Properties

Label 735.2.g.c.734.1
Level $735$
Weight $2$
Character 735.734
Analytic conductor $5.869$
Analytic rank $0$
Dimension $32$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [735,2,Mod(734,735)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("735.734"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(735, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 735 = 3 \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 735.g (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.86900454856\)
Analytic rank: \(0\)
Dimension: \(32\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 734.1
Character \(\chi\) \(=\) 735.734
Dual form 735.2.g.c.734.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.20906 q^{2} +(-1.59632 - 0.672139i) q^{3} +2.87996 q^{4} +(1.33217 + 1.79592i) q^{5} +(3.52637 + 1.48480i) q^{6} -1.94389 q^{8} +(2.09646 + 2.14589i) q^{9} +(-2.94284 - 3.96730i) q^{10} +3.81691i q^{11} +(-4.59733 - 1.93573i) q^{12} +6.50161 q^{13} +(-0.919457 - 3.76226i) q^{15} -1.46575 q^{16} +2.94050i q^{17} +(-4.63121 - 4.74041i) q^{18} -2.03485i q^{19} +(3.83659 + 5.17218i) q^{20} -8.43180i q^{22} -3.00058 q^{23} +(3.10306 + 1.30656i) q^{24} +(-1.45065 + 4.78494i) q^{25} -14.3625 q^{26} +(-1.90428 - 4.83464i) q^{27} +2.25259i q^{29} +(2.03114 + 8.31107i) q^{30} -6.66511i q^{31} +7.12571 q^{32} +(2.56549 - 6.09300i) q^{33} -6.49574i q^{34} +(6.03772 + 6.18009i) q^{36} -3.36664i q^{37} +4.49512i q^{38} +(-10.3786 - 4.36998i) q^{39} +(-2.58959 - 3.49107i) q^{40} -3.51094 q^{41} +7.03729i q^{43} +10.9926i q^{44} +(-1.06101 + 6.62376i) q^{45} +6.62848 q^{46} -5.01279i q^{47} +(2.33980 + 0.985185i) q^{48} +(3.20459 - 10.5702i) q^{50} +(1.97642 - 4.69396i) q^{51} +18.7244 q^{52} -1.93423 q^{53} +(4.20667 + 10.6800i) q^{54} +(-6.85487 + 5.08477i) q^{55} +(-1.36770 + 3.24827i) q^{57} -4.97612i q^{58} +7.93019 q^{59} +(-2.64800 - 10.8352i) q^{60} +13.6650i q^{61} +14.7237i q^{62} -12.8096 q^{64} +(8.66124 + 11.6764i) q^{65} +(-5.66734 + 13.4598i) q^{66} +10.7863i q^{67} +8.46851i q^{68} +(4.78988 + 2.01681i) q^{69} +10.9926i q^{71} +(-4.07528 - 4.17138i) q^{72} +3.30897 q^{73} +7.43712i q^{74} +(5.53184 - 6.66324i) q^{75} -5.86030i q^{76} +(22.9271 + 9.65357i) q^{78} -5.84977 q^{79} +(-1.95262 - 2.63236i) q^{80} +(-0.209716 + 8.99756i) q^{81} +7.75589 q^{82} -2.66330i q^{83} +(-5.28089 + 3.91724i) q^{85} -15.5458i q^{86} +(1.51405 - 3.59585i) q^{87} -7.41965i q^{88} +13.5159 q^{89} +(2.34385 - 14.6323i) q^{90} -8.64156 q^{92} +(-4.47988 + 10.6396i) q^{93} +11.0736i q^{94} +(3.65444 - 2.71077i) q^{95} +(-11.3749 - 4.78946i) q^{96} +4.46688 q^{97} +(-8.19069 + 8.00200i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 16 q^{4} + 40 q^{9} + 16 q^{15} - 16 q^{16} + 64 q^{25} + 56 q^{30} - 16 q^{36} - 56 q^{39} - 32 q^{46} - 40 q^{51} + 8 q^{60} - 176 q^{64} + 48 q^{79} - 40 q^{81} - 64 q^{85} + 40 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/735\mathbb{Z}\right)^\times\).

\(n\) \(346\) \(442\) \(491\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.20906 −1.56204 −0.781022 0.624504i \(-0.785301\pi\)
−0.781022 + 0.624504i \(0.785301\pi\)
\(3\) −1.59632 0.672139i −0.921634 0.388059i
\(4\) 2.87996 1.43998
\(5\) 1.33217 + 1.79592i 0.595764 + 0.803160i
\(6\) 3.52637 + 1.48480i 1.43963 + 0.606166i
\(7\) 0 0
\(8\) −1.94389 −0.687269
\(9\) 2.09646 + 2.14589i 0.698820 + 0.715298i
\(10\) −2.94284 3.96730i −0.930609 1.25457i
\(11\) 3.81691i 1.15084i 0.817857 + 0.575421i \(0.195162\pi\)
−0.817857 + 0.575421i \(0.804838\pi\)
\(12\) −4.59733 1.93573i −1.32714 0.558798i
\(13\) 6.50161 1.80322 0.901611 0.432548i \(-0.142385\pi\)
0.901611 + 0.432548i \(0.142385\pi\)
\(14\) 0 0
\(15\) −0.919457 3.76226i −0.237403 0.971411i
\(16\) −1.46575 −0.366437
\(17\) 2.94050i 0.713175i 0.934262 + 0.356587i \(0.116060\pi\)
−0.934262 + 0.356587i \(0.883940\pi\)
\(18\) −4.63121 4.74041i −1.09159 1.11733i
\(19\) 2.03485i 0.466828i −0.972377 0.233414i \(-0.925010\pi\)
0.972377 0.233414i \(-0.0749897\pi\)
\(20\) 3.83659 + 5.17218i 0.857888 + 1.15653i
\(21\) 0 0
\(22\) 8.43180i 1.79767i
\(23\) −3.00058 −0.625665 −0.312832 0.949808i \(-0.601278\pi\)
−0.312832 + 0.949808i \(0.601278\pi\)
\(24\) 3.10306 + 1.30656i 0.633410 + 0.266701i
\(25\) −1.45065 + 4.78494i −0.290131 + 0.956987i
\(26\) −14.3625 −2.81671
\(27\) −1.90428 4.83464i −0.366478 0.930427i
\(28\) 0 0
\(29\) 2.25259i 0.418296i 0.977884 + 0.209148i \(0.0670690\pi\)
−0.977884 + 0.209148i \(0.932931\pi\)
\(30\) 2.03114 + 8.31107i 0.370834 + 1.51739i
\(31\) 6.66511i 1.19709i −0.801089 0.598545i \(-0.795746\pi\)
0.801089 0.598545i \(-0.204254\pi\)
\(32\) 7.12571 1.25966
\(33\) 2.56549 6.09300i 0.446595 1.06066i
\(34\) 6.49574i 1.11401i
\(35\) 0 0
\(36\) 6.03772 + 6.18009i 1.00629 + 1.03001i
\(37\) 3.36664i 0.553472i −0.960946 0.276736i \(-0.910747\pi\)
0.960946 0.276736i \(-0.0892528\pi\)
\(38\) 4.49512i 0.729205i
\(39\) −10.3786 4.36998i −1.66191 0.699757i
\(40\) −2.58959 3.49107i −0.409450 0.551986i
\(41\) −3.51094 −0.548317 −0.274158 0.961685i \(-0.588399\pi\)
−0.274158 + 0.961685i \(0.588399\pi\)
\(42\) 0 0
\(43\) 7.03729i 1.07318i 0.843844 + 0.536588i \(0.180287\pi\)
−0.843844 + 0.536588i \(0.819713\pi\)
\(44\) 10.9926i 1.65719i
\(45\) −1.06101 + 6.62376i −0.158167 + 0.987412i
\(46\) 6.62848 0.977316
\(47\) 5.01279i 0.731190i −0.930774 0.365595i \(-0.880865\pi\)
0.930774 0.365595i \(-0.119135\pi\)
\(48\) 2.33980 + 0.985185i 0.337721 + 0.142199i
\(49\) 0 0
\(50\) 3.20459 10.5702i 0.453197 1.49486i
\(51\) 1.97642 4.69396i 0.276754 0.657286i
\(52\) 18.7244 2.59660
\(53\) −1.93423 −0.265686 −0.132843 0.991137i \(-0.542411\pi\)
−0.132843 + 0.991137i \(0.542411\pi\)
\(54\) 4.20667 + 10.6800i 0.572455 + 1.45337i
\(55\) −6.85487 + 5.08477i −0.924310 + 0.685630i
\(56\) 0 0
\(57\) −1.36770 + 3.24827i −0.181157 + 0.430244i
\(58\) 4.97612i 0.653396i
\(59\) 7.93019 1.03242 0.516211 0.856461i \(-0.327342\pi\)
0.516211 + 0.856461i \(0.327342\pi\)
\(60\) −2.64800 10.8352i −0.341855 1.39881i
\(61\) 13.6650i 1.74962i 0.484466 + 0.874810i \(0.339014\pi\)
−0.484466 + 0.874810i \(0.660986\pi\)
\(62\) 14.7237i 1.86991i
\(63\) 0 0
\(64\) −12.8096 −1.60121
\(65\) 8.66124 + 11.6764i 1.07429 + 1.44828i
