i 1.36172i
\(597\) −5.80548 27.7706i −0.237603 1.13658i
\(598\) −5.36543 5.36543i −0.219409 0.219409i
\(599\) 15.8774 0.648732 0.324366 0.945932i \(-0.394849\pi\)
0.324366 + 0.945932i \(0.394849\pi\)
\(600\) 9.24356 4.86001i 0.377367 0.198409i
\(601\) −41.5249 −1.69384 −0.846919 0.531722i \(-0.821545\pi\)
−0.846919 + 0.531722i \(0.821545\pi\)
\(602\) 0 0
\(603\) 0.0533783 0.136313i 0.00217373 0.00555110i
\(604\) 28.9802i 1.17919i
\(605\) 22.5510 + 5.84753i 0.916828 + 0.237736i
\(606\) −5.56062 + 8.50001i −0.225885 + 0.345289i
\(607\) 10.8110 10.8110i 0.438805 0.438805i −0.452805 0.891610i \(-0.649577\pi\)
0.891610 + 0.452805i \(0.149577\pi\)
\(608\) 4.02013 4.02013i 0.163038 0.163038i
\(609\) 0 0
\(610\) −1.53839 2.61551i −0.0622877 0.105899i
\(611\) 13.7689i 0.557030i
\(612\) −10.1261 + 25.8593i −0.409324 + 1.04530i
\(613\) 21.8063 + 21.8063i 0.880747 + 0.880747i 0.993611 0.112863i \(-0.0360022\pi\)
−0.112863 + 0.993611i \(0.536002\pi\)
\(614\) 7.45852 0.301001
\(615\) 0.803941 16.8656i 0.0324180 0.680088i
\(616\) 0 0
\(617\) −13.2098 13.2098i −0.531808 0.531808i 0.389302 0.921110i \(-0.372716\pi\)
−0.921110 + 0.389302i \(0.872716\pi\)
\(618\) 1.38261 + 6.61376i 0.0556168 + 0.266044i
\(619\) 17.0312i 0.684542i −0.939601 0.342271i \(-0.888804\pi\)
0.939601 0.342271i \(-0.111196\pi\)
\(620\) 6.33719 24.4394i 0.254508 0.981510i
\(621\) −6.61399 + 39.2003i −0.265410 + 1.57305i
\(622\) 5.16425 5.16425i 0.207068 0.207068i
\(623\) 0 0
\(624\) −15.9973 10.4652i −0.640403 0.418945i
\(625\) 13.1935 + 21.2351i 0.527741 + 0.849406i
\(626\) 3.82329i 0.152809i
\(627\) 2.11601 0.442354i 0.0845053 0.0176659i
\(628\) 12.3047 + 12.3047i 0.491012 + 0.491012i
\(629\) 17.1879 0.685327
\(630\) 0 0
\(631\) 6.51082 0.259191 0.129596 0.991567i \(-0.458632\pi\)
0.129596 + 0.991567i \(0.458632\pi\)
\(632\) 3.61162 + 3.61162i 0.143662 + 0.143662i
\(633\) −43.2374 + 9.03883i −1.71853 + 0.359261i
\(634\) 1.35654i 0.0538752i
\(635\) 12.1602 7.15242i 0.482565 0.283835i
\(636\) 19.1875 + 12.5523i 0.760834 + 0.497730i
\(637\) 0 0
\(638\) −0.822967 + 0.822967i −0.0325816 + 0.0325816i
\(639\) −14.9228 34.1320i −0.590338 1.35024i
\(640\) −16.8414 + 9.90581i −0.665716 + 0.391562i
\(641\) 42.3545i 1.67290i 0.548042 + 0.836451i \(0.315374\pi\)
−0.548042 + 0.836451i \(0.684626\pi\)
\(642\) −0.238694 1.14180i −0.00942049 0.0450631i
\(643\) −11.2098 11.2098i −0.442072 0.442072i 0.450636 0.892708i \(-0.351197\pi\)
−0.892708 + 0.450636i \(0.851197\pi\)
\(644\) 0 0
\(645\) 9.91181 + 10.9040i 0.390277 + 0.429347i
\(646\) 2.45708 0.0966726
\(647\) 16.8086 + 16.8086i 0.660814 + 0.660814i 0.955572 0.294758i \(-0.0952390\pi\)
−0.294758 + 0.955572i \(0.595239\pi\)
\(648\) −0.422450 10.8448i −0.0165954 0.426024i
\(649\) 5.86338i 0.230158i
