Properties

Label 735.2.g.b.734.17
Level $735$
Weight $2$
Character 735.734
Analytic conductor $5.869$
Analytic rank $0$
Dimension $24$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [735,2,Mod(734,735)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("735.734"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(735, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 735 = 3 \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 735.g (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.86900454856\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: no (minimal twist has level 105)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 734.17
Character \(\chi\) \(=\) 735.734
Dual form 735.2.g.b.734.18

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.51469 q^{2} +(-1.66512 - 0.476833i) q^{3} +0.294280 q^{4} +(-0.775809 - 2.09717i) q^{5} +(-2.52214 - 0.722254i) q^{6} -2.58363 q^{8} +(2.54526 + 1.58797i) q^{9} +(-1.17511 - 3.17656i) q^{10} +2.14830i q^{11} +(-0.490013 - 0.140323i) q^{12} -3.48097 q^{13} +(0.291817 + 3.86197i) q^{15} -4.50196 q^{16} +3.57718i q^{17} +(3.85528 + 2.40528i) q^{18} +1.22234i q^{19} +(-0.228305 - 0.617156i) q^{20} +3.25401i q^{22} -1.51469 q^{23} +(4.30206 + 1.23196i) q^{24} +(-3.79624 + 3.25401i) q^{25} -5.27259 q^{26} +(-3.48097 - 3.85783i) q^{27} +5.95645i q^{29} +(0.442011 + 5.84969i) q^{30} +3.17656i q^{31} -1.65180 q^{32} +(1.02438 - 3.57718i) q^{33} +5.41832i q^{34} +(0.749020 + 0.467309i) q^{36} -7.80350i q^{37} +1.85147i q^{38} +(5.79624 + 1.65984i) q^{39} +(2.00441 + 5.41832i) q^{40} -11.8685 q^{41} -2.99294i q^{43} +0.632203i q^{44} +(1.35561 - 6.56980i) q^{45} -2.29428 q^{46} +6.10167i q^{47} +(7.49631 + 2.14668i) q^{48} +(-5.75012 + 4.92881i) q^{50} +(1.70572 - 5.95645i) q^{51} -1.02438 q^{52} -11.2260 q^{53} +(-5.27259 - 5.84341i) q^{54} +(4.50535 - 1.66667i) q^{55} +(0.582853 - 2.03535i) q^{57} +9.02216i q^{58} +2.16935 q^{59} +(0.0858759 + 1.13650i) q^{60} +3.39872i q^{61} +4.81149i q^{62} +6.50196 q^{64} +(2.70057 + 7.30019i) q^{65} +(1.55162 - 5.41832i) q^{66} -10.3176i q^{67} +1.05269i q^{68} +(2.52214 + 0.722254i) q^{69} -10.3968i q^{71} +(-6.57602 - 4.10273i) q^{72} +6.85557 q^{73} -11.8199i q^{74} +(7.87282 - 3.60814i) q^{75} +0.359711i q^{76} +(8.77950 + 2.51414i) q^{78} -1.88284 q^{79} +(3.49266 + 9.44137i) q^{80} +(3.95670 + 8.08360i) q^{81} -17.9771 q^{82} -9.10486i q^{83} +(7.50196 - 2.77521i) q^{85} -4.53337i q^{86} +(2.84023 - 9.91821i) q^{87} -5.55042i q^{88} -1.77992 q^{89} +(2.05332 - 9.95121i) q^{90} -0.445743 q^{92} +(1.51469 - 5.28936i) q^{93} +9.24213i q^{94} +(2.56346 - 0.948304i) q^{95} +(2.75045 + 0.787632i) q^{96} +1.32584 q^{97} +(-3.41144 + 5.46799i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 24 q^{4} + 12 q^{9} - 24 q^{15} + 24 q^{16} + 24 q^{25} - 36 q^{30} + 84 q^{36} + 24 q^{39} - 72 q^{46} + 24 q^{51} - 24 q^{60} + 24 q^{64} - 96 q^{79} + 12 q^{81} + 48 q^{85} - 48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/735\mathbb{Z}\right)^\times\).