\(66\) −5.66734 + 13.4598i −0.697601 + 1.65679i
\(67\) 10.7863i 1.31776i 0.752250 + 0.658878i \(0.228969\pi\)
−0.752250 + 0.658878i \(0.771031\pi\)
\(68\) 8.46851i 1.02696i
\(69\) 4.78988 + 2.01681i 0.576634 + 0.242795i
\(70\) 0 0
\(71\) 10.9926i 1.30458i 0.757971 + 0.652288i \(0.226191\pi\)
−0.757971 + 0.652288i \(0.773809\pi\)
\(72\) −4.07528 4.17138i −0.480277 0.491602i
\(73\) 3.30897 0.387286 0.193643 0.981072i \(-0.437970\pi\)
0.193643 + 0.981072i \(0.437970\pi\)
\(74\) 7.43712i 0.864548i
\(75\) 5.53184 6.66324i 0.638762 0.769404i
\(76\) 5.86030i 0.672223i
\(77\) 0 0
\(78\) 22.9271 + 9.65357i 2.59598 + 1.09305i
\(79\) −5.84977 −0.658151 −0.329075 0.944304i \(-0.606737\pi\)
−0.329075 + 0.944304i \(0.606737\pi\)
\(80\) −1.95262 2.63236i −0.218310 0.294307i
\(81\) −0.209716 + 8.99756i −0.0233018 + 0.999728i
\(82\) 7.75589 0.856495
\(83\) 2.66330i 0.292336i −0.989260 0.146168i \(-0.953306\pi\)
0.989260 0.146168i \(-0.0466939\pi\)
\(84\) 0 0
\(85\) −5.28089 + 3.91724i −0.572793 + 0.424884i
\(86\) 15.5458i 1.67635i
\(87\) 1.51405 3.59585i 0.162324 0.385516i
\(88\) 7.41965i 0.790938i
\(89\) 13.5159 1.43268 0.716339 0.697752i \(-0.245816\pi\)
0.716339 + 0.697752i \(0.245816\pi\)
\(90\) 2.34385 14.6323i 0.247063 1.54238i
\(91\) 0 0
\(92\) −8.64156 −0.900945
\(93\) −4.47988 + 10.6396i −0.464542 + 1.10328i
\(94\) 11.0736i 1.14215i
\(95\) 3.65444 2.71077i 0.374937 0.278119i
\(96\) −11.3749 4.78946i −1.16094 0.488822i
\(97\) 4.46688 0.453543 0.226771 0.973948i \(-0.427183\pi\)
0.226771 + 0.973948i \(0.427183\pi\)
\(98\) 0 0
\(99\) −8.19069 + 8.00200i −0.823195 + 0.804231i
\(100\) −4.17782 + 13.7804i −0.417782 + 1.37804i
\(101\) −8.87047 −0.882644 −0.441322 0.897349i \(-0.645490\pi\)
−0.441322 + 0.897349i \(0.645490\pi\)
\(102\) −4.36604 + 10.3693i −0.432302 + 1.02671i
\(103\) 1.32243 0.130303 0.0651516 0.997875i \(-0.479247\pi\)
0.0651516 + 0.997875i \(0.479247\pi\)
\(104\) −12.6384 −1.23930
\(105\) 0 0
\(106\) 4.27283 0.415014
\(107\) 3.32444 0.321386 0.160693 0.987004i \(-0.448627\pi\)
0.160693 + 0.987004i \(0.448627\pi\)
\(108\) −5.48424 13.9236i −0.527722 1.33980i
\(109\) 12.2985 1.17799 0.588994 0.808138i \(-0.299524\pi\)
0.588994 + 0.808138i \(0.299524\pi\)
\(110\) 15.1428 11.2326i 1.44381 1.07098i
\(111\) −2.26285 + 5.37423i −0.214780 + 0.510099i
\(112\) 0 0
\(113\) −20.4591 −1.92463 −0.962314 0.271941i \(-0.912334\pi\)
−0.962314 + 0.271941i \(0.912334\pi\)
\(114\) 3.02135 7.17564i 0.282975 0.672061i
\(115\) −3.99728 5.38881i −0.372749 0.502509i
\(116\) 6.48737i 0.602338i
\(117\) 13.6304 + 13.9518i 1.26013 + 1.28984i
\(118\) −17.5183 −1.61269
\(119\) 0 0
\(120\) 1.78732 + 7.31342i 0.163160 + 0.667620i
\(121\) −3.56881 −0.324438
\(122\) 30.1868i 2.73298i
\(123\) 5.60458 + 2.35984i 0.505348 + 0.212780i
\(124\) 19.1953i 1.72379i
\(125\) −10.5259 + 3.76908i −0.941463 + 0.337117i
\(126\) 0 0
\(127\) 0.597329i 0.0530044i 0.999649 + 0.0265022i \(0.00843689\pi\)
−0.999649 + 0.0265022i \(0.991563\pi\)
\(128\) 14.0459 1.24149
\(129\) 4.73004 11.2338i 0.416456 0.989077i
\(130\) −19.1332 25.7938i −1.67810 2.26227i
\(131\) −5.81183 −0.507782 −0.253891 0.967233i \(-0.581710\pi\)
−0.253891 + 0.967233i \(0.581710\pi\)
\(132\) 7.38852 17.5476i 0.643088 1.52732i
\(133\) 0 0
\(134\) 23.8276i 2.05839i
\(135\) 6.14580 9.86048i 0.528946 0.848655i
\(136\) 5.71600i 0.490143i
\(137\) 1.09369 0.0934400 0.0467200 0.998908i \(-0.485123\pi\)
0.0467200 + 0.998908i \(0.485123\pi\)
\(138\) −10.5812 4.45526i −0.900728 0.379257i
\(139\) 7.35968i 0.624240i −0.950043 0.312120i \(-0.898961\pi\)
0.950043 0.312120i \(-0.101039\pi\)
\(140\) 0 0
\(141\) −3.36929 + 8.00200i −0.283745 + 0.673890i
\(142\) 24.2833i 2.03781i
\(143\) 24.8161i 2.07522i
\(144\) −3.07288 3.14534i −0.256073 0.262111i
\(145\) −4.04547 + 3.00083i −0.335958 + 0.249205i
\(146\) −7.30973 −0.604958
\(147\) 0 0
\(148\) 9.69579i 0.796989i
\(149\) 10.8195i 0.886365i −0.896431 0.443183i \(-0.853849\pi\)
0.896431 0.443183i \(-0.146151\pi\)
\(150\) −12.2202 + 14.7195i −0.997774 + 1.20184i
\(151\) −8.29599 −0.675118 −0.337559 0.941304i \(-0.609601\pi\)
−0.337559 + 0.941304i \(0.609601\pi\)
\(152\) 3.95553i 0.320836i
\(153\) −6.30999 + 6.16463i −0.510132 + 0.498381i
\(154\) 0 0
\(155\) 11.9700 8.87905i 0.961454 0.713183i
\(156\) −29.8901 12.5854i −2.39312 1.00764i
\(157\) −5.41185 −0.431913 −0.215957 0.976403i \(-0.569287\pi\)
−0.215957 + 0.976403i \(0.569287\pi\)
\(158\) 12.9225 1.02806
\(159\) 3.08764 + 1.30007i 0.244866 + 0.103102i
\(160\) 9.49264 + 12.7972i 0.750459 + 1.01171i
\(161\) 0 0
\(162\) 0.463276 19.8762i 0.0363984 1.56162i
\(163\) 17.1569i 1.34383i 0.740627 + 0.671917i \(0.234529\pi\)
−0.740627 + 0.671917i \(0.765471\pi\)
\(164\) −10.1114 −0.789566
\(165\) 14.3602 3.50949i 1.11794 0.273213i
\(166\) 5.88341i 0.456641i
\(167\) 9.60588i 0.743325i −0.928368 0.371663i \(-0.878788\pi\)
0.928368 0.371663i \(-0.121212\pi\)
\(168\) 0 0
\(169\) 29.2709 2.25161
\(170\) 11.6658 8.65342i 0.894728 0.663687i
\(171\) 4.36658 4.26599i 0.333921 0.326228i
\(172\) 20.2671i 1.54535i
\(173\) 10.1725i 0.773403i 0.922205 + 0.386702i \(0.126386\pi\)
−0.922205 + 0.386702i \(0.873614\pi\)
\(174\) −3.34464 + 7.94346i −0.253556 + 0.602192i
\(175\) 0 0
\(176\) 5.59463i 0.421711i
\(177\) −12.6591 5.33019i −0.951516 0.400641i
\(178\) −29.8574 −2.23791
\(179\) 23.6545i 1.76802i −0.467466 0.884011i \(-0.654833\pi\)
0.467466 0.884011i \(-0.345167\pi\)
\(180\) −3.05568 + 19.0762i −0.227757 + 1.42185i
\(181\) 15.6330i 1.16199i 0.813906 + 0.580997i \(0.197337\pi\)
−0.813906 + 0.580997i \(0.802663\pi\)
\(182\) 0 0
\(183\) 9.18476 21.8136i 0.678957 1.61251i
\(184\) 5.83280 0.430000
\(185\) 6.04622 4.48493i 0.444527 0.329739i
\(186\) 9.89634 23.5036i 0.725635 1.72337i
\(187\) −11.2236 −0.820752
\(188\) 14.4366i 1.05290i
\(189\) 0 0
\(190\) −8.07288 + 5.98826i −0.585668 + 0.434434i
\(191\) 10.7792i 0.779953i 0.920825 + 0.389976i \(0.127517\pi\)
−0.920825 + 0.389976i \(0.872483\pi\)
\(192\) 20.4483 + 8.60986i 1.47573 + 0.621363i
\(193\) 1.84621i 0.132893i −0.997790 0.0664465i \(-0.978834\pi\)
0.997790 0.0664465i \(-0.0211662\pi\)
\(194\) −9.86762 −0.708454
\(195\) −5.97795 24.4607i −0.428090 1.75167i
\(196\) 0 0
\(197\) 8.09941 0.577059 0.288530 0.957471i \(-0.406834\pi\)