\(650\) −2.40969 + 4.33408i −0.0945160 + 0.169996i
\(651\) 0 0
\(652\) 3.64616 3.64616i 0.142794 0.142794i
\(653\) 15.4100 15.4100i 0.603041 0.603041i −0.338078 0.941118i \(-0.609777\pi\)
0.941118 + 0.338078i \(0.109777\pi\)
\(654\) −0.691026 + 1.05631i −0.0270213 + 0.0413049i
\(655\) 1.20640 4.65249i 0.0471380 0.181788i
\(656\) 14.9833i 0.584998i
\(657\) −3.87653 1.51800i −0.151238 0.0592227i
\(658\) 0 0
\(659\) 42.6184 1.66018 0.830088 0.557632i \(-0.188290\pi\)
0.830088 + 0.557632i \(0.188290\pi\)
\(660\) −5.61800 0.267795i −0.218680 0.0104239i
\(661\) −45.4934 −1.76949 −0.884744 0.466076i \(-0.845667\pi\)
−0.884744 + 0.466076i \(0.845667\pi\)
\(662\) −1.35804 1.35804i −0.0527816 0.0527816i
\(663\) −5.53194 26.4621i −0.214843 1.02770i
\(664\) 8.61819i 0.334451i
\(665\) 0 0
\(666\) −3.00210 + 1.31254i −0.116329 + 0.0508601i
\(667\) 26.7384 26.7384i 1.03531 1.03531i
\(668\) −7.34328 + 7.34328i −0.284120 + 0.284120i
\(669\) 31.6792 + 20.7242i 1.22479 + 0.801244i
\(670\) 0.0326196 + 0.00845835i 0.00126021 + 0.000326774i
\(671\) 3.35026i 0.129335i
\(672\) 0 0
\(673\) −32.1249 32.1249i −1.23832 1.23832i −0.960686 0.277636i \(-0.910449\pi\)
−0.277636 0.960686i \(-0.589551\pi\)
\(674\) 6.57332 0.253195
\(675\) 25.8214 2.87331i 0.993866 0.110594i
\(676\) −5.11819 −0.196854
\(677\) −30.1078 30.1078i −1.15714 1.15714i −0.985088 0.172049i \(-0.944961\pi\)
−0.172049 0.985088i \(-0.555039\pi\)
\(678\) −8.84036 + 1.84809i −0.339512 + 0.0709753i
\(679\) 0 0
\(680\) −12.6861 3.28953i −0.486489 0.126148i
\(681\) 18.6223 + 12.1825i 0.713607 + 0.466834i
\(682\) 0.987103 0.987103i 0.0377981 0.0377981i
\(683\) 1.64841 1.64841i 0.0630747 0.0630747i −0.674866 0.737940i \(-0.735798\pi\)
0.737940 + 0.674866i \(0.235798\pi\)
\(684\) 8.56980 3.74680i 0.327675 0.143262i
\(685\) 9.99568 + 16.9942i 0.381915 + 0.649316i
\(686\) 0 0
\(687\) 5.42298 + 25.9409i 0.206899 + 0.989708i
\(688\) −9.24630 9.24630i −0.352512 0.352512i
\(689\) −22.3201 −0.850326
\(690\) −9.14081 0.435718i −0.347985 0.0165875i
\(691\) 16.5565 0.629838 0.314919 0.949119i \(-0.398023\pi\)
0.314919 + 0.949119i \(0.398023\pi\)
\(692\) −1.78210 1.78210i −0.0677454 0.0677454i
\(693\) 0 0
\(694\) 5.94884i 0.225815i
\(695\) 5.81605 22.4296i 0.220615 0.850804i
\(696\) −5.65147 + 8.63888i −0.214218 + 0.327456i
\(697\) −14.9831 + 14.9831i −0.567524 + 0.567524i
\(698\) 2.01864 2.01864i 0.0764068 0.0764068i
\(699\) 6.50607 9.94523i 0.246082 0.376163i
\(700\) 0 0
\(701\) 26.5973i 1.00457i 0.864703 + 0.502284i \(0.167507\pi\)
−0.864703 + 0.502284i \(0.832493\pi\)
\(702\) 2.98699 + 4.19952i 0.112737 + 0.158501i
\(703\) −4.09324 4.09324i −0.154380 0.154380i
\(704\) 4.42305 0.166700
\(705\) −11.1696 12.2878i −0.420672 0.462784i
\(706\) 3.64717 0.137263