\(n\) \(346\) \(442\) \(491\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.51469 1.07105 0.535523 0.844521i \(-0.320114\pi\)
0.535523 + 0.844521i \(0.320114\pi\)
\(3\) −1.66512 0.476833i −0.961358 0.275300i
\(4\) 0.294280 0.147140
\(5\) −0.775809 2.09717i −0.346952 0.937883i
\(6\) −2.52214 0.722254i −1.02966 0.294859i
\(7\) 0 0
\(8\) −2.58363 −0.913452
\(9\) 2.54526 + 1.58797i 0.848420 + 0.529323i
\(10\) −1.17511 3.17656i −0.371602 1.00452i
\(11\) 2.14830i 0.647737i 0.946102 + 0.323869i \(0.104984\pi\)
−0.946102 + 0.323869i \(0.895016\pi\)
\(12\) −0.490013 0.140323i −0.141454 0.0405077i
\(13\) −3.48097 −0.965448 −0.482724 0.875773i \(-0.660353\pi\)
−0.482724 + 0.875773i \(0.660353\pi\)
\(14\) 0 0
\(15\) 0.291817 + 3.86197i 0.0753468 + 0.997157i
\(16\) −4.50196 −1.12549
\(17\) 3.57718i 0.867594i 0.901011 + 0.433797i \(0.142827\pi\)
−0.901011 + 0.433797i \(0.857173\pi\)
\(18\) 3.85528 + 2.40528i 0.908697 + 0.566930i
\(19\) 1.22234i 0.280425i 0.990121 + 0.140212i \(0.0447785\pi\)
−0.990121 + 0.140212i \(0.955222\pi\)
\(20\) −0.228305 0.617156i −0.0510506 0.138000i
\(21\) 0 0
\(22\) 3.25401i 0.693757i
\(23\) −1.51469 −0.315834 −0.157917 0.987452i \(-0.550478\pi\)
−0.157917 + 0.987452i \(0.550478\pi\)
\(24\) 4.30206 + 1.23196i 0.878155 + 0.251473i
\(25\) −3.79624 + 3.25401i −0.759248 + 0.650801i
\(26\) −5.27259 −1.03404
\(27\) −3.48097 3.85783i −0.669913 0.742439i
\(28\) 0 0
\(29\) 5.95645i 1.10608i 0.833153 + 0.553042i \(0.186533\pi\)
−0.833153 + 0.553042i \(0.813467\pi\)
\(30\) 0.442011 + 5.84969i 0.0806999 + 1.06800i
\(31\) 3.17656i 0.570527i 0.958449 + 0.285263i \(0.0920811\pi\)
−0.958449 + 0.285263i \(0.907919\pi\)
\(32\) −1.65180 −0.291999
\(33\) 1.02438 3.57718i 0.178322 0.622708i
\(34\) 5.41832i 0.929234i
\(35\) 0 0
\(36\) 0.749020 + 0.467309i 0.124837 + 0.0778848i
\(37\) 7.80350i 1.28289i −0.767170 0.641444i \(-0.778336\pi\)
0.767170 0.641444i \(-0.221664\pi\)
\(38\) 1.85147i 0.300348i
\(39\) 5.79624 + 1.65984i 0.928141 + 0.265788i
\(40\) 2.00441 + 5.41832i 0.316925 + 0.856711i
\(41\) −11.8685 −1.85355 −0.926773 0.375622i \(-0.877429\pi\)
−0.926773 + 0.375622i \(0.877429\pi\)
\(42\) 0 0
\(43\) 2.99294i 0.456419i −0.973612 0.228209i \(-0.926713\pi\)
0.973612 0.228209i \(-0.0732871\pi\)
\(44\) 0.632203i 0.0953082i
\(45\) 1.35561 6.56980i 0.202082 0.979369i
\(46\) −2.29428 −0.338273
\(47\) 6.10167i 0.890020i 0.895526 + 0.445010i \(0.146800\pi\)
−0.895526 + 0.445010i \(0.853200\pi\)
\(48\) 7.49631 + 2.14668i 1.08200 + 0.309847i
\(49\) 0 0
\(50\) −5.75012 + 4.92881i −0.813190 + 0.697038i
\(51\) 1.70572 5.95645i 0.238849 0.834069i
\(52\) −1.02438 −0.142056
\(53\) −11.2260 −1.54201 −0.771006 0.636828i \(-0.780246\pi\)
−0.771006 + 0.636828i \(0.780246\pi\)
\(54\) −5.27259 5.84341i −0.717508 0.795187i
\(55\) 4.50535 1.66667i 0.607502 0.224734i
\(56\) 0 0
\(57\) 0.582853 2.03535i 0.0772008 0.269589i
\(58\) 9.02216i 1.18467i
\(59\) 2.16935 0.282425 0.141213 0.989979i \(-0.454900\pi\)