0.288530 + 0.957471i \(0.406834\pi\)
\(198\) 18.0937 17.6769i 1.28587 1.25624i
\(199\) 10.1027i 0.716164i 0.933690 + 0.358082i \(0.116569\pi\)
−0.933690 + 0.358082i \(0.883431\pi\)
\(200\) 2.81991 9.30138i 0.199398 0.657707i
\(201\) 7.24988 17.2184i 0.511367 1.21449i
\(202\) 19.5954 1.37873
\(203\) 0 0
\(204\) 5.69201 13.5184i 0.398521 0.946480i
\(205\) −4.67717 6.30537i −0.326667 0.440386i
\(206\) −2.92134 −0.203539
\(207\) −6.29060 6.43893i −0.437227 0.447537i
\(208\) −9.52972 −0.660767
\(209\) 7.76686 0.537245
\(210\) 0 0
\(211\) 10.6818 0.735367 0.367684 0.929951i \(-0.380151\pi\)
0.367684 + 0.929951i \(0.380151\pi\)
\(212\) −5.57050 −0.382583
\(213\) 7.38852 17.5476i 0.506253 1.20234i
\(214\) −7.34390 −0.502018
\(215\) −12.6384 + 9.37486i −0.861932 + 0.639360i
\(216\) 3.70170 + 9.39800i 0.251869 + 0.639453i
\(217\) 0 0
\(218\) −27.1683 −1.84007
\(219\) −5.28217 2.22409i −0.356936 0.150290i
\(220\) −19.7417 + 14.6439i −1.33099 + 0.987294i
\(221\) 19.1180i 1.28601i
\(222\) 4.99878 11.8720i 0.335496 0.796797i
\(223\) −4.13183 −0.276688 −0.138344 0.990384i \(-0.544178\pi\)
−0.138344 + 0.990384i \(0.544178\pi\)
\(224\) 0 0
\(225\) −13.3092 + 6.91848i −0.887280 + 0.461232i
\(226\) 45.1954 3.00635
\(227\) 7.17565i 0.476265i 0.971233 + 0.238132i \(0.0765352\pi\)
−0.971233 + 0.238132i \(0.923465\pi\)
\(228\) −3.93894 + 9.35490i −0.260862 + 0.619544i
\(229\) 10.4511i 0.690629i −0.938487 0.345315i \(-0.887772\pi\)
0.938487 0.345315i \(-0.112228\pi\)
\(230\) 8.83025 + 11.9042i 0.582250 + 0.784941i
\(231\) 0 0
\(232\) 4.37879i 0.287481i
\(233\) 3.90144 0.255592 0.127796 0.991800i \(-0.459210\pi\)
0.127796 + 0.991800i \(0.459210\pi\)
\(234\) −30.1103 30.8203i −1.96837 2.01479i
\(235\) 9.00256 6.67788i 0.587262 0.435617i
\(236\) 22.8386 1.48667
\(237\) 9.33810 + 3.93186i 0.606574 + 0.255402i
\(238\) 0 0
\(239\) 23.7873i 1.53867i 0.638844 + 0.769336i \(0.279413\pi\)
−0.638844 + 0.769336i \(0.720587\pi\)
\(240\) 1.34769 + 5.51452i 0.0869932 + 0.355961i
\(241\) 13.2825i 0.855603i 0.903873 + 0.427801i \(0.140712\pi\)
−0.903873 + 0.427801i \(0.859288\pi\)
\(242\) 7.88374 0.506786
\(243\) 6.38238 14.2220i 0.409430 0.912342i
\(244\) 39.3546i 2.51942i
\(245\) 0 0
\(246\) −12.3809 5.21303i −0.789375 0.332371i
\(247\) 13.2298i 0.841794i
\(248\) 12.9562i 0.822722i
\(249\) −1.79011 + 4.25148i −0.113444 + 0.269427i
\(250\) 23.2523 8.32615i 1.47061 0.526592i
\(251\) −9.12747 −0.576121 −0.288060 0.957612i \(-0.593010\pi\)
−0.288060 + 0.957612i \(0.593010\pi\)
\(252\) 0 0
\(253\) 11.4530i 0.720041i
\(254\) 1.31954i 0.0827951i
\(255\) 11.0629 2.70366i 0.692786 0.169310i
\(256\) −5.40900 −0.338062
\(257\) 6.68630i 0.417080i 0.978014 + 0.208540i \(0.0668712\pi\)
−0.978014 + 0.208540i \(0.933129\pi\)
\(258\) −10.4489 + 24.8161i −0.650523 + 1.54498i
\(259\) 0 0
\(260\) 24.9440 + 33.6275i 1.54696 + 2.08549i
\(261\) −4.83382 + 4.72247i −0.299206 + 0.292313i
\(262\) 12.8387 0.793177
\(263\) −24.1283 −1.48782 −0.743908 0.668282i \(-0.767030\pi\)
−0.743908 + 0.668282i \(0.767030\pi\)
\(264\) −4.98704 + 11.8441i −0.306931 + 0.728955i
\(265\) −2.57672 3.47371i −0.158286 0.213389i
\(266\) 0 0
\(267\) −21.5756 9.08453i −1.32041 0.555964i
\(268\) 31.0641i 1.89754i
\(269\) −19.0079 −1.15893 −0.579465 0.814997i \(-0.696738\pi\)
−0.579465 + 0.814997i \(0.696738\pi\)
\(270\) −13.5765 + 21.7824i −0.826237 + 1.32564i
\(271\) 11.8486i 0.719750i 0.933001 + 0.359875i \(0.117181\pi\)
−0.933001 + 0.359875i \(0.882819\pi\)
\(272\) 4.31002i 0.261334i
\(273\) 0 0
\(274\) −2.41603 −0.145957
\(275\) −18.2637 5.53702i −1.10134 0.333895i
\(276\) 13.7947 + 5.80833i 0.830342 + 0.349620i
\(277\) 16.5181i 0.992478i −0.868186 0.496239i \(-0.834714\pi\)
0.868186 0.496239i \(-0.165286\pi\)
\(278\) 16.2580i 0.975090i
\(279\) 14.3026 13.9731i 0.856275 0.836550i
\(280\) 0 0
\(281\) 10.1076i 0.602968i −0.953471 0.301484i \(-0.902518\pi\)
0.953471 0.301484i \(-0.0974820\pi\)
\(282\) 7.44297 17.6769i 0.443222 1.05265i
\(283\) 6.00203 0.356784 0.178392 0.983960i \(-0.442911\pi\)
0.178392 + 0.983960i \(0.442911\pi\)
\(284\) 31.6581i 1.87856i
\(285\) −7.65565 + 1.87096i −0.453482 + 0.110826i
\(286\) 54.8203i 3.24159i
\(287\) 0 0
\(288\) 14.9388 + 15.2910i 0.880275 + 0.901031i
\(289\) 8.35349 0.491382
\(290\) 8.93670 6.62903i 0.524781 0.389270i
\(291\) −7.13056 3.00236i −0.418001 0.176002i
\(292\) 9.52972 0.557684
\(293\) 3.55369i 0.207609i 0.994598 + 0.103805i \(0.0331016\pi\)
−0.994598 + 0.103805i \(0.966898\pi\)
\(294\) 0 0
\(295\) 10.5643 + 14.2420i 0.615080 + 0.829200i
\(296\) 6.54438i 0.380384i
\(297\) 18.4534 7.26846i 1.07077 0.421759i
\(298\) 23.9009i 1.38454i
\(299\) −19.5086 −1.12821
\(300\) 15.9315 19.1899i 0.919805 1.10793i
\(301\) 0 0
\(302\) 18.3264 1.05456
\(303\) 14.1601 + 5.96218i 0.813475 + 0.342518i
\(304\) 2.98258i 0.171063i
\(305\) −24.5412 + 18.2040i −1.40522 + 1.04236i
\(306\) 13.9392 13.6181i 0.796849 0.778492i
\(307\) −29.0345 −1.65709 −0.828544 0.559923i \(-0.810831\pi\)
−0.828544 + 0.559923i \(0.810831\pi\)
\(308\) 0 0
\(309\) −2.11102 0.888858i −0.120092 0.0505654i
\(310\) −26.4425 + 19.6144i −1.50183 + 1.11402i
\(311\) 8.64432 0.490174 0.245087 0.969501i \(-0.421183\pi\)
0.245087 + 0.969501i \(0.421183\pi\)
\(312\) 20.1749 + 8.49476i 1.14218 + 0.480921i
\(313\) 10.8521 0.613400 0.306700 0.951806i \(-0.400775\pi\)
0.306700 + 0.951806i \(0.400775\pi\)
\(314\) 11.9551 0.674667
\(315\) 0 0
\(316\) −16.8471 −0.947724
\(317\) 9.34091 0.524638 0.262319 0.964981i \(-0.415513\pi\)
0.262319 + 0.964981i \(0.415513\pi\)
\(318\) −6.82079 2.87193i −0.382491 0.161050i
\(319\) −8.59794 −0.481392
\(320\) −17.0646 23.0051i −0.953940 1.28602i
\(321\) −5.30686 2.23448i −0.296200 0.124717i
\(322\) 0 0
\(323\) 5.98348 0.332930
\(324\) −0.603973 + 25.9126i −0.0335541 + 1.43959i
\(325\) −9.43158 + 31.1098i −0.523170 + 1.72566i
\(326\) 37.9007i 2.09913i
\(327\) −19.6324 8.26633i −1.08567 0.457129i
\(328\) 6.82488 0.376841
\(329\) 0 0
\(330\) −31.7226 + 7.75268i −1.74627 + 0.426771i
\(331\) 2.90918 0.159903 0.0799515 0.996799i \(-0.474523\pi\)
0.0799515 + 0.996799i \(0.474523\pi\)
\(332\) 7.67021i 0.420958i
\(333\) 7.22445 7.05803i 0.395898 0.386777i
\(334\) 21.2200i 1.16111i
