Properties

Label 735.2.i.h.226.1
Level $735$
Weight $2$
Character 735.226
Analytic conductor $5.869$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [735,2,Mod(226,735)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("735.226"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(735, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 2])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 735 = 3 \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 735.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-2,2,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.86900454856\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{2}, \sqrt{-3})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 2x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 226.1
Root \(-0.707107 + 1.22474i\) of defining polynomial
Character \(\chi\) \(=\) 735.226
Dual form 735.2.i.h.361.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.20711 + 2.09077i) q^{2} +(0.500000 + 0.866025i) q^{3} +(-1.91421 - 3.31552i) q^{4} +(0.500000 - 0.866025i) q^{5} -2.41421 q^{6} +4.41421 q^{8} +(-0.500000 + 0.866025i) q^{9} +(1.20711 + 2.09077i) q^{10} +(-1.41421 - 2.44949i) q^{11} +(1.91421 - 3.31552i) q^{12} +4.82843 q^{13} +1.00000 q^{15} +(-1.50000 + 2.59808i) q^{16} +(-3.82843 - 6.63103i) q^{17} +(-1.20711 - 2.09077i) q^{18} +(-0.414214 + 0.717439i) q^{19} -3.82843 q^{20} +6.82843 q^{22} +(3.82843 - 6.63103i) q^{23} +(2.20711 + 3.82282i) q^{24} +(-0.500000 - 0.866025i) q^{25} +(-5.82843 + 10.0951i) q^{26} -1.00000 q^{27} +6.00000 q^{29} +(-1.20711 + 2.09077i) q^{30} +(3.24264 + 5.61642i) q^{31} +(0.792893 + 1.37333i) q^{32} +(1.41421 - 2.44949i) q^{33} +18.4853 q^{34} +3.82843 q^{36} +(1.82843 - 3.16693i) q^{37} +(-1.00000 - 1.73205i) q^{38} +(2.41421 + 4.18154i) q^{39} +(2.20711 - 3.82282i) q^{40} -11.6569 q^{41} +8.00000 q^{43} +(-5.41421 + 9.37769i) q^{44} +(0.500000 + 0.866025i) q^{45} +(9.24264 + 16.0087i) q^{46} +(2.82843 - 4.89898i) q^{47} -3.00000 q^{48} +2.41421 q^{50} +(3.82843 - 6.63103i) q^{51} +(-9.24264 - 16.0087i) q^{52} +(4.24264 + 7.34847i) q^{53} +(1.20711 - 2.09077i) q^{54} -2.82843 q^{55} -0.828427 q^{57} +(-7.24264 + 12.5446i) q^{58} +(1.17157 + 2.02922i) q^{59} +(-1.91421 - 3.31552i) q^{60} -15.6569 q^{62} -9.82843 q^{64} +(2.41421 - 4.18154i) q^{65} +(3.41421 + 5.91359i) q^{66} +(-14.6569 + 25.3864i) q^{68} +7.65685 q^{69} -2.82843 q^{71} +(-2.20711 + 3.82282i) q^{72} +(-5.58579 - 9.67487i) q^{73} +(4.41421 + 7.64564i) q^{74} +(0.500000 - 0.866025i) q^{75} +3.17157 q^{76} -11.6569 q^{78} +(4.00000 - 6.92820i) q^{79} +(1.50000 + 2.59808i) q^{80} +(-0.500000 - 0.866025i) q^{81} +(14.0711 - 24.3718i) q^{82} +1.65685 q^{83} -7.65685 q^{85} +(-9.65685 + 16.7262i) q^{86} +(3.00000 + 5.19615i) q^{87} +(-6.24264 - 10.8126i) q^{88} +(-2.65685 + 4.60181i) q^{89} -2.41421 q^{90} -29.3137 q^{92} +(-3.24264 + 5.61642i) q^{93} +(6.82843 + 11.8272i) q^{94} +(0.414214 + 0.717439i) q^{95} +(-0.792893 + 1.37333i) q^{96} -6.48528 q^{97} +2.82843 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{2} + 2 q^{3} - 2 q^{4} + 2 q^{5} - 4 q^{6} + 12 q^{8} - 2 q^{9} + 2 q^{10} + 2 q^{12} + 8 q^{13} + 4 q^{15} - 6 q^{16} - 4 q^{17} - 2 q^{18} + 4 q^{19} - 4 q^{20} + 16 q^{22} + 4 q^{23} + 6 q^{24}+ \cdots + 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/735\mathbb{Z}\right)^\times\).

\(n\) \(346\) \(442\) \(491\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.20711 + 2.09077i −0.853553 + 1.47840i 0.0244272 + 0.999702i \(0.492224\pi\)
−0.877981 + 0.478696i \(0.841110\pi\)
\(3\) 0.500000 + 0.866025i 0.288675 + 0.500000i
\(4\) −1.91421 3.31552i −0.957107 1.65776i
\(5\) 0.500000 0.866025i 0.223607 0.387298i
\(6\) −2.41421 −0.985599
\(7\) 0 0
\(8\) 4.41421 1.56066
\(9\) −0.500000 + 0.866025i −0.166667 + 0.288675i
\(10\) 1.20711 + 2.09077i 0.381721 + 0.661160i
\(11\) −1.41421 2.44949i −0.426401 0.738549i 0.570149 0.821541i \(-0.306886\pi\)
−0.996550 + 0.0829925i \(0.973552\pi\)
\(12\) 1.91421 3.31552i 0.552586 0.957107i
\(13\) 4.82843 1.33916 0.669582 0.742738i \(-0.266473\pi\)
0.669582 + 0.742738i \(0.266473\pi\)
\(14\) 0 0
\(15\) 1.00000 0.258199
\(16\) −1.50000 + 2.59808i −0.375000 + 0.649519i
\(17\) −3.82843 6.63103i −0.928530 1.60826i −0.785783 0.618502i \(-0.787740\pi\)
−0.142747 0.989759i \(-0.545593\pi\)
\(18\) −1.20711 2.09077i −0.284518 0.492799i
\(19\) −0.414214 + 0.717439i −0.0950271 + 0.164592i −0.909620 0.415441i \(-0.863627\pi\)
0.814593 + 0.580033i \(0.196960\pi\)
\(20\) −3.82843 −0.856062
\(21\) 0 0
\(22\) 6.82843 1.45583
\(23\) 3.82843 6.63103i 0.798282 1.38267i −0.122452 0.992474i \(-0.539076\pi\)
0.920734 0.390191i \(-0.127591\pi\)
\(24\) 2.20711 + 3.82282i 0.450524 + 0.780330i
\(25\) −0.500000 0.866025i −0.100000 0.173205i
\(26\) −5.82843 + 10.0951i −1.14305 + 1.97982i
\(27\) −1.00000 −0.192450
\(28\) 0 0
\(29\) 6.00000 1.11417 0.557086 0.830455i \(-0.311919\pi\)
0.557086 + 0.830455i \(0.311919\pi\)
\(30\) −1.20711 + 2.09077i −0.220387 + 0.381721i
\(31\) 3.24264 + 5.61642i 0.582395 + 1.00874i 0.995195 + 0.0979165i \(0.0312178\pi\)
−0.412799 + 0.910822i \(0.635449\pi\)
\(32\) 0.792893 + 1.37333i 0.140165 + 0.242773i
\(33\) 1.41421 2.44949i 0.246183 0.426401i
\(34\) 18.4853 3.17020
\(35\) 0 0
\(36\) 3.82843 0.638071
\(37\) 1.82843 3.16693i 0.300592 0.520640i −0.675679 0.737196i \(-0.736149\pi\)
0.976270 + 0.216557i \(0.0694826\pi\)
\(38\) −1.00000 1.73205i −0.162221 0.280976i
\(39\) 2.41421 + 4.18154i 0.386584 + 0.669582i
\(40\) 2.20711 3.82282i 0.348974 0.604441i
\(41\) −11.6569 −1.82049 −0.910247 0.414065i \(-0.864109\pi\)
−0.910247 + 0.414065i \(0.864109\pi\)
\(42\) 0 0
\(43\) 8.00000 1.21999 0.609994 0.792406i \(-0.291172\pi\)
0.609994 + 0.792406i \(0.291172\pi\)
\(44\) −5.41421 + 9.37769i −0.816223 + 1.41374i
\(45\) 0.500000 + 0.866025i 0.0745356 + 0.129099i
\(46\) 9.24264 + 16.0087i 1.36275 + 2.36036i
\(47\) 2.82843 4.89898i 0.412568 0.714590i −0.582601 0.812758i \(-0.697965\pi\)
0.995170 + 0.0981685i \(0.0312984\pi\)
\(48\) −3.00000 −0.433013
\(49\) 0 0
\(50\) 2.41421 0.341421
\(51\) 3.82843 6.63103i 0.536087 0.928530i
\(52\) −9.24264 16.0087i −1.28172 2.22001i
\(53\) 4.24264 + 7.34847i 0.582772 + 1.00939i 0.995149 + 0.0983769i \(0.0313651\pi\)
−0.412378 + 0.911013i \(0.635302\pi\)
\(54\) 1.20711 2.09077i 0.164266 0.284518i
\(55\) −2.82843 −0.381385
\(56\) 0 0
\(57\) −0.828427 −0.109728
\(58\) −7.24264 + 12.5446i −0.951005 + 1.64719i
\(59\) 1.17157 + 2.02922i 0.152526 + 0.264182i 0.932155 0.362059i \(-0.117926\pi\)