0.141213 + 0.989979i \(0.454900\pi\)
\(60\) 0.0858759 + 1.13650i 0.0110865 + 0.146722i
\(61\) 3.39872i 0.435162i 0.976042 + 0.217581i \(0.0698166\pi\)
−0.976042 + 0.217581i \(0.930183\pi\)
\(62\) 4.81149i 0.611060i
\(63\) 0 0
\(64\) 6.50196 0.812745
\(65\) 2.70057 + 7.30019i 0.334964 + 0.905477i
\(66\) 1.55162 5.41832i 0.190991 0.666949i
\(67\) 10.3176i 1.26050i −0.776392 0.630250i \(-0.782952\pi\)
0.776392 0.630250i \(-0.217048\pi\)
\(68\) 1.05269i 0.127658i
\(69\) 2.52214 + 0.722254i 0.303630 + 0.0869491i
\(70\) 0 0
\(71\) 10.3968i 1.23387i −0.787013 0.616936i \(-0.788374\pi\)
0.787013 0.616936i \(-0.211626\pi\)
\(72\) −6.57602 4.10273i −0.774991 0.483512i
\(73\) 6.85557 0.802384 0.401192 0.915994i \(-0.368596\pi\)
0.401192 + 0.915994i \(0.368596\pi\)
\(74\) 11.8199i 1.37403i
\(75\) 7.87282 3.60814i 0.909075 0.416633i
\(76\) 0.359711i 0.0412617i
\(77\) 0 0
\(78\) 8.77950 + 2.51414i 0.994082 + 0.284671i
\(79\) −1.88284 −0.211836 −0.105918 0.994375i \(-0.533778\pi\)
−0.105918 + 0.994375i \(0.533778\pi\)
\(80\) 3.49266 + 9.44137i 0.390491 + 1.05558i
\(81\) 3.95670 + 8.08360i 0.439633 + 0.898177i
\(82\) −17.9771 −1.98523
\(83\) 9.10486i 0.999388i −0.866202 0.499694i \(-0.833446\pi\)
0.866202 0.499694i \(-0.166554\pi\)
\(84\) 0 0
\(85\) 7.50196 2.77521i 0.813702 0.301014i
\(86\) 4.53337i 0.488846i
\(87\) 2.84023 9.91821i 0.304505 1.06334i
\(88\) 5.55042i 0.591677i
\(89\) −1.77992 −0.188672 −0.0943358 0.995540i \(-0.530073\pi\)
−0.0943358 + 0.995540i \(0.530073\pi\)
\(90\) 2.05332 9.95121i 0.216439 1.04895i
\(91\) 0 0
\(92\) −0.445743 −0.0464719
\(93\) 1.51469 5.28936i 0.157066 0.548481i
\(94\) 9.24213i 0.953253i
\(95\) 2.56346 0.948304i 0.263005 0.0972940i
\(96\) 2.75045 + 0.787632i 0.280716 + 0.0803874i
\(97\) 1.32584 0.134618 0.0673092 0.997732i \(-0.478559\pi\)
0.0673092 + 0.997732i \(0.478559\pi\)
\(98\) 0 0
\(99\) −3.41144 + 5.46799i −0.342863 + 0.549553i
\(100\) −1.11716 + 0.957590i −0.111716 + 0.0957590i
\(101\) −13.4201 −1.33535 −0.667675 0.744453i \(-0.732710\pi\)
−0.667675 + 0.744453i \(0.732710\pi\)
\(102\) 2.58363 9.02216i 0.255818 0.893327i
\(103\) 5.78683 0.570194 0.285097 0.958499i \(-0.407974\pi\)
0.285097 + 0.958499i \(0.407974\pi\)
\(104\) 8.99355 0.881890
\(105\) 0 0
\(106\) −17.0039 −1.65157
\(107\) −3.88645 −0.375717 −0.187859 0.982196i \(-0.560155\pi\)
−0.187859 + 0.982196i \(0.560155\pi\)
\(108\) −1.02438 1.13528i −0.0985711 0.109243i
\(109\) 5.20768 0.498805 0.249403 0.968400i \(-0.419766\pi\)
0.249403 + 0.968400i \(0.419766\pi\)
\(110\) 6.82420 2.52449i 0.650662 0.240701i
\(111\) −3.72097 + 12.9938i −0.353179 + 1.23331i
\(112\) 0 0
\(113\) −9.36235 −0.880736 −0.440368 0.897817i \(-0.645152\pi\)
−0.440368 + 0.897817i \(0.645152\pi\)
\(114\) 0.882841 3.08292i 0.0826856 0.288742i
\(115\) 1.17511 + 3.17656i 0.109579 + 0.296216i
\(116\) 1.75286i 0.162749i
\(117\) −8.85998 5.52768i −0.819105 0.511034i
\(118\) 3.28589 0.302490
\(119\) 0 0