\(707\) 0 0
\(708\) −5.19111 24.8318i −0.195094 0.933235i
\(709\) 15.9176i 0.597798i −0.954285 0.298899i \(-0.903381\pi\)
0.954285 0.298899i \(-0.0966194\pi\)
\(710\) 7.39134 4.34744i 0.277392 0.163157i
\(711\) 5.09021 + 11.6425i 0.190898 + 0.436628i
\(712\) −0.773563 + 0.773563i −0.0289905 + 0.0289905i
\(713\) −32.0712 + 32.0712i −1.20108 + 1.20108i
\(714\) 0 0
\(715\) 4.71930 2.77580i 0.176492 0.103809i
\(716\) 0.460292i 0.0172019i
\(717\) −31.7179 + 6.63067i −1.18453 + 0.247627i
\(718\) 3.04916 + 3.04916i 0.113794 + 0.113794i
\(719\) −21.3813 −0.797388 −0.398694 0.917084i \(-0.630536\pi\)
−0.398694 + 0.917084i \(0.630536\pi\)
\(720\) −22.7660 + 3.63782i −0.848440 + 0.135573i
\(721\) 0 0
\(722\) 3.56409 + 3.56409i 0.132642 + 0.132642i
\(723\) 3.34354 0.698971i 0.124348 0.0259950i
\(724\) 35.5905i 1.32271i
\(725\) −21.5987 12.0086i −0.802155 0.445989i
\(726\) 4.66383 + 3.05103i 0.173091 + 0.113234i
\(727\) −7.43836 + 7.43836i −0.275873 + 0.275873i −0.831459 0.555586i \(-0.812494\pi\)
0.555586 + 0.831459i \(0.312494\pi\)
\(728\) 0 0
\(729\) 8.85885 25.5053i 0.328106 0.944641i
\(730\) 0.240542 0.927651i 0.00890287 0.0343339i
\(731\) 18.4923i 0.683964i
\(732\) 2.96613 + 14.1886i 0.109631 + 0.524424i
\(733\) −25.8200 25.8200i −0.953683 0.953683i 0.0452905 0.998974i \(-0.485579\pi\)
−0.998974 + 0.0452905i \(0.985579\pi\)
\(734\) 4.65810 0.171934
\(735\) 0 0
\(736\) 26.5725 0.979475
\(737\) −0.0263088 0.0263088i −0.000969096 0.000969096i
\(738\) 1.47282 3.76116i 0.0542152 0.138450i
\(739\) 38.3589i 1.41105i −0.708683 0.705527i \(-0.750710\pi\)
0.708683 0.705527i \(-0.249290\pi\)
\(740\) 7.63566 + 12.9818i 0.280692 + 0.477221i
\(741\) −4.98446 + 7.61928i −0.183109 + 0.279901i
\(742\) 0 0
\(743\) 30.8182 30.8182i 1.13061 1.13061i 0.140534 0.990076i \(-0.455118\pi\)
0.990076 0.140534i \(-0.0448819\pi\)
\(744\) 6.77863 10.3619i 0.248516 0.379884i
\(745\) −37.7796 9.79634i −1.38414 0.358910i
\(746\) 10.7588i 0.393908i
\(747\) 7.81768 19.9641i 0.286034 0.730450i
\(748\) 4.99090 + 4.99090i 0.182485 + 0.182485i
\(749\) 0 0
\(750\) 1.36541 + 5.82265i 0.0498578 + 0.212613i
\(751\) 39.8711 1.45492 0.727459 0.686151i \(-0.240701\pi\)
0.727459 + 0.686151i \(0.240701\pi\)
\(752\) 10.4196 + 10.4196i 0.379965 + 0.379965i
\(753\) −6.34478 30.3504i −0.231217 1.10603i
\(754\) 4.90190i 0.178517i
\(755\) −32.9342 8.53991i −1.19860 0.310799i
\(756\) 0 0
\(757\) 0.798673 0.798673i 0.0290283 0.0290283i −0.692444 0.721472i \(-0.743466\pi\)
0.721472 + 0.692444i \(0.243466\pi\)
\(758\) 4.16238 4.16238i 0.151184 0.151184i
\(759\) 8.45522 + 5.53132i 0.306905 + 0.200774i
\(760\) 2.23776 + 3.80454i 0.0811721 + 0.138005i
\(761\) 43.1790i 1.56524i 0.622500 + 0.782619i \(0.286117\pi\)
−0.622500 + 0.782619i \(0.713883\pi\)