−0.779630 + 0.626241i \(0.784593\pi\)
\(60\) −1.91421 3.31552i −0.247124 0.428031i
\(61\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(62\) −15.6569 −1.98842
\(63\) 0 0
\(64\) −9.82843 −1.22855
\(65\) 2.41421 4.18154i 0.299446 0.518656i
\(66\) 3.41421 + 5.91359i 0.420261 + 0.727913i
\(67\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(68\) −14.6569 + 25.3864i −1.77740 + 3.07856i
\(69\) 7.65685 0.921777
\(70\) 0 0
\(71\) −2.82843 −0.335673 −0.167836 0.985815i \(-0.553678\pi\)
−0.167836 + 0.985815i \(0.553678\pi\)
\(72\) −2.20711 + 3.82282i −0.260110 + 0.450524i
\(73\) −5.58579 9.67487i −0.653767 1.13236i −0.982201 0.187831i \(-0.939854\pi\)
0.328435 0.944527i \(-0.393479\pi\)
\(74\) 4.41421 + 7.64564i 0.513142 + 0.888788i
\(75\) 0.500000 0.866025i 0.0577350 0.100000i
\(76\) 3.17157 0.363804
\(77\) 0 0
\(78\) −11.6569 −1.31988
\(79\) 4.00000 6.92820i 0.450035 0.779484i −0.548352 0.836247i \(-0.684745\pi\)
0.998388 + 0.0567635i \(0.0180781\pi\)
\(80\) 1.50000 + 2.59808i 0.167705 + 0.290474i
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) 14.0711 24.3718i 1.55389 2.69142i
\(83\) 1.65685 0.181863 0.0909317 0.995857i \(-0.471016\pi\)
0.0909317 + 0.995857i \(0.471016\pi\)
\(84\) 0 0
\(85\) −7.65685 −0.830502
\(86\) −9.65685 + 16.7262i −1.04133 + 1.80363i
\(87\) 3.00000 + 5.19615i 0.321634 + 0.557086i
\(88\) −6.24264 10.8126i −0.665468 1.15262i
\(89\) −2.65685 + 4.60181i −0.281626 + 0.487791i −0.971785 0.235867i \(-0.924207\pi\)
0.690159 + 0.723657i \(0.257540\pi\)
\(90\) −2.41421 −0.254480
\(91\) 0 0
\(92\) −29.3137 −3.05617
\(93\) −3.24264 + 5.61642i −0.336246 + 0.582395i
\(94\) 6.82843 + 11.8272i 0.704298 + 1.21988i
\(95\) 0.414214 + 0.717439i 0.0424974 + 0.0736077i
\(96\) −0.792893 + 1.37333i −0.0809243 + 0.140165i
\(97\) −6.48528 −0.658481 −0.329240 0.944246i \(-0.606793\pi\)
−0.329240 + 0.944246i \(0.606793\pi\)
\(98\) 0 0
\(99\) 2.82843 0.284268
\(100\) −1.91421 + 3.31552i −0.191421 + 0.331552i
\(101\) 3.82843 + 6.63103i 0.380943 + 0.659812i 0.991197 0.132393i \(-0.0422662\pi\)
−0.610255 + 0.792205i \(0.708933\pi\)
\(102\) 9.24264 + 16.0087i 0.915158 + 1.58510i
\(103\) −6.00000 + 10.3923i −0.591198 + 1.02398i 0.402874 + 0.915255i \(0.368011\pi\)
−0.994071 + 0.108729i \(0.965322\pi\)
\(104\) 21.3137 2.08998
\(105\) 0 0
\(106\) −20.4853 −1.98971
\(107\) −2.65685 + 4.60181i −0.256848 + 0.444873i −0.965396 0.260789i \(-0.916017\pi\)
0.708548 + 0.705663i \(0.249351\pi\)
\(108\) 1.91421 + 3.31552i 0.184195 + 0.319036i
\(109\) −3.00000 5.19615i −0.287348 0.497701i 0.685828 0.727764i \(-0.259440\pi\)
−0.973176 + 0.230063i \(0.926107\pi\)
\(110\) 3.41421 5.91359i 0.325532 0.563839i
\(111\) 3.65685 0.347093
\(112\) 0 0
\(113\) 2.82843 0.266076 0.133038 0.991111i \(-0.457527\pi\)
0.133038 + 0.991111i \(0.457527\pi\)
\(114\) 1.00000 1.73205i 0.0936586 0.162221i
\(115\) −3.82843 6.63103i −0.357003 0.618347i
\(116\) −11.4853 19.8931i −1.06638 1.84703i
\(117\) −2.41421 + 4.18154i −0.223194 + 0.386584i
\(118\) −5.65685 −0.520756
\(119\) 0 0
\(120\) 4.41421 0.402961
\(121\) 1.50000 2.59808i 0.136364 0.236189i
\(122\) 0 0
\(123\) −5.82843 10.0951i −0.525532 0.910247i
\(124\) 12.4142 21.5020i 1.11483 1.93094i
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) 19.3137 1.71381 0.856907 0.515471i \(-0.172383\pi\)
0.856907 + 0.515471i \(0.172383\pi\)
\(128\) 10.2782 17.8023i 0.908471 1.57352i
\(129\) 4.00000 + 6.92820i 0.352180 + 0.609994i
\(130\) 5.82843 + 10.0951i 0.511187 + 0.885402i
\(131\) 2.82843 4.89898i 0.247121 0.428026i −0.715605 0.698505i \(-0.753849\pi\)
0.962726 + 0.270479i \(0.0871822\pi\)
\(132\) −10.8284 −0.942494
\(133\) 0 0
\(134\) 0 0
\(135\) −0.500000 + 0.866025i −0.0430331 + 0.0745356i
\(136\) −16.8995 29.2708i −1.44912 2.50995i
\(137\) −6.58579 11.4069i −0.562662 0.974559i −0.997263 0.0739357i \(-0.976444\pi\)
0.434601 0.900623i \(-0.356889\pi\)
\(138\) −9.24264 + 16.0087i −0.786786 + 1.36275i
\(139\) 1.51472 0.128477 0.0642384 0.997935i \(-0.479538\pi\)
0.0642384 + 0.997935i \(0.479538\pi\)
\(140\) 0 0
\(141\) 5.65685 0.476393
\(142\) 3.41421 5.91359i 0.286514 0.496258i
\(143\) −6.82843 11.8272i −0.571022 0.989039i
\(144\) −1.50000 2.59808i −0.125000 0.216506i
\(145\) 3.00000 5.19615i 0.249136 0.431517i
\(146\) 26.9706 2.23210
\(147\) 0 0
\(148\) −14.0000 −1.15079
\(149\) 3.82843 6.63103i 0.313637 0.543235i −0.665510 0.746389i \(-0.731786\pi\)
0.979147 + 0.203154i \(0.0651192\pi\)
\(150\) 1.20711 + 2.09077i 0.0985599 + 0.170711i
\(151\) 8.48528 + 14.6969i 0.690522 + 1.19602i 0.971667 + 0.236354i \(0.0759526\pi\)
−0.281145 + 0.959665i \(0.590714\pi\)
\(152\) −1.82843 + 3.16693i −0.148305 + 0.256872i
\(153\) 7.65685 0.619020
\(154\) 0 0
\(155\) 6.48528 0.520910
\(156\) 9.24264 16.0087i 0.740003 1.28172i
\(157\) 6.07107 + 10.5154i 0.484524 + 0.839220i 0.999842 0.0177789i \(-0.00565951\pi\)
−0.515318 + 0.856999i \(0.672326\pi\)
\(158\) 9.65685 + 16.7262i 0.768258 + 1.33066i
\(159\) −4.24264 + 7.34847i −0.336463 + 0.582772i
\(160\) 1.58579 0.125367
\(161\) 0 0
\(162\) 2.41421 0.189679
\(163\) 6.00000 10.3923i 0.469956 0.813988i −0.529454 0.848339i \(-0.677603\pi\)
0.999410 + 0.0343508i \(0.0109363\pi\)
\(164\) 22.3137 + 38.6485i 1.74241 + 3.01794i
\(165\) −1.41421 2.44949i −0.110096 0.190693i
\(166\) −2.00000 + 3.46410i −0.155230 + 0.268866i
\(167\) −11.3137 −0.875481 −0.437741 0.899101i \(-0.644221\pi\)
−0.437741 + 0.899101i \(0.644221\pi\)
\(168\) 0 0
\(169\) 10.3137 0.793362
\(170\) 9.24264 16.0087i 0.708878 1.22781i
\(171\) −0.414214 0.717439i −0.0316757 0.0548639i
\(172\) −15.3137 26.5241i −1.16766 2.02245i
\(173\) 12.3137 21.3280i 0.936194 1.62154i 0.163703 0.986510i \(-0.447656\pi\)
0.772491 0.635026i \(-0.219011\pi\)
\(174\) −14.4853 −1.09813
\(175\) 0 0
\(176\) 8.48528 0.639602
\(177\) −1.17157 + 2.02922i −0.0880608 + 0.152526i
\(178\) −6.41421 11.1097i −0.480766 0.832711i
\(179\) 0.585786 + 1.01461i 0.0437837 + 0.0758357i 0.887087 0.461603i \(-0.152725\pi\)
−0.843303 + 0.537438i \(0.819392\pi\)
\(180\) 1.91421 3.31552i 0.142677 0.247124i
\(181\) −2.34315 −0.174165 −0.0870823 0.996201i \(-0.527754\pi\)
−0.0870823 + 0.996201i \(0.527754\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 16.8995 29.2708i 1.24585 2.15787i
\(185\) −1.82843 3.16693i −0.134429 0.232837i
\(186\) −7.82843 13.5592i −0.574008 0.994211i
\(187\) −10.8284 + 18.7554i −0.791853 + 1.37153i
\(188\) −21.6569 −1.57949
\(189\) 0 0
\(190\) −2.00000 −0.145095