\(120\) −0.753947 9.97793i −0.0688257 0.910856i
\(121\) 6.38480 0.580436
\(122\) 5.14801i 0.466079i
\(123\) 19.7625 + 5.65929i 1.78192 + 0.510281i
\(124\) 0.934799i 0.0839474i
\(125\) 9.76936 + 5.43687i 0.873798 + 0.486289i
\(126\) 0 0
\(127\) 9.57778i 0.849891i 0.905219 + 0.424945i \(0.139707\pi\)
−0.905219 + 0.424945i \(0.860293\pi\)
\(128\) 13.1520 1.16249
\(129\) −1.42713 + 4.98361i −0.125652 + 0.438782i
\(130\) 4.09052 + 11.0575i 0.358762 + 0.969807i
\(131\) 9.45016 0.825665 0.412832 0.910807i \(-0.364540\pi\)
0.412832 + 0.910807i \(0.364540\pi\)
\(132\) 0.301455 1.05269i 0.0262383 0.0916253i
\(133\) 0 0
\(134\) 15.6280i 1.35005i
\(135\) −5.38995 + 10.2931i −0.463893 + 0.885891i
\(136\) 9.24213i 0.792506i
\(137\) −10.7055 −0.914634 −0.457317 0.889304i \(-0.651190\pi\)
−0.457317 + 0.889304i \(0.651190\pi\)
\(138\) 3.82026 + 1.09399i 0.325202 + 0.0931265i
\(139\) 4.11136i 0.348721i −0.984682 0.174360i \(-0.944214\pi\)
0.984682 0.174360i \(-0.0557858\pi\)
\(140\) 0 0
\(141\) 2.90948 10.1600i 0.245022 0.855629i
\(142\) 15.7479i 1.32153i
\(143\) 7.47817i 0.625356i
\(144\) −11.4587 7.14898i −0.954888 0.595748i
\(145\) 12.4917 4.62107i 1.03738 0.383759i
\(146\) 10.3841 0.859390
\(147\) 0 0
\(148\) 2.29642i 0.188764i
\(149\) 2.54374i 0.208391i 0.994557 + 0.104196i \(0.0332268\pi\)
−0.994557 + 0.104196i \(0.966773\pi\)
\(150\) 11.9249 5.46521i 0.973661 0.446233i
\(151\) −5.61912 −0.457277 −0.228639 0.973511i \(-0.573427\pi\)
−0.228639 + 0.973511i \(0.573427\pi\)
\(152\) 3.15808i 0.256154i
\(153\) −5.68046 + 9.10486i −0.459238 + 0.736084i
\(154\) 0 0
\(155\) 6.66178 2.46440i 0.535087 0.197946i
\(156\) 1.70572 + 0.488459i 0.136567 + 0.0391080i
\(157\) −13.9239 −1.11125 −0.555623 0.831434i \(-0.687520\pi\)
−0.555623 + 0.831434i \(0.687520\pi\)
\(158\) −2.85192 −0.226886
\(159\) 18.6927 + 5.35294i 1.48243 + 0.424516i
\(160\) 1.28148 + 3.46410i 0.101310 + 0.273861i
\(161\) 0 0
\(162\) 5.99317 + 12.2441i 0.470868 + 0.961990i
\(163\) 4.07070i 0.318842i 0.987211 + 0.159421i \(0.0509627\pi\)
−0.987211 + 0.159421i \(0.949037\pi\)
\(164\) −3.49266 −0.272731
\(165\) −8.29668 + 0.626910i −0.645896 + 0.0488049i
\(166\) 13.7910i 1.07039i
\(167\) 13.9722i 1.08120i 0.841279 + 0.540602i \(0.181803\pi\)
−0.841279 + 0.540602i \(0.818197\pi\)
\(168\) 0 0
\(169\) −0.882841 −0.0679109
\(170\) 11.3631 4.20358i 0.871512 0.322400i
\(171\) −1.94104 + 3.11118i −0.148435 + 0.237918i
\(172\) 0.880763i 0.0671576i
\(173\) 10.0027i 0.760488i 0.924886 + 0.380244i \(0.124160\pi\)
−0.924886 + 0.380244i \(0.875840\pi\)
\(174\) 4.30206 15.0230i 0.326139 1.13889i
\(175\) 0 0
\(176\) 9.67157i 0.729022i
\(177\) −3.61223 1.03442i −0.271512 0.0777516i
\(178\) −2.69603 −0.202076
\(179\) 16.2095i 1.21155i 0.795634 + 0.605777i \(0.207138\pi\)
−0.795634 + 0.605777i \(0.792862\pi\)
\(180\) 0.398929 1.93336i 0.0297344 0.144104i
\(181\) 19.4123i 1.44290i −0.692465 0.721451i \(-0.743475\pi\)
0.692465 0.721451i \(-0.256525\pi\)