\(335\) −19.3713 + 14.3692i −1.05837 + 0.785071i
\(336\) 0 0
\(337\) 15.2910i 0.832954i 0.909146 + 0.416477i \(0.136735\pi\)
−0.909146 + 0.416477i \(0.863265\pi\)
\(338\) −64.6613 −3.51711
\(339\) 32.6592 + 13.7513i 1.77380 + 0.746870i
\(340\) −15.2088 + 11.2815i −0.824811 + 0.611824i
\(341\) 25.4401 1.37766
\(342\) −9.64606 + 9.42384i −0.521599 + 0.509583i
\(343\) 0 0
\(344\) 13.6797i 0.737561i
\(345\) 2.75891 + 11.2890i 0.148535 + 0.607778i
\(346\) 22.4718i 1.20809i
\(347\) 31.5784 1.69522 0.847609 0.530622i \(-0.178042\pi\)
0.847609 + 0.530622i \(0.178042\pi\)
\(348\) 4.36041 10.3559i 0.233743 0.555135i
\(349\) 8.25024i 0.441625i −0.975316 0.220813i \(-0.929129\pi\)
0.975316 0.220813i \(-0.0708709\pi\)
\(350\) 0 0
\(351\) −12.3809 31.4329i −0.660842 1.67777i
\(352\) 27.1982i 1.44967i
\(353\) 4.28810i 0.228232i −0.993467 0.114116i \(-0.963596\pi\)
0.993467 0.114116i \(-0.0364036\pi\)
\(354\) 27.9647 + 11.7747i 1.48631 + 0.625819i
\(355\) −19.7417 + 14.6439i −1.04778 + 0.777220i
\(356\) 38.9252 2.06303
\(357\) 0 0
\(358\) 52.2543i 2.76173i
\(359\) 7.13534i 0.376589i −0.982113 0.188294i \(-0.939704\pi\)
0.982113 0.188294i \(-0.0602959\pi\)
\(360\) 2.06249 12.8759i 0.108703 0.678618i
\(361\) 14.8594 0.782072
\(362\) 34.5343i 1.81508i
\(363\) 5.69696 + 2.39874i 0.299013 + 0.125901i
\(364\) 0 0
\(365\) 4.40811 + 5.94265i 0.230731 + 0.311053i
\(366\) −20.2897 + 48.1877i −1.06056 + 2.51881i
\(367\) 24.3914 1.27322 0.636609 0.771187i \(-0.280336\pi\)
0.636609 + 0.771187i \(0.280336\pi\)
\(368\) 4.39810 0.229267
\(369\) −7.36055 7.53411i −0.383175 0.392210i
\(370\) −13.3565 + 9.90750i −0.694370 + 0.515067i
\(371\) 0 0
\(372\) −12.9019 + 30.6417i −0.668931 + 1.58870i
\(373\) 22.0547i 1.14195i −0.820968 0.570974i \(-0.806566\pi\)
0.820968 0.570974i \(-0.193434\pi\)
\(374\) 24.7937 1.28205
\(375\) 19.3360 + 1.05819i 0.998506 + 0.0546447i
\(376\) 9.74430i 0.502524i
\(377\) 14.6455i 0.754280i
\(378\) 0 0
\(379\) 1.15801 0.0594828 0.0297414 0.999558i \(-0.490532\pi\)
0.0297414 + 0.999558i \(0.490532\pi\)
\(380\) 10.5246 7.80691i 0.539902 0.400486i
\(381\) 0.401488 0.953527i 0.0205688 0.0488506i
\(382\) 23.8118i 1.21832i
\(383\) 2.12930i 0.108802i 0.998519 + 0.0544011i \(0.0173250\pi\)
−0.998519 + 0.0544011i \(0.982675\pi\)
\(384\) −22.4217 9.44079i −1.14420 0.481773i
\(385\) 0 0
\(386\) 4.07839i 0.207585i
\(387\) −15.1013 + 14.7534i −0.767641 + 0.749957i
\(388\) 12.8644 0.653093
\(389\) 24.1571i 1.22481i −0.790543 0.612406i \(-0.790202\pi\)
0.790543 0.612406i \(-0.209798\pi\)
\(390\) 13.2057 + 54.0353i 0.668695 + 2.73619i
\(391\) 8.82320i 0.446208i
\(392\) 0 0
\(393\) 9.27752 + 3.90635i 0.467989 + 0.197049i
\(394\) −17.8921 −0.901392
\(395\) −7.79288 10.5057i −0.392103 0.528600i
\(396\) −23.5889 + 23.0454i −1.18538 + 1.15808i
\(397\) −12.0158 −0.603058 −0.301529 0.953457i \(-0.597497\pi\)
−0.301529 + 0.953457i \(0.597497\pi\)
\(398\) 22.3176i 1.11868i
\(399\) 0 0
\(400\) 2.12629 7.01351i 0.106315 0.350675i
\(401\) 30.8302i 1.53958i 0.638294 + 0.769792i \(0.279640\pi\)
−0.638294 + 0.769792i \(0.720360\pi\)
\(402\) −16.0155 + 38.0364i −0.798778 + 1.89708i
\(403\) 43.3340i 2.15862i
\(404\) −25.5466 −1.27099
\(405\) −16.4383 + 11.6096i −0.816824 + 0.576887i
\(406\) 0 0
\(407\) 12.8502 0.636959
\(408\) −3.84194 + 9.12455i −0.190204 + 0.451732i
\(409\) 15.6691i 0.774788i −0.921914 0.387394i \(-0.873375\pi\)
0.921914 0.387394i \(-0.126625\pi\)
\(410\) 10.3322 + 13.9290i 0.510269 + 0.687902i
\(411\) −1.74587 0.735110i −0.0861176 0.0362603i
\(412\) 3.80855 0.187634
\(413\) 0 0
\(414\) 13.8963 + 14.2240i 0.682968 + 0.699072i
\(415\) 4.78308 3.54797i 0.234792 0.174163i
\(416\) 46.3286 2.27144
\(417\) −4.94672 + 11.7484i −0.242242 + 0.575321i
\(418\) −17.1575 −0.839200
\(419\) 19.5975 0.957399 0.478699 0.877979i \(-0.341108\pi\)
0.478699 + 0.877979i \(0.341108\pi\)
\(420\) 0 0
\(421\) −32.5791 −1.58781 −0.793903 0.608044i \(-0.791954\pi\)
−0.793903 + 0.608044i \(0.791954\pi\)
\(422\) −23.5968 −1.14868
\(423\) 10.7569 10.5091i 0.523019 0.510970i
\(424\) 3.75992 0.182598
\(425\) −14.0701 4.26564i −0.682499 0.206914i
\(426\) −16.3217 + 38.7638i −0.790789 + 1.87811i
\(427\) 0 0
\(428\) 9.57425 0.462789
\(429\) 16.6798 39.6143i 0.805310 1.91260i
\(430\) 27.9190 20.7097i 1.34638 0.998708i
\(431\) 27.8893i 1.34338i −0.740832 0.671690i \(-0.765569\pi\)
0.740832 0.671690i \(-0.234431\pi\)
\(432\) 2.79119 + 7.08636i 0.134291 + 0.340943i
\(433\) 3.47350 0.166926 0.0834629 0.996511i \(-0.473402\pi\)
0.0834629 + 0.996511i \(0.473402\pi\)
\(434\) 0 0
\(435\) 8.47483 2.07116i 0.406337 0.0993046i
\(436\) 35.4193 1.69628
\(437\) 6.10575i 0.292078i
\(438\) 11.6687 + 4.91315i 0.557550 + 0.234760i
\(439\) 3.94804i 0.188429i −0.995552 0.0942147i \(-0.969966\pi\)
0.995552 0.0942147i \(-0.0300340\pi\)
\(440\) 13.3251 9.88423i 0.635249 0.471212i
\(441\) 0 0
\(442\) 42.2328i 2.00881i
\(443\) 16.0308 0.761646 0.380823 0.924648i \(-0.375641\pi\)
0.380823 + 0.924648i \(0.375641\pi\)
\(444\) −6.51692 + 15.4776i −0.309279 + 0.734533i
\(445\) 18.0054 + 24.2734i 0.853538 + 1.15067i
\(446\) 9.12747 0.432198
\(447\) −7.27218 + 17.2713i −0.343962 + 0.816905i
\(448\) 0 0
\(449\) 21.1001i 0.995777i 0.867241 + 0.497889i \(0.165891\pi\)
−0.867241 + 0.497889i \(0.834109\pi\)
\(450\) 29.4009 15.2833i 1.38597 0.720464i
\(451\) 13.4010i 0.631026i
\(452\) −58.9213 −2.77143
\(453\) 13.2430 + 5.57605i 0.622212 + 0.261986i
\(454\) 15.8515i 0.743947i
\(455\) 0 0
\(456\) 2.65867 6.31429i 0.124503 0.295694i
\(457\) 9.60675i 0.449385i 0.974430 + 0.224692i \(0.0721378\pi\)
−0.974430 + 0.224692i \(0.927862\pi\)
\(458\) 23.0872i 1.07879i
\(459\) 14.2162 5.59952i 0.663557 0.261363i
\(460\) −11.5120 15.5195i −0.536751 0.723603i
\(461\) 24.5367 1.14279 0.571393 0.820676i \(-0.306403\pi\)
0.571393 + 0.820676i \(0.306403\pi\)
\(462\) 0 0
\(463\) 14.5875i 0.677937i −0.940798 0.338968i \(-0.889922\pi\)
0.940798 0.338968i \(-0.110078\pi\)
\(464\) 3.30173i 0.153279i
\(465\) −25.0759 + 6.12829i −1.16287 + 0.284192i
\(466\) −8.61854 −0.399246
\(467\) 17.9185i 0.829170i −0.910010 0.414585i \(-0.863927\pi\)
0.910010 0.414585i \(-0.136073\pi\)
\(468\) 39.2549 + 40.1805i 1.81456 + 1.85735i
\(469\) 0 0
\(470\) −19.8872 + 14.7519i −0.917330 + 0.680452i