\(762\) 3.30350 0.690601i 0.119673 0.0250178i
\(763\) 0 0
\(764\) −27.1236 −0.981299
\(765\) −26.4035 19.1280i −0.954621 0.691573i
\(766\) 3.13659 0.113330
\(767\) 17.4622 + 17.4622i 0.630524 + 0.630524i
\(768\) 15.0947 3.15557i 0.544685 0.113867i
\(769\) 44.1875i 1.59344i −0.604348 0.796720i \(-0.706566\pi\)
0.604348 0.796720i \(-0.293434\pi\)
\(770\) 0 0
\(771\) 28.5812 + 18.6975i 1.02933 + 0.673376i
\(772\) 9.17972 9.17972i 0.330385 0.330385i
\(773\) −15.4692 + 15.4692i −0.556390 + 0.556390i −0.928278 0.371888i \(-0.878711\pi\)
0.371888 + 0.928278i \(0.378711\pi\)
\(774\) 1.41216 + 3.22993i 0.0507589 + 0.116098i
\(775\) 25.9064 + 14.4037i 0.930586 + 0.517395i
\(776\) 6.36214i 0.228388i
\(777\) 0 0
\(778\) 8.13643 + 8.13643i 0.291705 + 0.291705i
\(779\) 7.13633 0.255686
\(780\) 17.5290 15.9339i 0.627638 0.570525i
\(781\) −9.46770 −0.338781
\(782\) 8.12049 + 8.12049i 0.290388 + 0.290388i
\(783\) −20.9281 + 14.8856i −0.747911 + 0.531966i
\(784\) 0 0
\(785\) −17.6095 + 10.3576i −0.628512 + 0.369679i
\(786\) 0.629457 0.962193i 0.0224520 0.0343203i
\(787\) −0.213202 + 0.213202i −0.00759982 + 0.00759982i −0.710896 0.703297i \(-0.751711\pi\)
0.703297 + 0.710896i \(0.251711\pi\)
\(788\) −14.5823 + 14.5823i −0.519472 + 0.519472i
\(789\) −5.26120 + 8.04231i −0.187304 + 0.286314i
\(790\) −2.52120 + 1.48292i −0.0897003 + 0.0527600i
\(791\) 0 0
\(792\) −2.56845 1.00577i −0.0912659 0.0357385i
\(793\) −9.97768 9.97768i −0.354318 0.354318i
\(794\) 2.74540 0.0974306
\(795\) −19.9191 + 18.1065i −0.706457 + 0.642171i
\(796\) −31.1977 −1.10577
\(797\) −8.45240 8.45240i −0.299399 0.299399i 0.541379 0.840779i \(-0.317902\pi\)
−0.840779 + 0.541379i \(0.817902\pi\)
\(798\) 0 0
\(799\) 20.8390i 0.737231i
\(800\) −4.76529 16.6994i −0.168478 0.590413i
\(801\) −2.49368 + 1.09026i −0.0881098 + 0.0385224i
\(802\) 1.01580 1.01580i 0.0358691 0.0358691i
\(803\) −0.748181 + 0.748181i −0.0264027 + 0.0264027i
\(804\) −0.134712 0.0881271i −0.00475092 0.00310800i
\(805\) 0 0
\(806\) 5.87955i 0.207098i
\(807\) 17.0327 3.56070i 0.599579 0.125343i
\(808\) 16.1913 + 16.1913i 0.569608 + 0.569608i
\(809\) −37.1351 −1.30560 −0.652801 0.757530i \(-0.726406\pi\)
−0.652801 + 0.757530i \(0.726406\pi\)
\(810\) 6.07242 + 1.32467i 0.213363 + 0.0465440i
\(811\) −23.5491 −0.826921 −0.413461 0.910522i \(-0.635680\pi\)
−0.413461 + 0.910522i \(0.635680\pi\)
\(812\) 0 0
\(813\) 9.56300 1.99915i 0.335389 0.0701134i
\(814\) 0.832736i 0.0291874i
\(815\) 3.06918 + 5.21809i 0.107509 + 0.182782i
\(816\) 24.2116 + 15.8390i 0.847576 + 0.554475i
\(817\) −4.40389 + 4.40389i −0.154073 + 0.154073i
\(818\) 5.79994 5.79994i 0.202790 0.202790i
\(819\) 0 0
\(820\) −17.9727 4.66036i −0.627633 0.162747i
\(821\) 40.9914i 1.43061i 0.698812 + 0.715306i \(0.253713\pi\)