\(182\) 0 0
\(183\) 1.62062 5.65929i 0.119800 0.418347i
\(184\) 3.91340 0.288500
\(185\) −16.3653 + 6.05403i −1.20320 + 0.445101i
\(186\) 2.29428 8.01172i 0.168225 0.587448i
\(187\) −7.68487 −0.561973
\(188\) 1.79560i 0.130958i
\(189\) 0 0
\(190\) 3.88284 1.43639i 0.281691 0.104206i
\(191\) 12.7038i 0.919212i −0.888123 0.459606i \(-0.847991\pi\)
0.888123 0.459606i \(-0.152009\pi\)
\(192\) −10.8266 3.10035i −0.781339 0.223748i
\(193\) 20.8195i 1.49862i 0.662218 + 0.749311i \(0.269615\pi\)
−0.662218 + 0.749311i \(0.730385\pi\)
\(194\) 2.00823 0.144182
\(195\) −1.01581 13.4434i −0.0727433 0.962703i
\(196\) 0 0
\(197\) 2.23465 0.159212 0.0796062 0.996826i \(-0.474634\pi\)
0.0796062 + 0.996826i \(0.474634\pi\)
\(198\) −5.16727 + 8.28229i −0.367222 + 0.588597i
\(199\) 24.9220i 1.76667i −0.468739 0.883337i \(-0.655292\pi\)
0.468739 0.883337i \(-0.344708\pi\)
\(200\) 9.80809 8.40716i 0.693537 0.594476i
\(201\) −4.91979 + 17.1801i −0.347016 + 1.21179i
\(202\) −20.3273 −1.43022
\(203\) 0 0
\(204\) 0.501960 1.75286i 0.0351442 0.122725i
\(205\) 9.20768 + 24.8902i 0.643092 + 1.73841i
\(206\) 8.76525 0.610704
\(207\) −3.85528 2.40528i −0.267960 0.167179i
\(208\) 15.6712 1.08660
\(209\) −2.62596 −0.181641
\(210\) 0 0
\(211\) −6.61520 −0.455409 −0.227705 0.973730i \(-0.573122\pi\)
−0.227705 + 0.973730i \(0.573122\pi\)
\(212\) −3.30360 −0.226892
\(213\) −4.95754 + 17.3119i −0.339685 + 1.18619i
\(214\) −5.88676 −0.402411
\(215\) −6.27670 + 2.32195i −0.428067 + 0.158356i
\(216\) 8.99355 + 9.96721i 0.611934 + 0.678183i
\(217\) 0 0
\(218\) 7.88801 0.534243
\(219\) −11.4154 3.26896i −0.771378 0.220896i
\(220\) 1.32584 0.490469i 0.0893879 0.0330674i
\(221\) 12.4521i 0.837617i
\(222\) −5.63611 + 19.6815i −0.378271 + 1.32094i
\(223\) −4.31027 −0.288637 −0.144318 0.989531i \(-0.546099\pi\)
−0.144318 + 0.989531i \(0.546099\pi\)
\(224\) 0 0
\(225\) −14.8297 + 2.25398i −0.988646 + 0.150265i
\(226\) −14.1810 −0.943309
\(227\) 11.1112i 0.737478i 0.929533 + 0.368739i \(0.120210\pi\)
−0.929533 + 0.368739i \(0.879790\pi\)
\(228\) 0.171522 0.598963i 0.0113593 0.0396673i
\(229\) 9.97400i 0.659101i −0.944138 0.329550i \(-0.893103\pi\)
0.944138 0.329550i \(-0.106897\pi\)
\(230\) 1.77992 + 4.81149i 0.117365 + 0.317261i
\(231\) 0 0
\(232\) 15.3893i 1.01036i
\(233\) −20.6287 −1.35143 −0.675716 0.737162i \(-0.736165\pi\)
−0.675716 + 0.737162i \(0.736165\pi\)
\(234\) −13.4201 8.37271i −0.877300 0.547341i
\(235\) 12.7962 4.73373i 0.834735 0.308795i
\(236\) 0.638397 0.0415561
\(237\) 3.13516 + 0.897801i 0.203650 + 0.0583184i
\(238\) 0 0
\(239\) 2.87353i 0.185873i 0.995672 + 0.0929365i \(0.0296254\pi\)
−0.995672 + 0.0929365i \(0.970375\pi\)
\(240\) −1.31375 17.3865i −0.0848020 1.12229i
\(241\) 26.0722i 1.67946i 0.543007 + 0.839728i \(0.317286\pi\)
−0.543007 + 0.839728i \(0.682714\pi\)
\(242\) 9.67098 0.621674
\(243\) −2.73386 15.3469i −0.175377 0.984501i
\(244\) 1.00018i 0.0640298i
\(245\) 0 0
\(246\) 29.9340 + 8.57206i 1.90852 + 0.546534i