\(191\) 4.58579 7.94282i 0.331816 0.574722i −0.651052 0.759033i \(-0.725672\pi\)
0.982868 + 0.184311i \(0.0590054\pi\)
\(192\) −4.91421 8.51167i −0.354653 0.614277i
\(193\) −7.82843 13.5592i −0.563503 0.976015i −0.997187 0.0749503i \(-0.976120\pi\)
0.433685 0.901065i \(-0.357213\pi\)
\(194\) 7.82843 13.5592i 0.562048 0.973496i
\(195\) 4.82843 0.345771
\(196\) 0 0
\(197\) −3.51472 −0.250413 −0.125207 0.992131i \(-0.539959\pi\)
−0.125207 + 0.992131i \(0.539959\pi\)
\(198\) −3.41421 + 5.91359i −0.242638 + 0.420261i
\(199\) −0.414214 0.717439i −0.0293628 0.0508579i 0.850971 0.525213i \(-0.176014\pi\)
−0.880333 + 0.474355i \(0.842681\pi\)
\(200\) −2.20711 3.82282i −0.156066 0.270314i
\(201\) 0 0
\(202\) −18.4853 −1.30062
\(203\) 0 0
\(204\) −29.3137 −2.05237
\(205\) −5.82843 + 10.0951i −0.407075 + 0.705075i
\(206\) −14.4853 25.0892i −1.00924 1.74805i
\(207\) 3.82843 + 6.63103i 0.266094 + 0.460888i
\(208\) −7.24264 + 12.5446i −0.502187 + 0.869813i
\(209\) 2.34315 0.162079
\(210\) 0 0
\(211\) −9.65685 −0.664805 −0.332403 0.943138i \(-0.607859\pi\)
−0.332403 + 0.943138i \(0.607859\pi\)
\(212\) 16.2426 28.1331i 1.11555 1.93219i
\(213\) −1.41421 2.44949i −0.0969003 0.167836i
\(214\) −6.41421 11.1097i −0.438467 0.759446i
\(215\) 4.00000 6.92820i 0.272798 0.472500i
\(216\) −4.41421 −0.300349
\(217\) 0 0
\(218\) 14.4853 0.981067
\(219\) 5.58579 9.67487i 0.377452 0.653767i
\(220\) 5.41421 + 9.37769i 0.365026 + 0.632244i
\(221\) −18.4853 32.0174i −1.24345 2.15373i
\(222\) −4.41421 + 7.64564i −0.296263 + 0.513142i
\(223\) 20.9706 1.40429 0.702146 0.712033i \(-0.252225\pi\)
0.702146 + 0.712033i \(0.252225\pi\)
\(224\) 0 0
\(225\) 1.00000 0.0666667
\(226\) −3.41421 + 5.91359i −0.227110 + 0.393366i
\(227\) 14.4853 + 25.0892i 0.961422 + 1.66523i 0.718936 + 0.695077i \(0.244630\pi\)
0.242486 + 0.970155i \(0.422037\pi\)
\(228\) 1.58579 + 2.74666i 0.105021 + 0.181902i
\(229\) −7.65685 + 13.2621i −0.505979 + 0.876382i 0.493997 + 0.869464i \(0.335535\pi\)
−0.999976 + 0.00691797i \(0.997798\pi\)
\(230\) 18.4853 1.21888
\(231\) 0 0
\(232\) 26.4853 1.73884
\(233\) −7.41421 + 12.8418i −0.485721 + 0.841294i −0.999865 0.0164099i \(-0.994776\pi\)
0.514144 + 0.857704i \(0.328110\pi\)
\(234\) −5.82843 10.0951i −0.381016 0.659939i
\(235\) −2.82843 4.89898i −0.184506 0.319574i
\(236\) 4.48528 7.76874i 0.291967 0.505702i
\(237\) 8.00000 0.519656
\(238\) 0 0
\(239\) −2.14214 −0.138563 −0.0692816 0.997597i \(-0.522071\pi\)
−0.0692816 + 0.997597i \(0.522071\pi\)
\(240\) −1.50000 + 2.59808i −0.0968246 + 0.167705i
\(241\) −10.8284 18.7554i −0.697520 1.20814i −0.969324 0.245788i \(-0.920953\pi\)
0.271803 0.962353i \(-0.412380\pi\)
\(242\) 3.62132 + 6.27231i 0.232787 + 0.403199i
\(243\) 0.500000 0.866025i 0.0320750 0.0555556i
\(244\) 0 0
\(245\) 0 0
\(246\) 28.1421 1.79428
\(247\) −2.00000 + 3.46410i −0.127257 + 0.220416i
\(248\) 14.3137 + 24.7921i 0.908921 + 1.57430i
\(249\) 0.828427 + 1.43488i 0.0524994 + 0.0909317i
\(250\) 1.20711 2.09077i 0.0763441 0.132232i
\(251\) −29.6569 −1.87192 −0.935962 0.352101i \(-0.885467\pi\)
−0.935962 + 0.352101i \(0.885467\pi\)
\(252\) 0 0
\(253\) −21.6569 −1.36155
\(254\) −23.3137 + 40.3805i −1.46283 + 2.53370i
\(255\) −3.82843 6.63103i −0.239745 0.415251i
\(256\) 14.9853 + 25.9553i 0.936580 + 1.62220i
\(257\) −0.171573 + 0.297173i −0.0107024 + 0.0185371i −0.871327 0.490703i \(-0.836740\pi\)
0.860625 + 0.509240i \(0.170073\pi\)
\(258\) −19.3137 −1.20242
\(259\) 0 0
\(260\) −18.4853 −1.14641
\(261\) −3.00000 + 5.19615i −0.185695 + 0.321634i
\(262\) 6.82843 + 11.8272i 0.421862 + 0.730686i
\(263\) 1.34315 + 2.32640i 0.0828219 + 0.143452i 0.904461 0.426556i \(-0.140273\pi\)
−0.821639 + 0.570008i \(0.806940\pi\)
\(264\) 6.24264 10.8126i 0.384208 0.665468i
\(265\) 8.48528 0.521247
\(266\) 0 0
\(267\) −5.31371 −0.325194
\(268\) 0 0
\(269\) 0.171573 + 0.297173i 0.0104610 + 0.0181190i 0.871209 0.490913i \(-0.163337\pi\)
−0.860748 + 0.509032i \(0.830003\pi\)
\(270\) −1.20711 2.09077i −0.0734622 0.127240i
\(271\) −11.2426 + 19.4728i −0.682942 + 1.18289i 0.291137 + 0.956681i \(0.405966\pi\)
−0.974079 + 0.226209i \(0.927367\pi\)
\(272\) 22.9706 1.39279
\(273\) 0 0
\(274\) 31.7990 1.92105
\(275\) −1.41421 + 2.44949i −0.0852803 + 0.147710i
\(276\) −14.6569 25.3864i −0.882239 1.52808i
\(277\) −10.6569 18.4582i −0.640308 1.10905i −0.985364 0.170464i \(-0.945473\pi\)
0.345056 0.938582i \(-0.387860\pi\)
\(278\) −1.82843 + 3.16693i −0.109662 + 0.189940i
\(279\) −6.48528 −0.388264
\(280\) 0 0
\(281\) 12.3431 0.736330 0.368165 0.929760i \(-0.379986\pi\)
0.368165 + 0.929760i \(0.379986\pi\)
\(282\) −6.82843 + 11.8272i −0.406627 + 0.704298i
\(283\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(284\) 5.41421 + 9.37769i 0.321274 + 0.556464i
\(285\) −0.414214 + 0.717439i −0.0245359 + 0.0424974i
\(286\) 32.9706 1.94959
\(287\) 0 0
\(288\) −1.58579 −0.0934434
\(289\) −20.8137 + 36.0504i −1.22434 + 2.12061i
\(290\) 7.24264 + 12.5446i 0.425303 + 0.736646i
\(291\) −3.24264 5.61642i −0.190087 0.329240i
\(292\) −21.3848 + 37.0395i −1.25145 + 2.16757i
\(293\) 12.3431 0.721094 0.360547 0.932741i \(-0.382590\pi\)
0.360547 + 0.932741i \(0.382590\pi\)
\(294\) 0 0
\(295\) 2.34315 0.136423
\(296\) 8.07107 13.9795i 0.469121 0.812542i
\(297\) 1.41421 + 2.44949i 0.0820610 + 0.142134i
\(298\) 9.24264 + 16.0087i 0.535412 + 0.927360i
\(299\) 18.4853 32.0174i 1.06903 1.85162i
\(300\) −3.82843 −0.221034
\(301\) 0 0
\(302\) −40.9706 −2.35759
\(303\) −3.82843 + 6.63103i −0.219937 + 0.380943i
\(304\) −1.24264 2.15232i −0.0712703 0.123444i
\(305\) 0 0
\(306\) −9.24264 + 16.0087i −0.528367 + 0.915158i
\(307\) 28.9706 1.65344 0.826719 0.562616i \(-0.190205\pi\)
0.826719 + 0.562616i \(0.190205\pi\)
\(308\) 0 0
\(309\) −12.0000 −0.682656
\(310\) −7.82843 + 13.5592i −0.444625 + 0.770113i
\(311\) 4.82843 + 8.36308i 0.273795 + 0.474227i 0.969830 0.243781i \(-0.0783877\pi\)
−0.696035 + 0.718007i \(0.745054\pi\)
\(312\) 10.6569 + 18.4582i 0.603326 + 1.04499i
\(313\) 1.24264 2.15232i 0.0702382 0.121656i −0.828767 0.559593i \(-0.810957\pi\)
0.899006 + 0.437937i \(0.144291\pi\)
\(314\) −29.3137 −1.65427
\(315\) 0 0
\(316\) −30.6274 −1.72293
\(317\) −11.0711 + 19.1757i −0.621813 + 1.07701i 0.367335 + 0.930089i \(0.380270\pi\)
−0.989148 + 0.146923i \(0.953063\pi\)
\(318\) −10.2426 17.7408i −0.574379 0.994853i
\(319\) −8.48528 14.6969i −0.475085 0.822871i
\(320\) −4.91421 + 8.51167i −0.274713 + 0.475817i
\(321\) −5.31371 −0.296582
\(322\) 0 0
\(323\) 6.34315 0.352942