−0.698812 + 0.715306i \(0.746287\pi\)
\(822\) 0.965130 + 4.61672i 0.0336628 + 0.161027i
\(823\) −18.2198 18.2198i −0.635104 0.635104i 0.314240 0.949344i \(-0.398250\pi\)
−0.949344 + 0.314240i \(0.898250\pi\)
\(824\) 15.2319 0.530629
\(825\) 1.95985 6.30560i 0.0682333 0.219533i
\(826\) 0 0
\(827\) −19.5668 19.5668i −0.680404 0.680404i 0.279687 0.960091i \(-0.409769\pi\)
−0.960091 + 0.279687i \(0.909769\pi\)
\(828\) 40.7055 + 15.9397i 1.41462 + 0.553943i
\(829\) 25.3202i 0.879406i 0.898143 + 0.439703i \(0.144916\pi\)
−0.898143 + 0.439703i \(0.855084\pi\)
\(830\) 4.77740 + 1.23879i 0.165826 + 0.0429991i
\(831\) 10.6625 16.2988i 0.369878 0.565398i
\(832\) −13.1727 + 13.1727i −0.456680 + 0.456680i
\(833\) 0 0
\(834\) 3.03461 4.63873i 0.105080 0.160626i
\(835\) −6.18127 10.5091i −0.213912 0.363683i
\(836\) 2.37713i 0.0822149i
\(837\) 25.1022 17.8544i 0.867657 0.617138i
\(838\) −5.64030 5.64030i −0.194841 0.194841i
\(839\) 50.7484 1.75203 0.876014 0.482286i \(-0.160193\pi\)
0.876014 + 0.482286i \(0.160193\pi\)
\(840\) 0 0
\(841\) −4.57160 −0.157641
\(842\) 0.0944344 + 0.0944344i 0.00325442 + 0.00325442i
\(843\) −0.683443 3.26926i −0.0235390 0.112599i
\(844\) 48.5731i 1.67196i
\(845\) 1.50824 5.81651i 0.0518849 0.200094i
\(846\) −1.59136 3.63981i −0.0547120 0.125139i
\(847\) 0 0
\(848\) 16.8908 16.8908i 0.580031 0.580031i
\(849\) 38.2148 + 24.9997i 1.31153 + 0.857989i
\(850\) 3.64704 6.55956i 0.125092 0.224991i
\(851\) 27.0558i 0.927460i
\(852\) −40.0963 + 8.38218i −1.37368 + 0.287169i
\(853\) 18.8448 + 18.8448i 0.645233 + 0.645233i 0.951837 0.306604i \(-0.0991928\pi\)
−0.306604 + 0.951837i \(0.599193\pi\)
\(854\) 0 0
\(855\) 1.73265 + 10.8432i 0.0592552 + 0.370829i
\(856\) −2.62963 −0.0898790
\(857\) −8.80014 8.80014i −0.300607 0.300607i 0.540644 0.841251i \(-0.318181\pi\)
−0.841251 + 0.540644i \(0.818181\pi\)
\(858\) 1.28206 0.268017i 0.0437689 0.00914994i
\(859\) 3.85330i 0.131473i −0.997837 0.0657364i \(-0.979060\pi\)
0.997837 0.0657364i \(-0.0209397\pi\)
\(860\) 13.9670 8.21515i 0.476272 0.280134i
\(861\) 0 0
\(862\) 3.56217 3.56217i 0.121328 0.121328i
\(863\) −35.2942 + 35.2942i −1.20143 + 1.20143i −0.227695 + 0.973732i \(0.573119\pi\)
−0.973732 + 0.227695i \(0.926881\pi\)
\(864\) −17.7957 3.00255i −0.605424 0.102149i
\(865\) 2.55040 1.50010i 0.0867164 0.0510049i
\(866\) 0.224599i 0.00763219i
\(867\) 2.34727 + 11.2282i 0.0797176 + 0.381331i
\(868\) 0 0
\(869\) 3.22945 0.109552
\(870\) −3.97652 4.37460i −0.134817 0.148313i
\(871\) 0.156705 0.00530974
\(872\) 2.01211 + 2.01211i 0.0681387 + 0.0681387i
\(873\) −5.77118 + 14.7380i −0.195325 + 0.498805i
\(874\) 3.86774i 0.130828i
\(875\) 0 0
\(876\) −2.50620 + 3.83099i −0.0846765 + 0.129437i