\(471\) 8.63904 + 3.63752i 0.398066 + 0.167608i
\(472\) −15.4154 −0.709552
\(473\) −26.8607 −1.23506
\(474\) −20.6284 8.68572i −0.947496 0.398949i
\(475\) 9.73665 + 2.95187i 0.446748 + 0.135441i
\(476\) 0 0
\(477\) −4.05503 4.15064i −0.185667 0.190045i
\(478\) 52.5477i 2.40347i
\(479\) 2.96497 0.135473 0.0677364 0.997703i \(-0.478422\pi\)
0.0677364 + 0.997703i \(0.478422\pi\)
\(480\) −6.55178 26.8088i −0.299047 1.22365i
\(481\) 21.8886i 0.998034i
\(482\) 29.3419i 1.33649i
\(483\) 0 0
\(484\) −10.2780 −0.467184
\(485\) 5.95064 + 8.02215i 0.270204 + 0.364267i
\(486\) −14.0991 + 31.4173i −0.639547 + 1.42512i
\(487\) 33.2558i 1.50696i 0.657469 + 0.753482i \(0.271627\pi\)
−0.657469 + 0.753482i \(0.728373\pi\)
\(488\) 26.5632i 1.20246i
\(489\) 11.5318 27.3879i 0.521487 1.23852i
\(490\) 0 0
\(491\) 25.4892i 1.15031i −0.818043 0.575157i \(-0.804941\pi\)
0.818043 0.575157i \(-0.195059\pi\)
\(492\) 16.1410 + 6.79624i 0.727691 + 0.306398i
\(493\) −6.62373 −0.298318
\(494\) 29.2255i 1.31492i
\(495\) −25.2823 4.04980i −1.13636 0.182025i
\(496\) 9.76937i 0.438658i
\(497\) 0 0
\(498\) 3.95447 9.39179i 0.177204 0.420856i
\(499\) −33.6716 −1.50735 −0.753673 0.657249i \(-0.771720\pi\)
−0.753673 + 0.657249i \(0.771720\pi\)
\(500\) −30.3141 + 10.8548i −1.35569 + 0.485442i
\(501\) −6.45648 + 15.3340i −0.288454 + 0.685074i
\(502\) 20.1632 0.899926
\(503\) 35.2418i 1.57135i −0.618637 0.785677i \(-0.712315\pi\)
0.618637 0.785677i \(-0.287685\pi\)
\(504\) 0 0
\(505\) −11.8170 15.9306i −0.525848 0.708904i
\(506\) 25.3003i 1.12474i
\(507\) −46.7257 19.6741i −2.07516 0.873758i
\(508\) 1.72028i 0.0763252i
\(509\) 23.1829 1.02756 0.513782 0.857921i \(-0.328244\pi\)
0.513782 + 0.857921i \(0.328244\pi\)
\(510\) −24.4387 + 5.97256i −1.08216 + 0.264469i
\(511\) 0 0
\(512\) −16.1430 −0.713426
\(513\) −9.83779 + 3.87493i −0.434349 + 0.171082i
\(514\) 14.7705i 0.651497i
\(515\) 1.76170 + 2.37498i 0.0776299 + 0.104654i
\(516\) 13.6223 32.3528i 0.599689 1.42425i
\(517\) 19.1334 0.841484
\(518\) 0 0
\(519\) 6.83735 16.2386i 0.300126 0.712795i
\(520\) −16.8365 22.6976i −0.738329 0.995354i
\(521\) −14.3752 −0.629791 −0.314895 0.949126i \(-0.601969\pi\)
−0.314895 + 0.949126i \(0.601969\pi\)
\(522\) 10.6782 10.4322i 0.467373 0.456606i
\(523\) 25.2484 1.10404 0.552018 0.833832i \(-0.313858\pi\)
0.552018 + 0.833832i \(0.313858\pi\)
\(524\) −16.7378 −0.731195
\(525\) 0 0
\(526\) 53.3010 2.32403
\(527\) 19.5987 0.853734
\(528\) −3.76037 + 8.93080i −0.163649 + 0.388663i
\(529\) −13.9965 −0.608543
\(530\) 5.69213 + 7.67366i 0.247250 + 0.333322i
\(531\) 16.6253 + 17.0173i 0.721477 + 0.738489i
\(532\) 0 0
\(533\) −22.8268 −0.988737
\(534\) 47.6619 + 20.0683i 2.06253 + 0.868441i
\(535\) 4.42871 + 5.97042i 0.191470 + 0.258124i
\(536\) 20.9674i 0.905652i
\(537\) −15.8991 + 37.7601i −0.686097 + 1.62947i
\(538\) 41.9896 1.81030
\(539\) 0 0
\(540\) 17.6997 28.3978i 0.761673 1.22205i
\(541\) 15.7795 0.678412 0.339206 0.940712i \(-0.389842\pi\)
0.339206 + 0.940712i \(0.389842\pi\)
\(542\) 26.1742i 1.12428i
\(543\) 10.5076 24.9553i 0.450922 1.07093i
\(544\) 20.9531i 0.898357i
\(545\) 16.3837 + 22.0872i 0.701802 + 0.946112i
\(546\) 0 0
\(547\) 8.23195i 0.351973i −0.984393 0.175986i \(-0.943689\pi\)
0.984393 0.175986i \(-0.0563115\pi\)
\(548\) 3.14978 0.134552
\(549\) −29.3236 + 28.6481i −1.25150 + 1.22267i
\(550\) 40.3456 + 12.2316i 1.72034 + 0.521558i
\(551\) 4.58370 0.195272
\(552\) −9.31100 3.92045i −0.396303 0.166865i
\(553\) 0 0
\(554\) 36.4896i 1.55029i
\(555\) −12.6662 + 3.09548i −0.537649 + 0.131396i
\(556\) 21.1956i 0.898893i
\(557\) −28.9351 −1.22602 −0.613011 0.790075i \(-0.710042\pi\)
−0.613011 + 0.790075i \(0.710042\pi\)
\(558\) −31.5954 + 30.8675i −1.33754 + 1.30673i
\(559\) 45.7537i 1.93518i
\(560\) 0 0
\(561\) 17.9164 + 7.54382i 0.756433 + 0.318500i
\(562\) 22.3283i 0.941862i
\(563\) 6.22808i 0.262482i −0.991350 0.131241i \(-0.958104\pi\)
0.991350 0.131241i \(-0.0418962\pi\)
\(564\) −9.70342 + 23.0454i −0.408588 + 0.970388i
\(565\) −27.2549 36.7428i −1.14662 1.54578i
\(566\) −13.2589 −0.557312
\(567\) 0 0
\(568\) 21.3683i 0.896594i
\(569\) 9.89419i 0.414786i 0.978258 + 0.207393i \(0.0664979\pi\)
−0.978258 + 0.207393i \(0.933502\pi\)
\(570\) 16.9118 4.13307i 0.708358 0.173115i
\(571\) 19.2094 0.803890 0.401945 0.915664i \(-0.368334\pi\)
0.401945 + 0.915664i \(0.368334\pi\)
\(572\) 71.4693i 2.98828i
\(573\) 7.24509 17.2070i 0.302668 0.718831i
\(574\) 0 0
\(575\) 4.35281 14.3576i 0.181525 0.598753i
\(576\) −26.8549 27.4881i −1.11895 1.14534i
\(577\) −38.0753 −1.58510 −0.792549 0.609809i \(-0.791246\pi\)
−0.792549 + 0.609809i \(0.791246\pi\)
\(578\) −18.4534 −0.767560
\(579\) −1.24091 + 2.94713i −0.0515704 + 0.122479i
\(580\) −11.6508 + 8.64228i −0.483773 + 0.358851i
\(581\) 0 0
\(582\) 15.7519 + 6.63241i 0.652935 + 0.274922i
\(583\) 7.38277i 0.305763i
\(584\) −6.43228 −0.266170
\(585\) −6.89830 + 43.0651i −0.285210 + 1.78052i
\(586\) 7.85033i 0.324294i
\(587\) 11.9232i 0.492124i 0.969254 + 0.246062i \(0.0791367\pi\)
−0.969254 + 0.246062i \(0.920863\pi\)
\(588\) 0 0
\(589\) −13.5625 −0.558835
\(590\) −23.3373 31.4614i −0.960782 1.29525i
\(591\) −12.9292 5.44393i −0.531838 0.223933i
\(592\) 4.93465i 0.202813i
\(593\) 16.8579i 0.692272i −0.938184 0.346136i \(-0.887494\pi\)
0.938184 0.346136i \(-0.112506\pi\)
\(594\) −40.7647 + 16.0565i −1.67260 + 0.658806i
\(595\) 0 0
\(596\) 31.1596i 1.27635i
\(597\) 6.79044 16.1272i 0.277914 0.660041i
\(598\) 43.0958 1.76232
\(599\) 13.5950i 0.555477i −0.960657 0.277739i \(-0.910415\pi\)
0.960657 0.277739i \(-0.0895849\pi\)
\(600\) −10.7533 + 12.9526i −0.439001 + 0.528787i
\(601\) 46.2155i 1.88517i −0.333966 0.942585i \(-0.608387\pi\)
0.333966 0.942585i \(-0.391613\pi\)
\(602\) 0 0
\(603\) −23.1462 + 22.6130i −0.942588 + 0.920874i
\(604\) −23.8921 −0.972156
\(605\) −4.75426 6.40930i −0.193288 0.260575i
\(606\) −31.2805 13.1708i −1.27068 0.535029i
\(607\) 8.74327 0.354878 0.177439 0.984132i \(-0.443219\pi\)
0.177439 + 0.984132i \(0.443219\pi\)
\(608\) 14.4998i 0.588044i
\(609\) 0 0
\(610\) 54.2130 40.2139i 2.19502 1.62821i
\(611\) 32.5912i 1.31850i
\(612\) −18.1725 + 17.7539i −0.734581 + 0.717658i
\(613\) 24.3570i 0.983771i 0.870660 + 0.491885i \(0.163692\pi\)