\(324\) −1.91421 + 3.31552i −0.106345 + 0.184195i
\(325\) −2.41421 4.18154i −0.133916 0.231950i
\(326\) 14.4853 + 25.0892i 0.802266 + 1.38956i
\(327\) 3.00000 5.19615i 0.165900 0.287348i
\(328\) −51.4558 −2.84117
\(329\) 0 0
\(330\) 6.82843 0.375893
\(331\) −0.828427 + 1.43488i −0.0455345 + 0.0788680i −0.887894 0.460047i \(-0.847832\pi\)
0.842360 + 0.538915i \(0.181166\pi\)
\(332\) −3.17157 5.49333i −0.174063 0.301485i
\(333\) 1.82843 + 3.16693i 0.100197 + 0.173547i
\(334\) 13.6569 23.6544i 0.747270 1.29431i
\(335\) 0 0
\(336\) 0 0
\(337\) −6.97056 −0.379711 −0.189855 0.981812i \(-0.560802\pi\)
−0.189855 + 0.981812i \(0.560802\pi\)
\(338\) −12.4497 + 21.5636i −0.677177 + 1.17290i
\(339\) 1.41421 + 2.44949i 0.0768095 + 0.133038i
\(340\) 14.6569 + 25.3864i 0.794880 + 1.37677i
\(341\) 9.17157 15.8856i 0.496669 0.860255i
\(342\) 2.00000 0.108148
\(343\) 0 0
\(344\) 35.3137 1.90399
\(345\) 3.82843 6.63103i 0.206116 0.357003i
\(346\) 29.7279 + 51.4903i 1.59818 + 2.76813i
\(347\) 11.4853 + 19.8931i 0.616562 + 1.06792i 0.990108 + 0.140305i \(0.0448085\pi\)
−0.373546 + 0.927612i \(0.621858\pi\)
\(348\) 11.4853 19.8931i 0.615676 1.06638i
\(349\) −16.0000 −0.856460 −0.428230 0.903670i \(-0.640863\pi\)
−0.428230 + 0.903670i \(0.640863\pi\)
\(350\) 0 0
\(351\) −4.82843 −0.257722
\(352\) 2.24264 3.88437i 0.119533 0.207037i
\(353\) −12.6569 21.9223i −0.673656 1.16681i −0.976860 0.213881i \(-0.931389\pi\)
0.303203 0.952926i \(-0.401944\pi\)
\(354\) −2.82843 4.89898i −0.150329 0.260378i
\(355\) −1.41421 + 2.44949i −0.0750587 + 0.130005i
\(356\) 20.3431 1.07818
\(357\) 0 0
\(358\) −2.82843 −0.149487
\(359\) 7.89949 13.6823i 0.416919 0.722126i −0.578708 0.815535i \(-0.696443\pi\)
0.995628 + 0.0934089i \(0.0297764\pi\)
\(360\) 2.20711 + 3.82282i 0.116325 + 0.201480i
\(361\) 9.15685 + 15.8601i 0.481940 + 0.834744i
\(362\) 2.82843 4.89898i 0.148659 0.257485i
\(363\) 3.00000 0.157459
\(364\) 0 0
\(365\) −11.1716 −0.584747
\(366\) 0 0
\(367\) −6.48528 11.2328i −0.338529 0.586349i 0.645627 0.763653i \(-0.276596\pi\)
−0.984156 + 0.177303i \(0.943263\pi\)
\(368\) 11.4853 + 19.8931i 0.598712 + 1.03700i
\(369\) 5.82843 10.0951i 0.303416 0.525532i
\(370\) 8.82843 0.458968
\(371\) 0 0
\(372\) 24.8284 1.28729
\(373\) 12.3137 21.3280i 0.637580 1.10432i −0.348383 0.937352i \(-0.613269\pi\)
0.985962 0.166968i \(-0.0533976\pi\)
\(374\) −26.1421 45.2795i −1.35178 2.34135i
\(375\) −0.500000 0.866025i −0.0258199 0.0447214i
\(376\) 12.4853 21.6251i 0.643879 1.11523i
\(377\) 28.9706 1.49206
\(378\) 0 0
\(379\) −20.9706 −1.07719 −0.538593 0.842566i \(-0.681044\pi\)
−0.538593 + 0.842566i \(0.681044\pi\)
\(380\) 1.58579 2.74666i 0.0813491 0.140901i
\(381\) 9.65685 + 16.7262i 0.494736 + 0.856907i
\(382\) 11.0711 + 19.1757i 0.566445 + 0.981112i
\(383\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(384\) 20.5563 1.04901
\(385\) 0 0
\(386\) 37.7990 1.92392
\(387\) −4.00000 + 6.92820i −0.203331 + 0.352180i
\(388\) 12.4142 + 21.5020i 0.630236 + 1.09160i
\(389\) 5.82843 + 10.0951i 0.295513 + 0.511844i 0.975104 0.221748i \(-0.0711761\pi\)
−0.679591 + 0.733591i \(0.737843\pi\)
\(390\) −5.82843 + 10.0951i −0.295134 + 0.511187i
\(391\) −58.6274 −2.96492
\(392\) 0 0
\(393\) 5.65685 0.285351
\(394\) 4.24264 7.34847i 0.213741 0.370211i
\(395\) −4.00000 6.92820i −0.201262 0.348596i
\(396\) −5.41421 9.37769i −0.272074 0.471247i
\(397\) −12.4142 + 21.5020i −0.623052 + 1.07916i 0.365863 + 0.930669i \(0.380774\pi\)
−0.988914 + 0.148488i \(0.952559\pi\)
\(398\) 2.00000 0.100251
\(399\) 0 0
\(400\) 3.00000 0.150000
\(401\) −15.0000 + 25.9808i −0.749064 + 1.29742i 0.199207 + 0.979957i \(0.436163\pi\)
−0.948272 + 0.317460i \(0.897170\pi\)
\(402\) 0 0
\(403\) 15.6569 + 27.1185i 0.779923 + 1.35087i
\(404\) 14.6569 25.3864i 0.729206 1.26302i
\(405\) −1.00000 −0.0496904
\(406\) 0 0
\(407\) −10.3431 −0.512691
\(408\) 16.8995 29.2708i 0.836650 1.44912i
\(409\) 6.00000 + 10.3923i 0.296681 + 0.513866i 0.975375 0.220555i \(-0.0707869\pi\)
−0.678694 + 0.734422i \(0.737454\pi\)
\(410\) −14.0711 24.3718i −0.694921 1.20364i
\(411\) 6.58579 11.4069i 0.324853 0.562662i
\(412\) 45.9411 2.26336
\(413\) 0 0
\(414\) −18.4853 −0.908502
\(415\) 0.828427 1.43488i 0.0406659 0.0704354i
\(416\) 3.82843 + 6.63103i 0.187704 + 0.325113i
\(417\) 0.757359 + 1.31178i 0.0370880 + 0.0642384i
\(418\) −2.82843 + 4.89898i −0.138343 + 0.239617i
\(419\) 0.686292 0.0335275 0.0167638 0.999859i \(-0.494664\pi\)
0.0167638 + 0.999859i \(0.494664\pi\)
\(420\) 0 0
\(421\) −6.00000 −0.292422 −0.146211 0.989253i \(-0.546708\pi\)
−0.146211 + 0.989253i \(0.546708\pi\)
\(422\) 11.6569 20.1903i 0.567447 0.982847i
\(423\) 2.82843 + 4.89898i 0.137523 + 0.238197i
\(424\) 18.7279 + 32.4377i 0.909508 + 1.57531i
\(425\) −3.82843 + 6.63103i −0.185706 + 0.321652i
\(426\) 6.82843 0.330838
\(427\) 0 0
\(428\) 20.3431 0.983323
\(429\) 6.82843 11.8272i 0.329680 0.571022i
\(430\) 9.65685 + 16.7262i 0.465695 + 0.806607i
\(431\) 5.41421 + 9.37769i 0.260793 + 0.451708i 0.966453 0.256844i \(-0.0826825\pi\)
−0.705660 + 0.708551i \(0.749349\pi\)
\(432\) 1.50000 2.59808i 0.0721688 0.125000i
\(433\) −7.17157 −0.344644 −0.172322 0.985041i \(-0.555127\pi\)
−0.172322 + 0.985041i \(0.555127\pi\)
\(434\) 0 0
\(435\) 6.00000 0.287678
\(436\) −11.4853 + 19.8931i −0.550045 + 0.952706i
\(437\) 3.17157 + 5.49333i 0.151717 + 0.262781i
\(438\) 13.4853 + 23.3572i 0.644352 + 1.11605i
\(439\) −6.75736 + 11.7041i −0.322511 + 0.558606i −0.981005 0.193980i \(-0.937860\pi\)
0.658494 + 0.752586i \(0.271194\pi\)
\(440\) −12.4853 −0.595212
\(441\) 0 0
\(442\) 89.2548 4.24542
\(443\) −11.8284 + 20.4874i −0.561986 + 0.973387i 0.435338 + 0.900267i \(0.356629\pi\)
−0.997323 + 0.0731202i \(0.976704\pi\)
\(444\) −7.00000 12.1244i −0.332205 0.575396i
\(445\) 2.65685 + 4.60181i 0.125947 + 0.218147i
\(446\) −25.3137 + 43.8446i −1.19864 + 2.07610i
\(447\) 7.65685 0.362157
\(448\) 0 0
\(449\) −12.6274 −0.595925 −0.297962 0.954578i \(-0.596307\pi\)
−0.297962 + 0.954578i \(0.596307\pi\)
\(450\) −1.20711 + 2.09077i −0.0569036 + 0.0985599i
\(451\) 16.4853 + 28.5533i 0.776262 + 1.34452i
\(452\) −5.41421 9.37769i −0.254663 0.441090i
\(453\) −8.48528 + 14.6969i −0.398673 + 0.690522i
\(454\) −69.9411 −3.28250
\(455\) 0 0
\(456\) −3.65685 −0.171248
\(457\) −8.17157 + 14.1536i −0.382250 + 0.662077i −0.991384 0.130991i \(-0.958184\pi\)
0.609133 + 0.793068i \(0.291517\pi\)
\(458\) −18.4853 32.0174i −0.863760 1.49608i
\(459\) 3.82843 + 6.63103i 0.178696 + 0.309510i