\(877\) −31.9696 + 31.9696i −1.07954 + 1.07954i −0.0829852 + 0.996551i \(0.526445\pi\)
−0.996551 + 0.0829852i \(0.973555\pi\)
\(878\) 3.34086 3.34086i 0.112749 0.112749i
\(879\) −10.5043 + 16.0569i −0.354301 + 0.541587i
\(880\) −1.47075 + 5.67193i −0.0495788 + 0.191201i
\(881\) 25.2055i 0.849195i −0.905382 0.424597i \(-0.860416\pi\)
0.905382 0.424597i \(-0.139584\pi\)
\(882\) 0 0
\(883\) −14.2942 14.2942i −0.481039 0.481039i 0.424424 0.905463i \(-0.360476\pi\)
−0.905463 + 0.424424i \(0.860476\pi\)
\(884\) −29.7277 −0.999850
\(885\) 29.7495 + 1.41808i 1.00002 + 0.0476683i
\(886\) 2.81824 0.0946806
\(887\) 27.5143 + 27.5143i 0.923840 + 0.923840i 0.997298 0.0734580i \(-0.0234035\pi\)
−0.0734580 + 0.997298i \(0.523403\pi\)
\(888\) 1.51144 + 7.23000i 0.0507206 + 0.242623i
\(889\) 0 0
\(890\) −0.317623 0.540010i −0.0106468 0.0181012i
\(891\) −5.03750 4.65975i −0.168763 0.156108i
\(892\) 29.4351 29.4351i 0.985559 0.985559i
\(893\) 4.96274 4.96274i 0.166072 0.166072i
\(894\) −7.81330 5.11138i −0.261316 0.170950i
\(895\) −0.523094 0.135639i −0.0174851 0.00453393i
\(896\) 0 0
\(897\) −41.6545 + 8.70792i −1.39080 + 0.290749i
\(898\) 2.05472 + 2.05472i 0.0685670 + 0.0685670i
\(899\) −29.3005 −0.977227
\(900\) 2.71747 28.4398i 0.0905824 0.947992i
\(901\) 33.7811 1.12541
\(902\) −0.725914 0.725914i −0.0241703 0.0241703i
\(903\) 0 0
\(904\) 20.3599i 0.677161i
\(905\) −40.4464 10.4879i −1.34448 0.348628i
\(906\) −6.81120 4.45582i −0.226287 0.148035i
\(907\) 1.70404 1.70404i 0.0565816 0.0565816i −0.678250 0.734831i \(-0.737261\pi\)
0.734831 + 0.678250i \(0.237261\pi\)
\(908\) 17.3031 17.3031i 0.574224 0.574224i
\(909\) 22.8200 + 52.1946i 0.756891 + 1.73119i
\(910\) 0 0
\(911\) 19.3662i 0.641631i 0.947142 + 0.320815i \(0.103957\pi\)
−0.947142 + 0.320815i \(0.896043\pi\)
\(912\) −1.99391 9.53792i −0.0660250 0.315832i
\(913\) −3.85313 3.85313i −0.127520 0.127520i
\(914\) −10.6637 −0.352724
\(915\) −16.9985 0.810273i −0.561953 0.0267868i
\(916\) 29.1421 0.962883
\(917\) 0 0
\(918\) −4.52077 6.35591i −0.149208 0.209776i
\(919\) 34.1319i 1.12591i 0.826489 + 0.562953i \(0.190335\pi\)
−0.826489 + 0.562953i \(0.809665\pi\)
\(920\) −5.17811 + 19.9694i −0.170717 + 0.658372i
\(921\) 22.8997 35.0046i 0.754569 1.15344i
\(922\) −8.06536 + 8.06536i −0.265619 + 0.265619i
\(923\) 28.1966 28.1966i 0.928102 0.928102i
\(924\) 0 0
\(925\) −17.0031 + 4.85196i −0.559059 + 0.159531i
\(926\) 11.5168i 0.378467i
\(927\) 35.2849 + 13.8171i 1.15891 + 0.453812i
\(928\) 12.1384 + 12.1384i 0.398463 + 0.398463i
\(929\) −19.7246 −0.647144 −0.323572 0.946204i \(-0.604884\pi\)
−0.323572 + 0.946204i \(0.604884\pi\)
\(930\) 4.76962 + 5.24709i 0.156402 + 0.172059i
\(931\) 0 0
\(932\) −9.24073 9.24073i −0.302690 0.302690i
\(933\) −8.38142 40.0927i −0.274395 1.31258i