\(247\) 4.25494i 0.270735i
\(248\) 8.20706i 0.521149i
\(249\) −4.34150 + 15.1607i −0.275131 + 0.960771i
\(250\) 14.7975 + 8.23516i 0.935878 + 0.520837i
\(251\) 0.161120 0.0101698 0.00508489 0.999987i \(-0.498381\pi\)
0.00508489 + 0.999987i \(0.498381\pi\)
\(252\) 0 0
\(253\) 3.25401i 0.204578i
\(254\) 14.5074i 0.910272i
\(255\) −13.8150 + 1.04388i −0.865128 + 0.0653704i
\(256\) 6.91732 0.432332
\(257\) 13.1303i 0.819045i 0.912300 + 0.409522i \(0.134305\pi\)
−0.912300 + 0.409522i \(0.865695\pi\)
\(258\) −2.16166 + 7.54861i −0.134579 + 0.469956i
\(259\) 0 0
\(260\) 0.794725 + 2.14830i 0.0492867 + 0.133232i
\(261\) −9.45866 + 15.1607i −0.585476 + 0.938424i
\(262\) 14.3141 0.884325
\(263\) −17.7305 −1.09331 −0.546655 0.837358i \(-0.684099\pi\)
−0.546655 + 0.837358i \(0.684099\pi\)
\(264\) −2.64663 + 9.24213i −0.162889 + 0.568814i
\(265\) 8.70925 + 23.5429i 0.535005 + 1.44623i
\(266\) 0 0
\(267\) 2.96379 + 0.848727i 0.181381 + 0.0519412i
\(268\) 3.03628i 0.185470i
\(269\) −4.40588 −0.268631 −0.134316 0.990939i \(-0.542884\pi\)
−0.134316 + 0.990939i \(0.542884\pi\)
\(270\) −8.16410 + 15.5909i −0.496851 + 0.948830i
\(271\) 23.5890i 1.43293i −0.697623 0.716465i \(-0.745759\pi\)
0.697623 0.716465i \(-0.254241\pi\)
\(272\) 16.1043i 0.976469i
\(273\) 0 0
\(274\) −16.2155 −0.979615
\(275\) −6.99059 8.15547i −0.421548 0.491793i
\(276\) 0.742216 + 0.212545i 0.0446762 + 0.0127937i
\(277\) 12.8318i 0.770987i −0.922710 0.385494i \(-0.874031\pi\)
0.922710 0.385494i \(-0.125969\pi\)
\(278\) 6.22742i 0.373496i
\(279\) −5.04428 + 8.08517i −0.301993 + 0.484046i
\(280\) 0 0
\(281\) 21.2397i 1.26706i 0.773719 + 0.633528i \(0.218394\pi\)
−0.773719 + 0.633528i \(0.781606\pi\)
\(282\) 4.40695 15.3893i 0.262430 0.916418i
\(283\) −6.55412 −0.389602 −0.194801 0.980843i \(-0.562406\pi\)
−0.194801 + 0.980843i \(0.562406\pi\)
\(284\) 3.05957i 0.181552i
\(285\) −4.72065 + 0.356700i −0.279627 + 0.0211291i
\(286\) 11.3271i 0.669786i
\(287\) 0 0
\(288\) −4.20426 2.62301i −0.247738 0.154562i
\(289\) 4.20376 0.247280
\(290\) 18.9210 6.99947i 1.11108 0.411023i
\(291\) −2.20768 0.632203i −0.129416 0.0370604i
\(292\) 2.01746 0.118063
\(293\) 3.71937i 0.217288i −0.994081 0.108644i \(-0.965349\pi\)
0.994081 0.108644i \(-0.0346509\pi\)
\(294\) 0 0
\(295\) −1.68300 4.54949i −0.0979881 0.264882i
\(296\) 20.1614i 1.17186i
\(297\) 8.28778 7.47817i 0.480906 0.433928i
\(298\) 3.85297i 0.223197i
\(299\) 5.27259 0.304922
\(300\) 2.31682 1.06181i 0.133761 0.0613034i
\(301\) 0 0
\(302\) −8.51121 −0.489765
\(303\) 22.3461 + 6.39915i 1.28375 + 0.367622i
\(304\) 5.50294i 0.315615i
\(305\) 7.12770 2.63676i 0.408131 0.150980i
\(306\) −8.60413 + 13.7910i −0.491865 + 0.788381i
\(307\) 11.2102 0.639800 0.319900 0.947451i \(-0.396351\pi\)
0.319900 + 0.947451i \(0.396351\pi\)
\(308\) 0 0
\(309\) −9.63578 2.75935i −0.548160 0.156974i
\(310\) 10.0905 3.73280i 0.573103 0.212009i
\(311\) 18.9210 1.07291 0.536456 0.843929i \(-0.319763\pi\)