\(460\) −14.6569 + 25.3864i −0.683379 + 1.18365i
\(461\) −13.3137 −0.620081 −0.310041 0.950723i \(-0.600343\pi\)
−0.310041 + 0.950723i \(0.600343\pi\)
\(462\) 0 0
\(463\) 38.6274 1.79517 0.897584 0.440843i \(-0.145321\pi\)
0.897584 + 0.440843i \(0.145321\pi\)
\(464\) −9.00000 + 15.5885i −0.417815 + 0.723676i
\(465\) 3.24264 + 5.61642i 0.150374 + 0.260455i
\(466\) −17.8995 31.0028i −0.829178 1.43618i
\(467\) −12.1421 + 21.0308i −0.561871 + 0.973189i 0.435462 + 0.900207i \(0.356585\pi\)
−0.997333 + 0.0729822i \(0.976748\pi\)
\(468\) 18.4853 0.854482
\(469\) 0 0
\(470\) 13.6569 0.629944
\(471\) −6.07107 + 10.5154i −0.279740 + 0.484524i
\(472\) 5.17157 + 8.95743i 0.238041 + 0.412299i
\(473\) −11.3137 19.5959i −0.520205 0.901021i
\(474\) −9.65685 + 16.7262i −0.443554 + 0.768258i
\(475\) 0.828427 0.0380108
\(476\) 0 0
\(477\) −8.48528 −0.388514
\(478\) 2.58579 4.47871i 0.118271 0.204852i
\(479\) −7.17157 12.4215i −0.327678 0.567554i 0.654373 0.756172i \(-0.272933\pi\)
−0.982051 + 0.188618i \(0.939599\pi\)
\(480\) 0.792893 + 1.37333i 0.0361905 + 0.0626837i
\(481\) 8.82843 15.2913i 0.402542 0.697223i
\(482\) 52.2843 2.38148
\(483\) 0 0
\(484\) −11.4853 −0.522058
\(485\) −3.24264 + 5.61642i −0.147241 + 0.255028i
\(486\) 1.20711 + 2.09077i 0.0547555 + 0.0948393i
\(487\) −14.9706 25.9298i −0.678381 1.17499i −0.975468 0.220140i \(-0.929349\pi\)
0.297087 0.954850i \(-0.403985\pi\)
\(488\) 0 0
\(489\) 12.0000 0.542659
\(490\) 0 0
\(491\) 18.1421 0.818743 0.409372 0.912368i \(-0.365748\pi\)
0.409372 + 0.912368i \(0.365748\pi\)
\(492\) −22.3137 + 38.6485i −1.00598 + 1.74241i
\(493\) −22.9706 39.7862i −1.03454 1.79188i
\(494\) −4.82843 8.36308i −0.217241 0.376273i
\(495\) 1.41421 2.44949i 0.0635642 0.110096i
\(496\) −19.4558 −0.873593
\(497\) 0 0
\(498\) −4.00000 −0.179244
\(499\) −2.48528 + 4.30463i −0.111256 + 0.192702i −0.916277 0.400545i \(-0.868821\pi\)
0.805021 + 0.593247i \(0.202154\pi\)
\(500\) 1.91421 + 3.31552i 0.0856062 + 0.148274i
\(501\) −5.65685 9.79796i −0.252730 0.437741i
\(502\) 35.7990 62.0057i 1.59779 2.76745i
\(503\) −4.68629 −0.208951 −0.104476 0.994527i \(-0.533316\pi\)
−0.104476 + 0.994527i \(0.533316\pi\)
\(504\) 0 0
\(505\) 7.65685 0.340726
\(506\) 26.1421 45.2795i 1.16216 2.01292i
\(507\) 5.15685 + 8.93193i 0.229024 + 0.396681i
\(508\) −36.9706 64.0349i −1.64030 2.84109i
\(509\) −14.1716 + 24.5459i −0.628144 + 1.08798i 0.359780 + 0.933037i \(0.382852\pi\)
−0.987924 + 0.154940i \(0.950482\pi\)
\(510\) 18.4853 0.818542
\(511\) 0 0
\(512\) −31.2426 −1.38074
\(513\) 0.414214 0.717439i 0.0182880 0.0316757i
\(514\) −0.414214 0.717439i −0.0182702 0.0316449i
\(515\) 6.00000 + 10.3923i 0.264392 + 0.457940i
\(516\) 15.3137 26.5241i 0.674148 1.16766i
\(517\) −16.0000 −0.703679
\(518\) 0 0
\(519\) 24.6274 1.08102
\(520\) 10.6569 18.4582i 0.467334 0.809446i
\(521\) 11.1421 + 19.2987i 0.488146 + 0.845493i 0.999907 0.0136344i \(-0.00434009\pi\)
−0.511761 + 0.859128i \(0.671007\pi\)
\(522\) −7.24264 12.5446i −0.317002 0.549063i
\(523\) 18.1421 31.4231i 0.793300 1.37404i −0.130613 0.991433i \(-0.541694\pi\)
0.923913 0.382603i \(-0.124972\pi\)
\(524\) −21.6569 −0.946084
\(525\) 0 0
\(526\) −6.48528 −0.282772
\(527\) 24.8284 43.0041i 1.08154 1.87329i
\(528\) 4.24264 + 7.34847i 0.184637 + 0.319801i
\(529\) −17.8137 30.8542i −0.774509 1.34149i
\(530\) −10.2426 + 17.7408i −0.444912 + 0.770610i
\(531\) −2.34315 −0.101684
\(532\) 0 0
\(533\) −56.2843 −2.43794
\(534\) 6.41421 11.1097i 0.277570 0.480766i
\(535\) 2.65685 + 4.60181i 0.114866 + 0.198953i
\(536\) 0 0
\(537\) −0.585786 + 1.01461i −0.0252786 + 0.0437837i
\(538\) −0.828427 −0.0357160
\(539\) 0 0
\(540\) 3.82843 0.164749
\(541\) −9.00000 + 15.5885i −0.386940 + 0.670200i −0.992036 0.125952i \(-0.959801\pi\)
0.605096 + 0.796152i \(0.293135\pi\)
\(542\) −27.1421 47.0116i −1.16585 2.01932i
\(543\) −1.17157 2.02922i −0.0502770 0.0870823i
\(544\) 6.07107 10.5154i 0.260295 0.450844i
\(545\) −6.00000 −0.257012
\(546\) 0 0
\(547\) −27.3137 −1.16785 −0.583925 0.811808i \(-0.698484\pi\)
−0.583925 + 0.811808i \(0.698484\pi\)
\(548\) −25.2132 + 43.6705i −1.07705 + 1.86551i
\(549\) 0 0
\(550\) −3.41421 5.91359i −0.145583 0.252156i
\(551\) −2.48528 + 4.30463i −0.105877 + 0.183384i
\(552\) 33.7990 1.43858
\(553\) 0 0
\(554\) 51.4558 2.18615
\(555\) 1.82843 3.16693i 0.0776124 0.134429i
\(556\) −2.89949 5.02207i −0.122966 0.212983i
\(557\) −13.4142 23.2341i −0.568378 0.984460i −0.996727 0.0808466i \(-0.974238\pi\)
0.428348 0.903614i \(-0.359096\pi\)
\(558\) 7.82843 13.5592i 0.331404 0.574008i
\(559\) 38.6274 1.63377
\(560\) 0 0
\(561\) −21.6569 −0.914353
\(562\) −14.8995 + 25.8067i −0.628497 + 1.08859i
\(563\) 4.34315 + 7.52255i 0.183042 + 0.317038i 0.942915 0.333034i \(-0.108072\pi\)
−0.759873 + 0.650071i \(0.774739\pi\)
\(564\) −10.8284 18.7554i −0.455959 0.789744i
\(565\) 1.41421 2.44949i 0.0594964 0.103051i
\(566\) 0 0
\(567\) 0 0
\(568\) −12.4853 −0.523871
\(569\) −5.34315 + 9.25460i −0.223996 + 0.387973i −0.956018 0.293308i \(-0.905244\pi\)
0.732022 + 0.681282i \(0.238577\pi\)
\(570\) −1.00000 1.73205i −0.0418854 0.0725476i
\(571\) 8.34315 + 14.4508i 0.349150 + 0.604745i 0.986099 0.166161i \(-0.0531371\pi\)
−0.636949 + 0.770906i \(0.719804\pi\)
\(572\) −26.1421 + 45.2795i −1.09306 + 1.89323i
\(573\) 9.17157 0.383148
\(574\) 0 0
\(575\) −7.65685 −0.319313
\(576\) 4.91421 8.51167i 0.204759 0.354653i
\(577\) 9.24264 + 16.0087i 0.384776 + 0.666452i 0.991738 0.128279i \(-0.0409453\pi\)
−0.606962 + 0.794731i \(0.707612\pi\)
\(578\) −50.2487 87.0334i −2.09007 3.62011i
\(579\) 7.82843 13.5592i 0.325338 0.563503i
\(580\) −22.9706 −0.953801
\(581\) 0 0
\(582\) 15.6569 0.648997
\(583\) 12.0000 20.7846i 0.496989 0.860811i
\(584\) −24.6569 42.7069i −1.02031 1.76723i
\(585\) 2.41421 + 4.18154i 0.0998154 + 0.172885i
\(586\) −14.8995 + 25.8067i −0.615492 + 1.06606i
\(587\) 8.68629 0.358522 0.179261 0.983802i \(-0.442629\pi\)
0.179261 + 0.983802i \(0.442629\pi\)
\(588\) 0 0
\(589\) −5.37258 −0.221373
\(590\) −2.82843 + 4.89898i −0.116445 + 0.201688i
\(591\) −1.75736 3.04384i −0.0722881 0.125207i
\(592\) 5.48528 + 9.50079i 0.225444 + 0.390480i
\(593\) −2.31371 + 4.00746i −0.0950126 + 0.164567i −0.909614 0.415455i \(-0.863622\pi\)
0.814601 + 0.580021i \(0.196956\pi\)
\(594\) −6.82843 −0.280174
\(595\) 0 0
\(596\) −29.3137 −1.20074
\(597\) 0.414214 0.717439i 0.0169526 0.0293628i
\(598\) 44.6274 + 77.2970i 1.82495 + 3.16091i
\(599\) 22.2426 + 38.5254i 0.908810 + 1.57410i 0.815720 + 0.578447i \(0.196341\pi\)