\(934\) 3.14994i 0.103069i
\(935\) −7.14258 + 4.20113i −0.233587 + 0.137392i
\(936\) 10.6447 4.65396i 0.347933 0.152119i
\(937\) 17.3041 17.3041i 0.565300 0.565300i −0.365508 0.930808i \(-0.619105\pi\)
0.930808 + 0.365508i \(0.119105\pi\)
\(938\) 0 0
\(939\) 17.9436 + 11.7385i 0.585568 + 0.383072i
\(940\) −15.7394 + 9.25764i −0.513364 + 0.301951i
\(941\) 4.49489i 0.146529i −0.997313 0.0732646i \(-0.976658\pi\)
0.997313 0.0732646i \(-0.0233418\pi\)
\(942\) −4.78388 + 1.00008i −0.155867 + 0.0325842i
\(943\) 23.5851 + 23.5851i 0.768036 + 0.768036i
\(944\) −26.4292 −0.860196
\(945\) 0 0
\(946\) 0.895935 0.0291294
\(947\) 10.6067 + 10.6067i 0.344673 + 0.344673i 0.858121 0.513448i \(-0.171632\pi\)
−0.513448 + 0.858121i \(0.671632\pi\)
\(948\) 13.6769 2.85918i 0.444207 0.0928619i
\(949\) 4.45644i 0.144662i
\(950\) −2.43067 + 0.693608i −0.0788613 + 0.0225036i
\(951\) 6.36658 + 4.16495i 0.206451 + 0.135058i
\(952\) 0 0
\(953\) −21.6181 + 21.6181i −0.700277 + 0.700277i −0.964470 0.264193i \(-0.914895\pi\)
0.264193 + 0.964470i \(0.414895\pi\)
\(954\) −5.90031 + 2.57967i −0.191030 + 0.0835199i
\(955\) 7.99283 30.8244i 0.258642 0.997453i
\(956\) 35.6321i 1.15242i
\(957\) 1.33565 + 6.38911i 0.0431754 + 0.206531i
\(958\) 2.99334 + 2.99334i 0.0967106 + 0.0967106i
\(959\) 0 0
\(960\) −1.06973 + 22.4416i −0.0345255 + 0.724300i
\(961\) 4.14435 0.133689
\(962\) −2.48004 2.48004i −0.0799598 0.0799598i
\(963\) −6.09157 2.38537i −0.196298 0.0768676i
\(964\) 3.75615i 0.120977i
\(965\) 7.72710 + 13.1373i 0.248744 + 0.422904i
\(966\) 0 0
\(967\) 16.1911 16.1911i 0.520672 0.520672i −0.397102 0.917774i \(-0.629984\pi\)
0.917774 + 0.397102i \(0.129984\pi\)
\(968\) 8.88392 8.88392i 0.285540 0.285540i
\(969\) 7.54390 11.5317i 0.242345 0.370451i
\(970\) −3.52678 0.914504i −0.113238 0.0293629i
\(971\) 18.2948i 0.587107i 0.955943 + 0.293553i \(0.0948379\pi\)
−0.955943 + 0.293553i \(0.905162\pi\)
\(972\) −25.4596 15.2744i −0.816618 0.489928i
\(973\) 0 0
\(974\) −7.06004 −0.226218
\(975\) 12.9424 + 24.6160i 0.414490 + 0.788344i
\(976\) 15.1013 0.483380
\(977\) −10.5379 10.5379i −0.337139 0.337139i 0.518151 0.855289i \(-0.326621\pi\)
−0.855289 + 0.518151i \(0.826621\pi\)
\(978\) 0.296344 + 1.41757i 0.00947603 + 0.0453288i
\(979\) 0.691709i 0.0221071i
\(980\) 0 0
\(981\) 2.83587 + 6.48630i 0.0905423 + 0.207092i
\(982\) 5.18603 5.18603i 0.165493 0.165493i
\(983\) −8.31506 + 8.31506i −0.265209 + 0.265209i −0.827166 0.561957i \(-0.810049\pi\)
0.561957 + 0.827166i \(0.310049\pi\)
\(984\) −7.62009 4.98499i −0.242920 0.158916i
\(985\) −12.2747 20.8690i −0.391106 0.664941i
\(986\) 7.41895i 0.236267i
\(987\) 0 0
\(988\) 7.07955 + 7.07955i 0.225230 + 0.225230i
\(989\) −29.1091 −0.925616
\(990\) 0.926730 1.27922i 0.0294534 0.0406564i