−0.870660 + 0.491885i \(0.836308\pi\)
\(614\) 64.1391 2.58845
\(615\) 3.22816 + 13.2091i 0.130172 + 0.532641i
\(616\) 0 0
\(617\) 25.3125 1.01904 0.509522 0.860458i \(-0.329822\pi\)
0.509522 + 0.860458i \(0.329822\pi\)
\(618\) 4.66338 + 1.96354i 0.187589 + 0.0789853i
\(619\) 30.2552i 1.21606i −0.793915 0.608029i \(-0.791960\pi\)
0.793915 0.608029i \(-0.208040\pi\)
\(620\) 34.4731 25.5713i 1.38447 1.02697i
\(621\) 5.71394 + 14.5067i 0.229293 + 0.582135i
\(622\) −19.0958 −0.765673
\(623\) 0 0
\(624\) 15.2125 + 6.40529i 0.608986 + 0.256417i
\(625\) −20.7912 13.8826i −0.831648 0.555303i
\(626\) −23.9731 −0.958157
\(627\) −12.3984 5.22041i −0.495143 0.208483i
\(628\) −15.5859 −0.621946
\(629\) 9.89959 0.394723
\(630\) 0 0
\(631\) −5.90652 −0.235135 −0.117568 0.993065i \(-0.537510\pi\)
−0.117568 + 0.993065i \(0.537510\pi\)
\(632\) 11.3713 0.452326
\(633\) −17.0516 7.17967i −0.677740 0.285366i
\(634\) −20.6347 −0.819507
\(635\) −1.07275 + 0.795743i −0.0425710 + 0.0315781i
\(636\) 8.89228 + 3.74415i 0.352602 + 0.148465i
\(637\) 0 0
\(638\) 18.9934 0.751956
\(639\) −23.5889 + 23.0454i −0.933161 + 0.911664i
\(640\) 18.7115 + 25.2253i 0.739637 + 0.997118i
\(641\) 0.128699i 0.00508330i 0.999997 + 0.00254165i \(0.000809034\pi\)
−0.999997 + 0.00254165i \(0.999191\pi\)
\(642\) 11.7232 + 4.93612i 0.462677 + 0.194813i
\(643\) 0.150563 0.00593763 0.00296881 0.999996i \(-0.499055\pi\)
0.00296881 + 0.999996i \(0.499055\pi\)
\(644\) 0 0
\(645\) 26.4761 6.47049i 1.04250 0.254775i
\(646\) −13.2179 −0.520051
\(647\) 41.3552i 1.62584i 0.582375 + 0.812920i \(0.302124\pi\)
−0.582375 + 0.812920i \(0.697876\pi\)
\(648\) 0.407664 17.4903i 0.0160146 0.687082i
\(649\) 30.2688i 1.18816i
\(650\) 20.8350 68.7235i 0.817214 2.69556i
\(651\) 0 0
\(652\) 49.4113i 1.93509i
\(653\) 29.4608 1.15289 0.576446 0.817136i \(-0.304439\pi\)
0.576446 + 0.817136i \(0.304439\pi\)
\(654\) 43.3692 + 18.2608i 1.69587 + 0.714056i
\(655\) −7.74233 10.4376i −0.302518 0.407830i
\(656\) 5.14615 0.200924
\(657\) 6.93713 + 7.10071i 0.270643 + 0.277025i
\(658\) 0 0
\(659\) 22.4678i 0.875220i −0.899165 0.437610i \(-0.855825\pi\)
0.899165 0.437610i \(-0.144175\pi\)
\(660\) 41.3569 10.1072i 1.60981 0.393422i
\(661\) 23.4594i 0.912465i −0.889861 0.456233i \(-0.849198\pi\)
0.889861 0.456233i \(-0.150802\pi\)
\(662\) −6.42656 −0.249776
\(663\) 12.8499 30.5183i 0.499049 1.18523i
\(664\) 5.17717i 0.200913i
\(665\) 0 0
\(666\) −15.9593 + 15.5916i −0.618409 + 0.604163i
\(667\) 6.75909i 0.261713i
\(668\) 27.6646i 1.07037i
\(669\) 6.59571 + 2.77716i 0.255005 + 0.107371i
\(670\) 42.7925 31.7424i 1.65322 1.22632i
\(671\) −52.1580 −2.01354
\(672\) 0 0
\(673\) 44.5504i 1.71729i −0.512570 0.858645i \(-0.671307\pi\)
0.512570 0.858645i \(-0.328693\pi\)
\(674\) 33.7788i 1.30111i
\(675\) 25.8959 2.09846i 0.996733 0.0807697i
\(676\) 84.2991 3.24227
\(677\) 45.7011i 1.75643i −0.478262 0.878217i \(-0.658733\pi\)
0.478262 0.878217i \(-0.341267\pi\)
\(678\) −72.1462 30.3776i −2.77076 1.16664i
\(679\) 0 0
\(680\) 10.2655 7.61467i 0.393663 0.292009i
\(681\) 4.82303 11.4546i 0.184819 0.438942i
\(682\) −56.1989 −2.15197
\(683\) 38.6888 1.48038 0.740192 0.672395i \(-0.234734\pi\)
0.740192 + 0.672395i \(0.234734\pi\)
\(684\) 12.5756 12.2859i 0.480839 0.469763i
\(685\) 1.45698 + 1.96418i 0.0556682 + 0.0750473i
\(686\) 0 0
\(687\) −7.02460 + 16.6833i −0.268005 + 0.636508i
\(688\) 10.3149i 0.393252i
\(689\) −12.5756 −0.479092
\(690\) −6.09460 24.9381i −0.232018 0.949376i
\(691\) 19.2567i 0.732559i 0.930505 + 0.366279i \(0.119369\pi\)
−0.930505 + 0.366279i \(0.880631\pi\)
\(692\) 29.2965i 1.11369i
\(693\) 0 0
\(694\) −69.7587 −2.64800
\(695\) 13.2174 9.80433i 0.501364 0.371899i
\(696\) −2.94315 + 6.98994i −0.111560 + 0.264953i
\(697\) 10.3239i 0.391046i
\(698\) 18.2253i 0.689838i
\(699\) −6.22794 2.62231i −0.235562 0.0991849i
\(700\) 0 0
\(701\) 6.75777i 0.255238i −0.991823 0.127619i \(-0.959267\pi\)
0.991823 0.127619i \(-0.0407334\pi\)
\(702\) 27.3501 + 69.4373i 1.03226 + 2.62074i
\(703\) −6.85063 −0.258376
\(704\) 48.8933i 1.84273i
\(705\) −18.8594 + 4.60904i −0.710286 + 0.173587i
\(706\) 9.47268i 0.356509i
\(707\) 0 0
\(708\) −36.4577 15.3507i −1.37016 0.576916i
\(709\) 4.89171 0.183712 0.0918561 0.995772i \(-0.470720\pi\)
0.0918561 + 0.995772i \(0.470720\pi\)
\(710\) 43.6108 32.3494i 1.63668 1.21405i
\(711\) −12.2638 12.5530i −0.459929 0.470774i
\(712\) −26.2733 −0.984635
\(713\) 19.9992i 0.748977i
\(714\) 0 0
\(715\) −44.5677 + 33.0592i −1.66674 + 1.23634i
\(716\) 68.1241i 2.54592i
\(717\) 15.9884 37.9721i 0.597096 1.41809i
\(718\) 15.7624i 0.588248i
\(719\) −38.0217 −1.41797 −0.708985 0.705224i \(-0.750846\pi\)
−0.708985 + 0.705224i \(0.750846\pi\)
\(720\) 1.55518 9.70876i 0.0579581 0.361824i
\(721\) 0 0
\(722\) −32.8253 −1.22163
\(723\) 8.92770 21.2031i 0.332025 0.788553i
\(724\) 45.0225i 1.67325i
\(725\) −10.7785 3.26773i −0.400304 0.121360i
\(726\) −12.5849 5.29896i −0.467071 0.196663i
\(727\) 18.6502 0.691699 0.345849 0.938290i \(-0.387591\pi\)
0.345849 + 0.938290i \(0.387591\pi\)
\(728\) 0 0
\(729\) −19.7475 + 18.4130i −0.731387 + 0.681962i
\(730\) −9.73780 13.1277i −0.360412 0.485878i
\(731\) −20.6931 −0.765363
\(732\) 26.4517 62.8224i 0.977684 2.32198i
\(733\) 37.5933 1.38854 0.694271 0.719714i \(-0.255727\pi\)
0.694271 + 0.719714i \(0.255727\pi\)
\(734\) −53.8821 −1.98882
\(735\) 0 0
\(736\) −21.3813 −0.788124
\(737\) −41.1703 −1.51653
\(738\) 16.2599 + 16.6433i 0.598536 + 0.612649i
\(739\) −49.4378 −1.81860 −0.909300 0.416142i \(-0.863382\pi\)
−0.909300 + 0.416142i \(0.863382\pi\)
\(740\) 17.4129 12.9164i 0.640110 0.474818i
\(741\) −8.89228 + 21.1190i −0.326666 + 0.775826i
\(742\) 0 0
\(743\) 42.7477 1.56826 0.784131 0.620596i \(-0.213109\pi\)
0.784131 + 0.620596i \(0.213109\pi\)
\(744\) 8.70839 20.6823i 0.319265 0.758249i
\(745\) 19.4309 14.4134i 0.711893 0.528065i
\(746\) 48.7202i 1.78377i
\(747\) 5.71517 5.58351i 0.209107 0.204290i
\(748\) −32.3236 −1.18187
\(749\) 0 0
\(750\) −42.7144 2.33761i −1.55971 0.0853575i
\(751\) 5.59051 0.204001 0.102000 0.994784i \(-0.467476\pi\)
0.102000 + 0.994784i \(0.467476\pi\)
\(752\) 7.34748i 0.267935i
\(753\) 14.5703 + 6.13492i 0.530973 + 0.223569i