0.0930895 + 0.995658i \(0.470326\pi\)
\(600\) 2.20711 3.82282i 0.0901048 0.156066i
\(601\) −33.6569 −1.37289 −0.686446 0.727181i \(-0.740830\pi\)
−0.686446 + 0.727181i \(0.740830\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 32.4853 56.2662i 1.32181 2.28944i
\(605\) −1.50000 2.59808i −0.0609837 0.105627i
\(606\) −9.24264 16.0087i −0.375457 0.650310i
\(607\) −1.51472 + 2.62357i −0.0614805 + 0.106487i −0.895127 0.445810i \(-0.852916\pi\)
0.833647 + 0.552298i \(0.186249\pi\)
\(608\) −1.31371 −0.0532779
\(609\) 0 0
\(610\) 0 0
\(611\) 13.6569 23.6544i 0.552497 0.956953i
\(612\) −14.6569 25.3864i −0.592468 1.02619i
\(613\) 11.9706 + 20.7336i 0.483486 + 0.837423i 0.999820 0.0189643i \(-0.00603690\pi\)
−0.516334 + 0.856387i \(0.672704\pi\)
\(614\) −34.9706 + 60.5708i −1.41130 + 2.44444i
\(615\) −11.6569 −0.470050
\(616\) 0 0
\(617\) 13.4558 0.541712 0.270856 0.962620i \(-0.412693\pi\)
0.270856 + 0.962620i \(0.412693\pi\)
\(618\) 14.4853 25.0892i 0.582683 1.00924i
\(619\) −24.0711 41.6923i −0.967498 1.67576i −0.702749 0.711438i \(-0.748044\pi\)
−0.264749 0.964317i \(-0.585289\pi\)
\(620\) −12.4142 21.5020i −0.498567 0.863543i
\(621\) −3.82843 + 6.63103i −0.153629 + 0.266094i
\(622\) −23.3137 −0.934795
\(623\) 0 0
\(624\) −14.4853 −0.579875
\(625\) −0.500000 + 0.866025i −0.0200000 + 0.0346410i
\(626\) 3.00000 + 5.19615i 0.119904 + 0.207680i
\(627\) 1.17157 + 2.02922i 0.0467881 + 0.0810394i
\(628\) 23.2426 40.2574i 0.927482 1.60645i
\(629\) −28.0000 −1.11643
\(630\) 0 0
\(631\) 3.31371 0.131917 0.0659583 0.997822i \(-0.478990\pi\)
0.0659583 + 0.997822i \(0.478990\pi\)
\(632\) 17.6569 30.5826i 0.702352 1.21651i
\(633\) −4.82843 8.36308i −0.191913 0.332403i
\(634\) −26.7279 46.2941i −1.06150 1.83857i
\(635\) 9.65685 16.7262i 0.383221 0.663758i
\(636\) 32.4853 1.28813
\(637\) 0 0
\(638\) 40.9706 1.62204
\(639\) 1.41421 2.44949i 0.0559454 0.0969003i
\(640\) −10.2782 17.8023i −0.406281 0.703699i
\(641\) 17.1421 + 29.6910i 0.677074 + 1.17273i 0.975858 + 0.218405i \(0.0700855\pi\)
−0.298784 + 0.954321i \(0.596581\pi\)
\(642\) 6.41421 11.1097i 0.253149 0.438467i
\(643\) −4.97056 −0.196020 −0.0980099 0.995185i \(-0.531248\pi\)
−0.0980099 + 0.995185i \(0.531248\pi\)
\(644\) 0 0
\(645\) 8.00000 0.315000
\(646\) −7.65685 + 13.2621i −0.301255 + 0.521789i
\(647\) −9.65685 16.7262i −0.379650 0.657573i 0.611361 0.791352i \(-0.290622\pi\)
−0.991011 + 0.133778i \(0.957289\pi\)
\(648\) −2.20711 3.82282i −0.0867033 0.150175i
\(649\) 3.31371 5.73951i 0.130074 0.225296i
\(650\) 11.6569 0.457219
\(651\) 0 0
\(652\) −45.9411 −1.79919
\(653\) −9.89949 + 17.1464i −0.387397 + 0.670992i −0.992099 0.125461i \(-0.959959\pi\)
0.604701 + 0.796452i \(0.293292\pi\)
\(654\) 7.24264 + 12.5446i 0.283210 + 0.490534i
\(655\) −2.82843 4.89898i −0.110516 0.191419i
\(656\) 17.4853 30.2854i 0.682686 1.18245i
\(657\) 11.1716 0.435845
\(658\) 0 0
\(659\) 43.1127 1.67943 0.839716 0.543026i \(-0.182721\pi\)
0.839716 + 0.543026i \(0.182721\pi\)
\(660\) −5.41421 + 9.37769i −0.210748 + 0.365026i
\(661\) −9.65685 16.7262i −0.375608 0.650572i 0.614810 0.788675i \(-0.289233\pi\)
−0.990418 + 0.138103i \(0.955899\pi\)
\(662\) −2.00000 3.46410i −0.0777322 0.134636i
\(663\) 18.4853 32.0174i 0.717909 1.24345i
\(664\) 7.31371 0.283827
\(665\) 0 0
\(666\) −8.82843 −0.342095
\(667\) 22.9706 39.7862i 0.889424 1.54053i
\(668\) 21.6569 + 37.5108i 0.837929 + 1.45134i
\(669\) 10.4853 + 18.1610i 0.405384 + 0.702146i
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 22.9706 0.885450 0.442725 0.896657i \(-0.354012\pi\)
0.442725 + 0.896657i \(0.354012\pi\)
\(674\) 8.41421 14.5738i 0.324103 0.561364i
\(675\) 0.500000 + 0.866025i 0.0192450 + 0.0333333i
\(676\) −19.7426 34.1953i −0.759332 1.31520i
\(677\) −7.82843 + 13.5592i −0.300871 + 0.521124i −0.976333 0.216271i \(-0.930611\pi\)
0.675463 + 0.737394i \(0.263944\pi\)
\(678\) −6.82843 −0.262244
\(679\) 0 0
\(680\) −33.7990 −1.29613
\(681\) −14.4853 + 25.0892i −0.555077 + 0.961422i
\(682\) 22.1421 + 38.3513i 0.847866 + 1.46855i
\(683\) 8.17157 + 14.1536i 0.312677 + 0.541572i 0.978941 0.204144i \(-0.0654411\pi\)
−0.666264 + 0.745716i \(0.732108\pi\)
\(684\) −1.58579 + 2.74666i −0.0606341 + 0.105021i
\(685\) −13.1716 −0.503260
\(686\) 0 0
\(687\) −15.3137 −0.584254
\(688\) −12.0000 + 20.7846i −0.457496 + 0.792406i
\(689\) 20.4853 + 35.4815i 0.780427 + 1.35174i
\(690\) 9.24264 + 16.0087i 0.351861 + 0.609442i
\(691\) −3.24264 + 5.61642i −0.123356 + 0.213659i −0.921089 0.389352i \(-0.872699\pi\)
0.797733 + 0.603011i \(0.206032\pi\)
\(692\) −94.2843 −3.58415
\(693\) 0 0
\(694\) −55.4558 −2.10508
\(695\) 0.757359 1.31178i 0.0287283 0.0497588i
\(696\) 13.2426 + 22.9369i 0.501961 + 0.869422i
\(697\) 44.6274 + 77.2970i 1.69038 + 2.92783i
\(698\) 19.3137 33.4523i 0.731035 1.26619i
\(699\) −14.8284 −0.560863
\(700\) 0 0
\(701\) 12.6274 0.476931 0.238465 0.971151i \(-0.423356\pi\)
0.238465 + 0.971151i \(0.423356\pi\)
\(702\) 5.82843 10.0951i 0.219980 0.381016i
\(703\) 1.51472 + 2.62357i 0.0571287 + 0.0989498i
\(704\) 13.8995 + 24.0746i 0.523857 + 0.907347i
\(705\) 2.82843 4.89898i 0.106525 0.184506i
\(706\) 61.1127 2.30001
\(707\) 0 0
\(708\) 8.97056 0.337134
\(709\) −1.00000 + 1.73205i −0.0375558 + 0.0650485i −0.884192 0.467123i \(-0.845291\pi\)
0.846637 + 0.532172i \(0.178624\pi\)
\(710\) −3.41421 5.91359i −0.128133 0.221933i
\(711\) 4.00000 + 6.92820i 0.150012 + 0.259828i
\(712\) −11.7279 + 20.3134i −0.439522 + 0.761275i
\(713\) 49.6569 1.85966
\(714\) 0 0
\(715\) −13.6569 −0.510737
\(716\) 2.24264 3.88437i 0.0838114 0.145166i
\(717\) −1.07107 1.85514i −0.0399998 0.0692816i
\(718\) 19.0711 + 33.0321i 0.711726 + 1.23275i
\(719\) −4.82843 + 8.36308i −0.180070 + 0.311890i −0.941904 0.335882i \(-0.890966\pi\)
0.761834 + 0.647772i \(0.224299\pi\)
\(720\) −3.00000 −0.111803
\(721\) 0 0
\(722\) −44.2132 −1.64545
\(723\) 10.8284 18.7554i 0.402714 0.697520i
\(724\) 4.48528 + 7.76874i 0.166694 + 0.288723i
\(725\) −3.00000 5.19615i −0.111417 0.192980i
\(726\) −3.62132 + 6.27231i −0.134400 + 0.232787i
\(727\) 10.3431 0.383606 0.191803 0.981433i \(-0.438567\pi\)
0.191803 + 0.981433i \(0.438567\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 13.4853 23.3572i 0.499113 0.864488i
\(731\) −30.6274 53.0482i −1.13280 1.96206i
\(732\) 0 0
\(733\) −1.72792 + 2.99285i −0.0638223 + 0.110543i −0.896171 0.443709i \(-0.853662\pi\)
0.832349 + 0.554252i \(0.186996\pi\)
\(734\) 31.3137 1.15581
\(735\) 0 0