0.536456 + 0.843929i \(0.319763\pi\)
\(312\) −14.9754 4.28842i −0.847813 0.242784i
\(313\) −16.3805 −0.925879 −0.462940 0.886390i \(-0.653205\pi\)
−0.462940 + 0.886390i \(0.653205\pi\)
\(314\) −21.0903 −1.19020
\(315\) 0 0
\(316\) −0.554083 −0.0311696
\(317\) 10.1167 0.568212 0.284106 0.958793i \(-0.408303\pi\)
0.284106 + 0.958793i \(0.408303\pi\)
\(318\) 28.3136 + 8.10803i 1.58775 + 0.454676i
\(319\) −12.7962 −0.716452
\(320\) −5.04428 13.6357i −0.281984 0.762259i
\(321\) 6.47141 + 1.85319i 0.361199 + 0.103435i
\(322\) 0 0
\(323\) −4.37254 −0.243295
\(324\) 1.16438 + 2.37884i 0.0646877 + 0.132158i
\(325\) 13.2146 11.3271i 0.733014 0.628315i
\(326\) 6.16584i 0.341494i
\(327\) −8.67142 2.48319i −0.479531 0.137321i
\(328\) 30.6638 1.69313
\(329\) 0 0
\(330\) −12.5669 + 0.949574i −0.691785 + 0.0522723i
\(331\) 19.2755 1.05948 0.529738 0.848161i \(-0.322290\pi\)
0.529738 + 0.848161i \(0.322290\pi\)
\(332\) 2.67938i 0.147050i
\(333\) 12.3917 19.8619i 0.679062 1.08843i
\(334\) 21.1636i 1.15802i
\(335\) −21.6378 + 8.00452i −1.18220 + 0.437334i
\(336\) 0 0
\(337\) 23.6381i 1.28765i 0.765174 + 0.643824i \(0.222653\pi\)
−0.765174 + 0.643824i \(0.777347\pi\)
\(338\) −1.33723 −0.0727357
\(339\) 15.5895 + 4.46428i 0.846703 + 0.242466i
\(340\) 2.20768 0.816690i 0.119728 0.0442913i
\(341\) −6.82420 −0.369551
\(342\) −2.94008 + 4.71247i −0.158981 + 0.254821i
\(343\) 0 0
\(344\) 7.73266i 0.416917i
\(345\) −0.442011 5.84969i −0.0237971 0.314937i
\(346\) 15.1509i 0.814518i
\(347\) 15.9072 0.853943 0.426971 0.904265i \(-0.359580\pi\)
0.426971 + 0.904265i \(0.359580\pi\)
\(348\) 0.835824 2.91873i 0.0448049 0.156461i
\(349\) 0.0192397i 0.00102988i −1.00000 0.000514938i \(-0.999836\pi\)
1.00000 0.000514938i \(-0.000163910\pi\)
\(350\) 0 0
\(351\) 12.1172 + 13.4290i 0.646766 + 0.716786i
\(352\) 3.54856i 0.189139i
\(353\) 25.4200i 1.35297i −0.736457 0.676484i \(-0.763503\pi\)
0.736457 0.676484i \(-0.236497\pi\)
\(354\) −5.47140 1.56682i −0.290802 0.0832755i
\(355\) −21.8038 + 8.06593i −1.15723 + 0.428095i
\(356\) −0.523797 −0.0277612
\(357\) 0 0
\(358\) 24.5523i 1.29763i
\(359\) 24.1789i 1.27611i −0.769989 0.638057i \(-0.779738\pi\)
0.769989 0.638057i \(-0.220262\pi\)
\(360\) −3.50239 + 16.9740i −0.184592 + 0.894607i
\(361\) 17.5059 0.921362
\(362\) 29.4035i 1.54542i
\(363\) −10.6315 3.04448i −0.558007 0.159794i
\(364\) 0 0
\(365\) −5.31861 14.3773i −0.278389 0.752542i
\(366\) 2.45474 8.57206i 0.128311 0.448069i
\(367\) 9.07272 0.473592 0.236796 0.971559i \(-0.423903\pi\)
0.236796 + 0.971559i \(0.423903\pi\)
\(368\) 6.81907 0.355468
\(369\) −30.2084 18.8468i −1.57259 0.981125i
\(370\) −24.7883 + 9.16996i −1.28868 + 0.476724i
\(371\) 0 0
\(372\) 0.445743 1.55655i 0.0231107 0.0807035i
\(373\) 15.5637i 0.805856i −0.915232 0.402928i \(-0.867993\pi\)
0.915232 0.402928i \(-0.132007\pi\)
\(374\) −11.6402 −0.601899
\(375\) −13.6747 13.7114i −0.706158 0.708054i
\(376\) 15.7645i 0.812991i