\(754\) 32.3528i 1.17822i
\(755\) −11.0517 14.8989i −0.402211 0.542227i
\(756\) 0 0
\(757\) 42.9931i 1.56261i 0.624150 + 0.781305i \(0.285445\pi\)
−0.624150 + 0.781305i \(0.714555\pi\)
\(758\) −2.55811 −0.0929148
\(759\) −7.69798 + 18.2826i −0.279419 + 0.663615i
\(760\) −7.10382 + 5.26944i −0.257683 + 0.191143i
\(761\) −49.1430 −1.78143 −0.890716 0.454561i \(-0.849796\pi\)
−0.890716 + 0.454561i \(0.849796\pi\)
\(762\) −0.886912 + 2.10640i −0.0321294 + 0.0763068i
\(763\) 0 0
\(764\) 31.0436i 1.12312i
\(765\) −19.4771 3.11991i −0.704198 0.112800i
\(766\) 4.70376i 0.169954i
\(767\) 51.5590 1.86169
\(768\) 8.63447 + 3.63559i 0.311570 + 0.131188i
\(769\) 27.0203i 0.974376i −0.873297 0.487188i \(-0.838023\pi\)
0.873297 0.487188i \(-0.161977\pi\)
\(770\) 0 0
\(771\) 4.49412 10.6735i 0.161852 0.384395i
\(772\) 5.31701i 0.191363i
\(773\) 52.9162i 1.90326i −0.307244 0.951631i \(-0.599407\pi\)
0.307244 0.951631i \(-0.400593\pi\)
\(774\) 33.3597 32.5912i 1.19909 1.17147i
\(775\) 31.8921 + 9.66877i 1.14560 + 0.347312i
\(776\) −8.68312 −0.311706
\(777\) 0 0
\(778\) 53.3645i 1.91321i
\(779\) 7.14426i 0.255970i
\(780\) −17.2163 70.4460i −0.616441 2.52237i
\(781\) −41.9576 −1.50136
\(782\) 19.4910i 0.696997i
\(783\) 10.8905 4.28956i 0.389193 0.153296i
\(784\) 0 0
\(785\) −7.20950 9.71926i −0.257318 0.346895i
\(786\) −20.4946 8.62938i −0.731019 0.307800i
\(787\) 16.7576 0.597344 0.298672 0.954356i \(-0.403456\pi\)
0.298672 + 0.954356i \(0.403456\pi\)
\(788\) 23.3260 0.830954
\(789\) 38.5165 + 16.2176i 1.37122 + 0.577361i
\(790\) 17.2150 + 23.2078i 0.612481 + 0.825697i
\(791\) 0 0
\(792\) 15.9218 15.5550i 0.565756 0.552723i
\(793\) 88.8443i 3.15495i
\(794\) 26.5437 0.942002
\(795\) 1.77844 + 7.27706i 0.0630747 + 0.258091i
\(796\) 29.0955i 1.03126i
\(797\) 55.9724i 1.98264i −0.131462 0.991321i \(-0.541967\pi\)
0.131462 0.991321i \(-0.458033\pi\)
\(798\) 0 0
\(799\) 14.7401 0.521466
\(800\) −10.3369 + 34.0960i −0.365466 + 1.20548i
\(801\) 28.3355 + 29.0036i 1.00118 + 1.02479i
\(802\) 68.1058i 2.40490i
\(803\) 12.6301i 0.445705i
\(804\) 20.8794 49.5882i 0.736359 1.74884i
\(805\) 0 0
\(806\) 95.7274i 3.37186i
\(807\) 30.3426 + 12.7759i 1.06811 + 0.449734i
\(808\) 17.2432 0.606614
\(809\) 42.1009i 1.48019i 0.672503 + 0.740094i \(0.265219\pi\)
−0.672503 + 0.740094i \(0.734781\pi\)
\(810\) 36.3132 25.6464i 1.27591 0.901123i
\(811\) 1.35051i 0.0474227i −0.999719 0.0237113i \(-0.992452\pi\)
0.999719 0.0237113i \(-0.00754826\pi\)
\(812\) 0 0
\(813\) 7.96388 18.9141i 0.279306 0.663346i
\(814\) −28.3868 −0.994958
\(815\) −30.8124 + 22.8559i −1.07931 + 0.800608i
\(816\) −2.89693 + 6.88016i −0.101413 + 0.240854i
\(817\) 14.3199 0.500989
\(818\) 34.6141i 1.21025i
\(819\) 0 0
\(820\) −13.4701 18.1592i −0.470395 0.634147i
\(821\) 11.3444i 0.395923i −0.980210 0.197962i \(-0.936568\pi\)
0.980210 0.197962i \(-0.0634322\pi\)
\(822\) 3.85674 + 1.62390i 0.134519 + 0.0566402i
\(823\) 30.1779i 1.05193i 0.850505 + 0.525967i \(0.176297\pi\)
−0.850505 + 0.525967i \(0.823703\pi\)
\(824\) −2.57066 −0.0895533
\(825\) 25.4330 + 21.1146i 0.885463 + 0.735114i
\(826\) 0 0
\(827\) 34.7911 1.20981 0.604903 0.796299i \(-0.293212\pi\)
0.604903 + 0.796299i \(0.293212\pi\)
\(828\) −18.1167 18.5439i −0.629598 0.644444i
\(829\) 4.04928i 0.140637i −0.997525 0.0703187i \(-0.977598\pi\)
0.997525 0.0703187i \(-0.0224016\pi\)
\(830\) −10.5661 + 7.83769i −0.366756 + 0.272050i
\(831\) −11.1025 + 26.3682i −0.385140 + 0.914701i
\(832\) −83.2833 −2.88733
\(833\) 0 0
\(834\) 10.9276 25.9529i 0.378393 0.898676i
\(835\) 17.2514 12.7967i 0.597009 0.442846i
\(836\) 22.3683 0.773622
\(837\) −32.2234 + 12.6922i −1.11380 + 0.438707i
\(838\) −43.2920 −1.49550
\(839\) 25.8653 0.892969 0.446485 0.894791i \(-0.352676\pi\)
0.446485 + 0.894791i \(0.352676\pi\)
\(840\) 0 0
\(841\) 23.9258 0.825029
\(842\) 71.9692 2.48022
\(843\) −6.79370 + 16.1349i −0.233987 + 0.555716i
\(844\) 30.7632 1.05891
\(845\) 38.9938 + 52.5682i 1.34143 + 1.80840i
\(846\) −23.7627 + 23.2153i −0.816978 + 0.798158i
\(847\) 0 0
\(848\) 2.83509 0.0973573
\(849\) −9.58114 4.03420i −0.328824 0.138453i
\(850\) 31.0817 + 9.42307i 1.06609 + 0.323209i
\(851\) 10.1019i 0.346288i
\(852\) 21.2787 50.5364i 0.728995 1.73135i
\(853\) −37.5709 −1.28640 −0.643201 0.765697i \(-0.722394\pi\)
−0.643201 + 0.765697i \(0.722394\pi\)
\(854\) 0 0
\(855\) 13.4784 + 2.15901i 0.460952 + 0.0738366i
\(856\) −6.46234 −0.220878
\(857\) 22.9281i 0.783208i 0.920134 + 0.391604i \(0.128080\pi\)
−0.920134 + 0.391604i \(0.871920\pi\)
\(858\) −36.8468 + 87.5106i −1.25793 + 2.98756i
\(859\) 18.7653i 0.640263i −0.947373 0.320132i \(-0.896273\pi\)
0.947373 0.320132i \(-0.103727\pi\)
\(860\) −36.3981 + 26.9992i −1.24117 + 0.920666i
\(861\) 0 0
\(862\) 61.6092i 2.09842i
\(863\) −8.46172 −0.288040 −0.144020 0.989575i \(-0.546003\pi\)
−0.144020 + 0.989575i \(0.546003\pi\)
\(864\) −13.5693 34.4502i −0.461638 1.17202i
\(865\) −18.2690 + 13.5515i −0.621166 + 0.460766i
\(866\) −7.67319 −0.260746
\(867\) −13.3348 5.61470i −0.452874 0.190685i
\(868\) 0 0
\(869\) 22.3281i 0.757428i
\(870\) −18.7214 + 4.57533i −0.634716 + 0.155118i
\(871\) 70.1283i 2.37621i
\(872\) −23.9070 −0.809594
\(873\) 9.36463 + 9.58544i 0.316945 + 0.324418i
\(874\) 13.4880i 0.456238i
\(875\) 0 0
\(876\) −15.2125 6.40529i −0.513981 0.216415i
\(877\) 3.78589i 0.127840i 0.997955 + 0.0639201i \(0.0203603\pi\)
−0.997955 + 0.0639201i \(0.979640\pi\)
\(878\) 8.72146i 0.294335i
\(879\) 2.38857 5.67282i 0.0805646 0.191340i
\(880\) 10.0475 7.45299i 0.338701 0.251240i
\(881\) 54.6531 1.84131 0.920654 0.390379i \(-0.127656\pi\)
0.920654 + 0.390379i \(0.127656\pi\)
\(882\) 0 0
\(883\) 28.1492i 0.947295i −0.880715 0.473647i \(-0.842937\pi\)
0.880715 0.473647i \(-0.157063\pi\)
\(884\) 55.0589i 1.85183i
\(885\) −7.29147 29.8354i −0.245100 1.00291i
\(886\) −35.4130 −1.18972
\(887\) 30.0235i 1.00809i 0.863677 + 0.504045i \(0.168155\pi\)
−0.863677 + 0.504045i \(0.831845\pi\)
\(888\) 4.39873 10.4469i 0.147612 0.350575i
\(889\) 0 0
\(890\) −39.7751 53.6215i −1.33326 1.79740i
\(891\) −34.3429 0.800467i −1.15053 0.0268166i
\(892\) −11.8995 −0.398425
\(893\) −10.2003 −0.341340
\(894\) 16.0647 38.1534i 0.537284 1.27604i
\(895\) 42.4816 31.5118i 1.42000 1.05332i