\(991\) 10.0401 0.318933 0.159467 0.987203i \(-0.449023\pi\)
0.159467 + 0.987203i \(0.449023\pi\)
\(992\) −14.5594 14.5594i −0.462260 0.462260i
\(993\) −10.5431 + 2.20405i −0.334576 + 0.0699434i
\(994\) 0 0
\(995\) 9.19337 35.4542i 0.291449 1.12397i
\(996\) −19.7296 12.9069i −0.625156 0.408971i
\(997\) 9.95260 9.95260i 0.315202 0.315202i −0.531719 0.846921i \(-0.678454\pi\)
0.846921 + 0.531719i \(0.178454\pi\)
\(998\) 0.706533 0.706533i 0.0223649 0.0223649i
\(999\) −3.05716 + 18.1194i −0.0967243 + 0.573273i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 735.2.j.e.638.7 24
3.2 odd 2 inner 735.2.j.e.638.6 24
5.2 odd 4 inner 735.2.j.e.197.6 24
7.2 even 3 735.2.y.i.263.7 48
7.3 odd 6 105.2.x.a.23.6 yes 48
7.4 even 3 735.2.y.i.128.6 48
7.5 odd 6 105.2.x.a.53.7 yes 48
7.6 odd 2 735.2.j.g.638.7 24
15.2 even 4 inner 735.2.j.e.197.7 24
21.2 odd 6 735.2.y.i.263.6 48
21.5 even 6 105.2.x.a.53.6 yes 48
21.11 odd 6 735.2.y.i.128.7 48
21.17 even 6 105.2.x.a.23.7 yes 48
21.20 even 2 735.2.j.g.638.6 24
35.2 odd 12 735.2.y.i.557.7 48
35.3 even 12 525.2.bf.f.107.7 48
35.12 even 12 105.2.x.a.32.7 yes 48
35.17 even 12 105.2.x.a.2.6 48
35.19 odd 6 525.2.bf.f.368.6 48
35.24 odd 6 525.2.bf.f.443.7 48
35.27 even 4 735.2.j.g.197.6 24
35.32 odd 12 735.2.y.i.422.6 48
35.33 even 12 525.2.bf.f.32.6 48
105.2 even 12 735.2.y.i.557.6 48
105.17 odd 12 105.2.x.a.2.7 yes 48
105.32 even 12 735.2.y.i.422.7 48
105.38 odd 12 525.2.bf.f.107.6 48
105.47 odd 12 105.2.x.a.32.6 yes 48
105.59 even 6 525.2.bf.f.443.6 48
105.62 odd 4 735.2.j.g.197.7 24
105.68 odd 12 525.2.bf.f.32.7 48
105.89 even 6 525.2.bf.f.368.7 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
105.2.x.a.2.6 48 35.17 even 12
105.2.x.a.2.7 yes 48 105.17 odd 12
105.2.x.a.23.6 yes 48 7.3 odd 6
105.2.x.a.23.7 yes 48 21.17 even 6
105.2.x.a.32.6 yes 48 105.47 odd 12
105.2.x.a.32.7 yes 48 35.12 even 12
105.2.x.a.53.6 yes 48 21.5 even 6
105.2.x.a.53.7 yes 48 7.5 odd 6
525.2.bf.f.32.6 48 35.33 even 12
525.2.bf.f.32.7 48 105.68 odd 12
525.2.bf.f.107.6 48 105.38 odd 12
525.2.bf.f.107.7 48 35.3 even 12
525.2.bf.f.368.6 48 35.19 odd 6
525.2.bf.f.368.7 48 105.89 even 6
525.2.bf.f.443.6 48 105.59 even 6
525.2.bf.f.443.7 48 35.24 odd 6
735.2.j.e.197.6 24 5.2 odd 4 inner
735.2.j.e.197.7 24 15.2 even 4 inner
735.2.j.e.638.6 24 3.2 odd 2 inner
735.2.j.e.638.7 24 1.1 even 1 trivial
735.2.j.g.197.6 24 35.27 even 4
735.2.j.g.197.7 24 105.62 odd 4
735.2.j.g.638.6 24 21.20 even 2
735.2.j.g.638.7 24 7.6 odd 2
735.2.y.i.128.6 48 7.4 even 3
735.2.y.i.128.7 48 21.11 odd 6
735.2.y.i.263.6 48 21.2 odd 6
735.2.y.i.263.7 48 7.2 even 3
735.2.y.i.422.6 48 35.32 odd 12
735.2.y.i.422.7 48 105.32 even 12
735.2.y.i.557.6 48 105.2 even 12
735.2.y.i.557.7 48 35.2 odd 12