\(736\) 12.1421 0.447565
\(737\) 0 0
\(738\) 14.0711 + 24.3718i 0.517963 + 0.897139i
\(739\) 14.9706 + 25.9298i 0.550701 + 0.953842i 0.998224 + 0.0595698i \(0.0189729\pi\)
−0.447523 + 0.894272i \(0.647694\pi\)
\(740\) −7.00000 + 12.1244i −0.257325 + 0.445700i
\(741\) −4.00000 −0.146944
\(742\) 0 0
\(743\) −29.3137 −1.07542 −0.537708 0.843131i \(-0.680710\pi\)
−0.537708 + 0.843131i \(0.680710\pi\)
\(744\) −14.3137 + 24.7921i −0.524766 + 0.908921i
\(745\) −3.82843 6.63103i −0.140263 0.242942i
\(746\) 29.7279 + 51.4903i 1.08842 + 1.88519i
\(747\) −0.828427 + 1.43488i −0.0303106 + 0.0524994i
\(748\) 82.9117 3.03155
\(749\) 0 0
\(750\) 2.41421 0.0881546
\(751\) 18.8284 32.6118i 0.687059 1.19002i −0.285726 0.958311i \(-0.592235\pi\)
0.972785 0.231710i \(-0.0744320\pi\)
\(752\) 8.48528 + 14.6969i 0.309426 + 0.535942i
\(753\) −14.8284 25.6836i −0.540378 0.935962i
\(754\) −34.9706 + 60.5708i −1.27355 + 2.20586i
\(755\) 16.9706 0.617622
\(756\) 0 0
\(757\) −4.34315 −0.157854 −0.0789272 0.996880i \(-0.525149\pi\)
−0.0789272 + 0.996880i \(0.525149\pi\)
\(758\) 25.3137 43.8446i 0.919435 1.59251i
\(759\) −10.8284 18.7554i −0.393047 0.680777i
\(760\) 1.82843 + 3.16693i 0.0663240 + 0.114877i
\(761\) 4.65685 8.06591i 0.168811 0.292389i −0.769191 0.639019i \(-0.779341\pi\)
0.938002 + 0.346630i \(0.112674\pi\)
\(762\) −46.6274 −1.68913
\(763\) 0 0
\(764\) −35.1127 −1.27033
\(765\) 3.82843 6.63103i 0.138417 0.239745i
\(766\) 0 0
\(767\) 5.65685 + 9.79796i 0.204257 + 0.353784i
\(768\) −14.9853 + 25.9553i −0.540735 + 0.936580i
\(769\) −3.02944 −0.109244 −0.0546222 0.998507i \(-0.517395\pi\)
−0.0546222 + 0.998507i \(0.517395\pi\)
\(770\) 0 0
\(771\) −0.343146 −0.0123581
\(772\) −29.9706 + 51.9105i −1.07866 + 1.86830i
\(773\) 16.3137 + 28.2562i 0.586763 + 1.01630i 0.994653 + 0.103273i \(0.0329314\pi\)
−0.407890 + 0.913031i \(0.633735\pi\)
\(774\) −9.65685 16.7262i −0.347108 0.601209i
\(775\) 3.24264 5.61642i 0.116479 0.201748i
\(776\) −28.6274 −1.02766
\(777\) 0 0
\(778\) −28.1421 −1.00894
\(779\) 4.82843 8.36308i 0.172996 0.299638i
\(780\) −9.24264 16.0087i −0.330940 0.573204i
\(781\) 4.00000 + 6.92820i 0.143131 + 0.247911i
\(782\) 70.7696 122.576i 2.53071 4.38333i
\(783\) −6.00000 −0.214423
\(784\) 0 0
\(785\) 12.1421 0.433371
\(786\) −6.82843 + 11.8272i −0.243562 + 0.421862i
\(787\) 6.82843 + 11.8272i 0.243407 + 0.421594i 0.961683 0.274165i \(-0.0884016\pi\)
−0.718275 + 0.695759i \(0.755068\pi\)
\(788\) 6.72792 + 11.6531i 0.239672 + 0.415125i
\(789\) −1.34315 + 2.32640i −0.0478173 + 0.0828219i
\(790\) 19.3137 0.687151
\(791\) 0 0
\(792\) 12.4853 0.443645
\(793\) 0 0
\(794\) −29.9706 51.9105i −1.06362 1.84224i
\(795\) 4.24264 + 7.34847i 0.150471 + 0.260623i
\(796\) −1.58579 + 2.74666i −0.0562067 + 0.0973529i
\(797\) 7.37258 0.261150 0.130575 0.991438i \(-0.458318\pi\)
0.130575 + 0.991438i \(0.458318\pi\)
\(798\) 0 0
\(799\) −43.3137 −1.53233
\(800\) 0.792893 1.37333i 0.0280330 0.0485546i
\(801\) −2.65685 4.60181i −0.0938753 0.162597i
\(802\) −36.2132 62.7231i −1.27873 2.21483i
\(803\) −15.7990 + 27.3647i −0.557534 + 0.965678i
\(804\) 0 0
\(805\) 0 0
\(806\) −75.5980 −2.66283
\(807\) −0.171573 + 0.297173i −0.00603965 + 0.0104610i
\(808\) 16.8995 + 29.2708i 0.594522 + 1.02974i
\(809\) −1.82843 3.16693i −0.0642841 0.111343i 0.832092 0.554637i \(-0.187143\pi\)
−0.896376 + 0.443294i \(0.853810\pi\)
\(810\) 1.20711 2.09077i 0.0424134 0.0734622i
\(811\) 43.4558 1.52594 0.762971 0.646433i \(-0.223740\pi\)
0.762971 + 0.646433i \(0.223740\pi\)
\(812\) 0 0
\(813\) −22.4853 −0.788593
\(814\) 12.4853 21.6251i 0.437609 0.757961i
\(815\) −6.00000 10.3923i −0.210171 0.364027i
\(816\) 11.4853 + 19.8931i 0.402065 + 0.696397i
\(817\) −3.31371 + 5.73951i −0.115932 + 0.200800i
\(818\) −28.9706 −1.01293
\(819\) 0 0
\(820\) 44.6274 1.55846
\(821\) 22.3137 38.6485i 0.778754 1.34884i −0.153907 0.988085i \(-0.549185\pi\)
0.932660 0.360756i \(-0.117481\pi\)
\(822\) 15.8995 + 27.5387i 0.554559 + 0.960524i
\(823\) 20.9706 + 36.3221i 0.730988 + 1.26611i 0.956461 + 0.291859i \(0.0942737\pi\)
−0.225474 + 0.974249i \(0.572393\pi\)
\(824\) −26.4853 + 45.8739i −0.922658 + 1.59809i
\(825\) −2.82843 −0.0984732
\(826\) 0 0
\(827\) 5.31371 0.184776 0.0923879 0.995723i \(-0.470550\pi\)
0.0923879 + 0.995723i \(0.470550\pi\)
\(828\) 14.6569 25.3864i 0.509361 0.882239i
\(829\) 23.7990 + 41.2211i 0.826573 + 1.43167i 0.900711 + 0.434419i \(0.143046\pi\)
−0.0741380 + 0.997248i \(0.523621\pi\)
\(830\) 2.00000 + 3.46410i 0.0694210 + 0.120241i
\(831\) 10.6569 18.4582i 0.369682 0.640308i
\(832\) −47.4558 −1.64524
\(833\) 0 0
\(834\) −3.65685 −0.126627
\(835\) −5.65685 + 9.79796i −0.195764 + 0.339072i
\(836\) −4.48528 7.76874i −0.155127 0.268687i
\(837\) −3.24264 5.61642i −0.112082 0.194132i
\(838\) −0.828427 + 1.43488i −0.0286175 + 0.0495670i
\(839\) 46.6274 1.60976 0.804879 0.593439i \(-0.202230\pi\)
0.804879 + 0.593439i \(0.202230\pi\)
\(840\) 0 0
\(841\) 7.00000 0.241379
\(842\) 7.24264 12.5446i 0.249598 0.432316i
\(843\) 6.17157 + 10.6895i 0.212560 + 0.368165i
\(844\) 18.4853 + 32.0174i 0.636290 + 1.10209i
\(845\) 5.15685 8.93193i 0.177401 0.307268i
\(846\) −13.6569 −0.469532
\(847\) 0 0
\(848\) −25.4558 −0.874157
\(849\) 0 0
\(850\) −9.24264 16.0087i −0.317020 0.549095i
\(851\) −14.0000 24.2487i −0.479914 0.831235i
\(852\) −5.41421 + 9.37769i −0.185488 + 0.321274i
\(853\) −10.4853 −0.359009 −0.179505 0.983757i \(-0.557449\pi\)
−0.179505 + 0.983757i \(0.557449\pi\)
\(854\) 0 0
\(855\) −0.828427 −0.0283316
\(856\) −11.7279 + 20.3134i −0.400852 + 0.694296i
\(857\) 22.3137 + 38.6485i 0.762222 + 1.32021i 0.941703 + 0.336445i \(0.109225\pi\)
−0.179481 + 0.983761i \(0.557442\pi\)
\(858\) 16.4853 + 28.5533i 0.562798 + 0.974795i
\(859\) −22.8995 + 39.6631i −0.781321 + 1.35329i 0.149852 + 0.988708i \(0.452120\pi\)
−0.931173 + 0.364579i \(0.881213\pi\)
\(860\) −30.6274 −1.04439
\(861\) 0 0
\(862\) −26.1421 −0.890405
\(863\) −23.4853 + 40.6777i −0.799448 + 1.38469i 0.120528 + 0.992710i \(0.461541\pi\)
−0.919976 + 0.391975i \(0.871792\pi\)
\(864\) −0.792893 1.37333i −0.0269748 0.0467217i
\(865\) −12.3137 21.3280i −0.418679 0.725173i
\(866\) 8.65685 14.9941i 0.294172 0.509521i
\(867\) −41.6274 −1.41374
\(868\) 0 0
\(869\) −22.6274 −0.767583
\(870\) −7.24264 + 12.5446i −0.245549 + 0.425303i
\(871\) 0 0
\(872\) −13.2426 22.9369i −0.448452 0.776742i
\(873\) 3.24264 5.61642i 0.109747 0.190087i
\(874\) −15.3137 −0.517994
\(875\) 0 0
\(876\) −42.7696 −1.44505