\(896\) 0 0
\(897\) 31.1420 + 13.1125i 1.03980 + 0.437814i
\(898\) 46.6116i 1.55545i
\(899\) 15.0138 0.500737
\(900\) −38.3300 + 19.9249i −1.27767 + 0.664165i
\(901\) 5.68758i 0.189481i
\(902\) 29.6036i 0.985691i
\(903\) 0 0
\(904\) 39.7702 1.32274
\(905\) −28.0756 + 20.8258i −0.933266 + 0.692274i
\(906\) −29.2547 12.3179i −0.971922 0.409233i
\(907\) 19.4331i 0.645264i −0.946524 0.322632i \(-0.895432\pi\)
0.946524 0.322632i \(-0.104568\pi\)
\(908\) 20.6656i 0.685812i
\(909\) −18.5966 19.0351i −0.616809 0.631354i
\(910\) 0 0
\(911\) 53.2832i 1.76535i 0.469982 + 0.882676i \(0.344261\pi\)
−0.469982 + 0.882676i \(0.655739\pi\)
\(912\) 2.00471 4.76115i 0.0663826 0.157657i
\(913\) 10.1656 0.336432
\(914\) 21.2219i 0.701959i
\(915\) 51.4112 12.5644i 1.69960 0.415365i
\(916\) 30.0988i 0.994493i
\(917\) 0 0
\(918\) −31.4046 + 12.3697i −1.03650 + 0.408261i
\(919\) 45.0127 1.48483 0.742416 0.669939i \(-0.233680\pi\)
0.742416 + 0.669939i \(0.233680\pi\)
\(920\) 7.77028 + 10.4752i 0.256178 + 0.345358i
\(921\) 46.3484 + 19.5152i 1.52723 + 0.643049i
\(922\) −54.2030 −1.78508
\(923\) 71.4693i 2.35244i
\(924\) 0 0
\(925\) 16.1092 + 4.88383i 0.529666 + 0.160579i
\(926\) 32.2246i 1.05897i
\(927\) 2.77243 + 2.83780i 0.0910584 + 0.0932056i
\(928\) 16.0513i 0.526910i
\(929\) 42.6990 1.40091 0.700455 0.713696i \(-0.252980\pi\)
0.700455 + 0.713696i \(0.252980\pi\)
\(930\) 55.3942 13.5378i 1.81645 0.443921i
\(931\) 0 0
\(932\) 11.2360 0.368048
\(933\) −13.7991 5.81018i −0.451761 0.190217i
\(934\) 39.5832i 1.29520i
\(935\) −14.9517 20.1567i −0.488974 0.659195i
\(936\) −26.4959 27.1207i −0.866046 0.886467i
\(937\) 26.4685 0.864688 0.432344 0.901709i \(-0.357687\pi\)
0.432344 + 0.901709i \(0.357687\pi\)
\(938\) 0 0
\(939\) −17.3235 7.29415i −0.565330 0.238036i
\(940\) 25.9270 19.2320i 0.845646 0.627280i
\(941\) −31.7091 −1.03369 −0.516843 0.856080i \(-0.672893\pi\)
−0.516843 + 0.856080i \(0.672893\pi\)
\(942\) −19.0842 8.03550i −0.621796 0.261811i
\(943\) 10.5349 0.343063
\(944\) −11.6237 −0.378318
\(945\) 0 0
\(946\) 59.3370 1.92921
\(947\) −11.9455 −0.388177 −0.194089 0.980984i \(-0.562175\pi\)
−0.194089 + 0.980984i \(0.562175\pi\)
\(948\) 26.8933 + 11.3236i 0.873455 + 0.367773i
\(949\) 21.5137 0.698363
\(950\) −21.5089 6.52087i −0.697840 0.211565i
\(951\) −14.9111 6.27839i −0.483524 0.203591i
\(952\) 0 0
\(953\) 1.76384 0.0571364 0.0285682 0.999592i \(-0.490905\pi\)
0.0285682 + 0.999592i \(0.490905\pi\)
\(954\) 8.95781 + 9.16903i 0.290020 + 0.296858i
\(955\) −19.3585 + 14.3597i −0.626426 + 0.464668i
\(956\) 68.5065i 2.21566i
\(957\) 13.7250 + 5.77901i 0.443668 + 0.186809i
\(958\) −6.54980 −0.211614
\(959\) 0 0
\(960\) 11.7779 + 48.1932i 0.380131 + 1.55543i
\(961\) −13.4237 −0.433023
\(962\) 48.3533i 1.55897i
\(963\) 6.96955 + 7.13389i 0.224591 + 0.229886i
\(964\) 38.2532i 1.23205i
\(965\) 3.31564 2.45946i 0.106734 0.0791728i
\(966\) 0 0
\(967\) 53.4014i 1.71727i −0.512584 0.858637i \(-0.671312\pi\)
0.512584 0.858637i \(-0.328688\pi\)
\(968\) 6.93738 0.222976
\(969\) −9.55154 4.02173i −0.306840 0.129197i
\(970\) −13.1453 17.7214i −0.422071 0.569001i
\(971\) −47.9153 −1.53768 −0.768838 0.639444i \(-0.779165\pi\)
−0.768838 + 0.639444i \(0.779165\pi\)
\(972\) 18.3810 40.9588i 0.589571 1.31375i
\(973\) 0 0
\(974\) 73.4642i 2.35394i
\(975\) 35.9659 43.3218i 1.15183 1.38741i
\(976\) 20.0294i 0.641125i
\(977\) 8.14823 0.260685 0.130342 0.991469i \(-0.458392\pi\)
0.130342 + 0.991469i \(0.458392\pi\)
\(978\) −25.4745 + 60.5016i −0.814586 + 1.93463i
\(979\) 51.5889i 1.64879i
\(980\) 0 0
\(981\) 25.7834 + 26.3914i 0.823201 + 0.842612i
\(982\) 56.3073i 1.79684i
\(983\) 14.6023i 0.465742i −0.972508 0.232871i \(-0.925188\pi\)
0.972508 0.232871i \(-0.0748120\pi\)
\(984\) −10.8947 4.58727i −0.347310 0.146237i
\(985\) 10.7898 + 14.5459i 0.343791 + 0.463471i
\(986\) 14.6322 0.465986
\(987\) 0 0
\(988\) 38.1014i 1.21217i
\(989\) 21.1160i 0.671449i
\(990\) 55.8503 + 8.94626i 1.77504 + 0.284331i
\(991\) 15.6824 0.498166 0.249083 0.968482i \(-0.419871\pi\)
0.249083 + 0.968482i \(0.419871\pi\)
\(992\) 47.4936i 1.50792i
\(993\) −4.64398 1.95537i −0.147372 0.0620519i
\(994\) 0 0
\(995\) −18.1437 + 13.4585i −0.575194 + 0.426664i
\(996\) −5.15544 + 12.2441i −0.163357 + 0.387969i
\(997\) −27.0422 −0.856436 −0.428218 0.903676i \(-0.640858\pi\)
−0.428218 + 0.903676i \(0.640858\pi\)
\(998\) 74.3826 2.35454
\(999\) −16.2765 + 6.41102i −0.514965 + 0.202836i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 735.2.g.c.734.1 32
3.2 odd 2 inner 735.2.g.c.734.30 yes 32
5.4 even 2 inner 735.2.g.c.734.32 yes 32
7.2 even 3 735.2.p.g.374.32 64
7.3 odd 6 735.2.p.g.509.30 64
7.4 even 3 735.2.p.g.509.31 64
7.5 odd 6 735.2.p.g.374.29 64
7.6 odd 2 inner 735.2.g.c.734.4 yes 32
15.14 odd 2 inner 735.2.g.c.734.3 yes 32
21.2 odd 6 735.2.p.g.374.3 64
21.5 even 6 735.2.p.g.374.2 64
21.11 odd 6 735.2.p.g.509.4 64
21.17 even 6 735.2.p.g.509.1 64
21.20 even 2 inner 735.2.g.c.734.31 yes 32
35.4 even 6 735.2.p.g.509.2 64
35.9 even 6 735.2.p.g.374.1 64
35.19 odd 6 735.2.p.g.374.4 64
35.24 odd 6 735.2.p.g.509.3 64
35.34 odd 2 inner 735.2.g.c.734.29 yes 32
105.44 odd 6 735.2.p.g.374.30 64
105.59 even 6 735.2.p.g.509.32 64
105.74 odd 6 735.2.p.g.509.29 64
105.89 even 6 735.2.p.g.374.31 64
105.104 even 2 inner 735.2.g.c.734.2 yes 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
735.2.g.c.734.1 32 1.1 even 1 trivial
735.2.g.c.734.2 yes 32 105.104 even 2 inner
735.2.g.c.734.3 yes 32 15.14 odd 2 inner
735.2.g.c.734.4 yes 32 7.6 odd 2 inner
735.2.g.c.734.29 yes 32 35.34 odd 2 inner
735.2.g.c.734.30 yes 32 3.2 odd 2 inner
735.2.g.c.734.31 yes 32 21.20 even 2 inner
735.2.g.c.734.32 yes 32 5.4 even 2 inner
735.2.p.g.374.1 64 35.9 even 6
735.2.p.g.374.2 64 21.5 even 6
735.2.p.g.374.3 64 21.2 odd 6
735.2.p.g.374.4 64 35.19 odd 6
735.2.p.g.374.29 64 7.5 odd 6
735.2.p.g.374.30 64 105.44 odd 6
735.2.p.g.374.31 64 105.89 even 6
735.2.p.g.374.32 64 7.2 even 3
735.2.p.g.509.1 64 21.17 even 6
735.2.p.g.509.2 64 35.4 even 6
735.2.p.g.509.3 64 35.24 odd 6
735.2.p.g.509.4 64 21.11 odd 6
735.2.p.g.509.29 64 105.74 odd 6
735.2.p.g.509.30 64 7.3 odd 6
735.2.p.g.509.31 64 7.4 even 3
735.2.p.g.509.32 64 105.59 even 6