\(877\) −13.9706 + 24.1977i −0.471752 + 0.817099i −0.999478 0.0323160i \(-0.989712\pi\)
0.527725 + 0.849415i \(0.323045\pi\)
\(878\) −16.3137 28.2562i −0.550561 0.953600i
\(879\) 6.17157 + 10.6895i 0.208162 + 0.360547i
\(880\) 4.24264 7.34847i 0.143019 0.247717i
\(881\) 43.2548 1.45729 0.728646 0.684890i \(-0.240150\pi\)
0.728646 + 0.684890i \(0.240150\pi\)
\(882\) 0 0
\(883\) 28.0000 0.942275 0.471138 0.882060i \(-0.343844\pi\)
0.471138 + 0.882060i \(0.343844\pi\)
\(884\) −70.7696 + 122.576i −2.38024 + 4.12269i
\(885\) 1.17157 + 2.02922i 0.0393820 + 0.0682116i
\(886\) −28.5563 49.4610i −0.959369 1.66168i
\(887\) −3.51472 + 6.08767i −0.118013 + 0.204404i −0.918980 0.394304i \(-0.870986\pi\)
0.800967 + 0.598708i \(0.204319\pi\)
\(888\) 16.1421 0.541695
\(889\) 0 0
\(890\) −12.8284 −0.430010
\(891\) −1.41421 + 2.44949i −0.0473779 + 0.0820610i
\(892\) −40.1421 69.5282i −1.34406 2.32798i
\(893\) 2.34315 + 4.05845i 0.0784104 + 0.135811i
\(894\) −9.24264 + 16.0087i −0.309120 + 0.535412i
\(895\) 1.17157 0.0391614
\(896\) 0 0
\(897\) 36.9706 1.23441
\(898\) 15.2426 26.4010i 0.508654 0.881014i
\(899\) 19.4558 + 33.6985i 0.648889 + 1.12391i
\(900\) −1.91421 3.31552i −0.0638071 0.110517i
\(901\) 32.4853 56.2662i 1.08224 1.87450i
\(902\) −79.5980 −2.65032
\(903\) 0 0
\(904\) 12.4853 0.415254
\(905\) −1.17157 + 2.02922i −0.0389444 + 0.0674537i
\(906\) −20.4853 35.4815i −0.680578 1.17880i
\(907\) 19.6569 + 34.0467i 0.652695 + 1.13050i 0.982466 + 0.186440i \(0.0596951\pi\)
−0.329771 + 0.944061i \(0.606972\pi\)
\(908\) 55.4558 96.0523i 1.84037 3.18761i
\(909\) −7.65685 −0.253962
\(910\) 0 0
\(911\) −7.79899 −0.258392 −0.129196 0.991619i \(-0.541240\pi\)
−0.129196 + 0.991619i \(0.541240\pi\)
\(912\) 1.24264 2.15232i 0.0411479 0.0712703i
\(913\) −2.34315 4.05845i −0.0775468 0.134315i
\(914\) −19.7279 34.1698i −0.652542 1.13024i
\(915\) 0 0
\(916\) 58.6274 1.93710
\(917\) 0 0
\(918\) −18.4853 −0.610105
\(919\) −22.1421 + 38.3513i −0.730402 + 1.26509i 0.226310 + 0.974055i \(0.427334\pi\)
−0.956712 + 0.291037i \(0.906000\pi\)
\(920\) −16.8995 29.2708i −0.557160 0.965029i
\(921\) 14.4853 + 25.0892i 0.477306 + 0.826719i
\(922\) 16.0711 27.8359i 0.529272 0.916727i
\(923\) −13.6569 −0.449521
\(924\) 0 0
\(925\) −3.65685 −0.120237
\(926\) −46.6274 + 80.7611i −1.53227 + 2.65397i
\(927\) −6.00000 10.3923i −0.197066 0.341328i
\(928\) 4.75736 + 8.23999i 0.156168 + 0.270491i
\(929\) −21.0000 + 36.3731i −0.688988 + 1.19336i 0.283178 + 0.959067i \(0.408611\pi\)
−0.972166 + 0.234294i \(0.924722\pi\)
\(930\) −15.6569 −0.513408
\(931\) 0 0
\(932\) 56.7696 1.85955
\(933\) −4.82843 + 8.36308i −0.158076 + 0.273795i
\(934\) −29.3137 50.7728i −0.959174 1.66134i
\(935\) 10.8284 + 18.7554i 0.354127 + 0.613367i
\(936\) −10.6569 + 18.4582i −0.348330 + 0.603326i
\(937\) −15.4558 −0.504920 −0.252460 0.967607i \(-0.581240\pi\)
−0.252460 + 0.967607i \(0.581240\pi\)
\(938\) 0 0
\(939\) 2.48528 0.0811041
\(940\) −10.8284 + 18.7554i −0.353184 + 0.611733i
\(941\) −0.313708 0.543359i −0.0102266 0.0177130i 0.860867 0.508830i \(-0.169922\pi\)
−0.871093 + 0.491117i \(0.836589\pi\)
\(942\) −14.6569 25.3864i −0.477546 0.827134i
\(943\) −44.6274 + 77.2970i −1.45327 + 2.51714i
\(944\) −7.02944 −0.228789
\(945\) 0 0
\(946\) 54.6274 1.77609
\(947\) 6.17157 10.6895i 0.200549 0.347361i −0.748156 0.663522i \(-0.769061\pi\)
0.948706 + 0.316161i \(0.102394\pi\)
\(948\) −15.3137 26.5241i −0.497366 0.861463i
\(949\) −26.9706 46.7144i −0.875502 1.51641i
\(950\) −1.00000 + 1.73205i −0.0324443 + 0.0561951i
\(951\) −22.1421 −0.718008
\(952\) 0 0
\(953\) 6.14214 0.198963 0.0994816 0.995039i \(-0.468282\pi\)
0.0994816 + 0.995039i \(0.468282\pi\)
\(954\) 10.2426 17.7408i 0.331618 0.574379i
\(955\) −4.58579 7.94282i −0.148393 0.257023i
\(956\) 4.10051 + 7.10228i 0.132620 + 0.229704i
\(957\) 8.48528 14.6969i 0.274290 0.475085i
\(958\) 34.6274 1.11876
\(959\) 0 0
\(960\) −9.82843 −0.317211
\(961\) −5.52944 + 9.57727i −0.178369 + 0.308944i
\(962\) 21.3137 + 36.9164i 0.687182 + 1.19023i
\(963\) −2.65685 4.60181i −0.0856159 0.148291i
\(964\) −41.4558 + 71.8036i −1.33520 + 2.31264i
\(965\) −15.6569 −0.504012
\(966\) 0 0
\(967\) 5.37258 0.172771 0.0863853 0.996262i \(-0.472468\pi\)
0.0863853 + 0.996262i \(0.472468\pi\)
\(968\) 6.62132 11.4685i 0.212817 0.368610i
\(969\) 3.17157 + 5.49333i 0.101886 + 0.176471i
\(970\) −7.82843 13.5592i −0.251356 0.435361i
\(971\) 19.6569 34.0467i 0.630818 1.09261i −0.356566 0.934270i \(-0.616053\pi\)
0.987385 0.158340i \(-0.0506141\pi\)
\(972\) −3.82843 −0.122797
\(973\) 0 0
\(974\) 72.2843 2.31614
\(975\) 2.41421 4.18154i 0.0773167 0.133916i
\(976\) 0 0
\(977\) 10.2426 + 17.7408i 0.327691 + 0.567578i 0.982053 0.188604i \(-0.0603961\pi\)
−0.654362 + 0.756181i \(0.727063\pi\)
\(978\) −14.4853 + 25.0892i −0.463188 + 0.802266i
\(979\) 15.0294 0.480343
\(980\) 0 0
\(981\) 6.00000 0.191565
\(982\) −21.8995 + 37.9310i −0.698841 + 1.21043i
\(983\) 10.8284 + 18.7554i 0.345373 + 0.598204i 0.985421 0.170131i \(-0.0544190\pi\)
−0.640048 + 0.768335i \(0.721086\pi\)
\(984\) −25.7279 44.5621i −0.820176 1.42059i
\(985\) −1.75736 + 3.04384i −0.0559941 + 0.0969847i
\(986\) 110.912 3.53215
\(987\) 0 0
\(988\) 15.3137 0.487194
\(989\) 30.6274 53.0482i 0.973895 1.68684i
\(990\) 3.41421 + 5.91359i 0.108511 + 0.187946i
\(991\) −8.48528 14.6969i −0.269544 0.466864i 0.699200 0.714926i \(-0.253540\pi\)
−0.968744 + 0.248062i \(0.920206\pi\)
\(992\) −5.14214 + 8.90644i −0.163263 + 0.282780i
\(993\) −1.65685 −0.0525787
\(994\) 0 0
\(995\) −0.828427 −0.0262629
\(996\) 3.17157 5.49333i 0.100495 0.174063i
\(997\) −27.7279 48.0262i −0.878152 1.52100i −0.853367 0.521311i \(-0.825443\pi\)
−0.0247855 0.999693i \(-0.507890\pi\)
\(998\) −6.00000 10.3923i −0.189927 0.328963i
\(999\) −1.82843 + 3.16693i −0.0578489 + 0.100197i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 735.2.i.h.226.1 4
7.2 even 3 735.2.a.l.1.2 2
7.3 odd 6 735.2.i.g.361.1 4
7.4 even 3 inner 735.2.i.h.361.1 4
7.5 odd 6 735.2.a.m.1.2 yes 2
7.6 odd 2 735.2.i.g.226.1 4
21.2 odd 6 2205.2.a.r.1.1 2
21.5 even 6 2205.2.a.o.1.1 2
35.9 even 6 3675.2.a.t.1.1 2
35.19 odd 6 3675.2.a.s.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
735.2.a.l.1.2 2 7.2 even 3
735.2.a.m.1.2 yes 2 7.5 odd 6
735.2.i.g.226.1 4 7.6 odd 2
735.2.i.g.361.1 4 7.3 odd 6
735.2.i.h.226.1 4 1.1 even 1 trivial
735.2.i.h.361.1 4 7.4 even 3 inner
2205.2.a.o.1.1 2 21.5 even 6
2205.2.a.r.1.1 2 21.2 odd 6
3675.2.a.s.1.1 2 35.19 odd 6
3675.2.a.t.1.1 2 35.9 even 6