\(377\) 20.7342i 1.06787i
\(378\) 0 0
\(379\) 34.0984 1.75152 0.875758 0.482751i \(-0.160362\pi\)
0.875758 + 0.482751i \(0.160362\pi\)
\(380\) 0.754376 0.279067i 0.0386987 0.0143159i
\(381\) 4.56700 15.9482i 0.233975 0.817049i
\(382\) 19.2422i 0.984519i
\(383\) 10.5767i 0.540442i 0.962798 + 0.270221i \(0.0870967\pi\)
−0.962798 + 0.270221i \(0.912903\pi\)
\(384\) −21.8997 6.27133i −1.11757 0.320032i
\(385\) 0 0
\(386\) 31.5351i 1.60509i
\(387\) 4.75270 7.61781i 0.241593 0.387235i
\(388\) 0.390168 0.0198078
\(389\) 16.9347i 0.858624i 0.903156 + 0.429312i \(0.141244\pi\)
−0.903156 + 0.429312i \(0.858756\pi\)
\(390\) −1.53863 20.3626i −0.0779115 1.03110i
\(391\) 5.41832i 0.274016i
\(392\) 0 0
\(393\) −15.7357 4.50615i −0.793760 0.227305i
\(394\) 3.38480 0.170524
\(395\) 1.46073 + 3.94864i 0.0734971 + 0.198677i
\(396\) −1.00392 + 1.60912i −0.0504489 + 0.0808614i
\(397\) −0.407827 −0.0204682 −0.0102341 0.999948i \(-0.503258\pi\)
−0.0102341 + 0.999948i \(0.503258\pi\)
\(398\) 37.7491i 1.89219i
\(399\) 0 0
\(400\) 17.0905 14.6494i 0.854526 0.732470i
\(401\) 27.9786i 1.39719i 0.715519 + 0.698593i \(0.246190\pi\)
−0.715519 + 0.698593i \(0.753810\pi\)
\(402\) −7.45195 + 26.0225i −0.371670 + 1.29789i
\(403\) 11.0575i 0.550814i
\(404\) −3.94927 −0.196484
\(405\) 13.8830 14.5692i 0.689853 0.723949i
\(406\) 0 0
\(407\) 16.7643 0.830974
\(408\) −4.40695 + 15.3893i −0.218177 + 0.761882i
\(409\) 2.62071i 0.129586i 0.997899 + 0.0647929i \(0.0206387\pi\)
−0.997899 + 0.0647929i \(0.979361\pi\)
\(410\) 13.9468 + 37.7009i 0.688782 + 1.86192i
\(411\) 17.8260 + 5.10475i 0.879291 + 0.251799i
\(412\) 1.70295 0.0838984
\(413\) 0 0
\(414\) −5.83954 3.64325i −0.286998 0.179056i
\(415\) −19.0944 + 7.06364i −0.937309 + 0.346740i
\(416\) 5.74986 0.281910
\(417\) −1.96043 + 6.84591i −0.0960027 + 0.335246i
\(418\) −3.97751 −0.194546
\(419\) −8.39649 −0.410195 −0.205098 0.978742i \(-0.565751\pi\)
−0.205098 + 0.978742i \(0.565751\pi\)
\(420\) 0 0
\(421\) −7.84952 −0.382562 −0.191281 0.981535i \(-0.561264\pi\)
−0.191281 + 0.981535i \(0.561264\pi\)
\(422\) −10.0200 −0.487764
\(423\) −9.68927 + 15.5303i −0.471109 + 0.755111i
\(424\) 29.0039 1.40855
\(425\) −11.6402 13.5798i −0.564632 0.658719i
\(426\) −7.50912 + 26.2222i −0.363818 + 1.27047i
\(427\) 0 0
\(428\) −1.14371 −0.0552831
\(429\) −3.56584 + 12.4521i −0.172160 + 0.601192i
\(430\) −9.50724 + 3.51703i −0.458480 + 0.169606i
\(431\) 12.2576i 0.590428i −0.955431 0.295214i \(-0.904609\pi\)
0.955431 0.295214i \(-0.0953910\pi\)
\(432\) 15.6712 + 17.3678i 0.753981 + 0.835608i
\(433\) −5.13957 −0.246992 −0.123496 0.992345i \(-0.539411\pi\)
−0.123496 + 0.992345i \(0.539411\pi\)
\(434\) 0 0
\(435\) −23.0036 + 1.73819i −1.10294 + 0.0833398i
\(436\) 1.53252 0.0733943
\(437\) 1.85147i 0.0885677i
\(438\) −17.2907 4.95146i −0.826182 0.236590i
\(439\) 16.6993i 0.797013i 0.917165 + 0.398507i \(0.130471\pi\)
−0.917165 + 0.398507i \(0.869529\pi\)
\(440\) −11.6402 + 4.30607i −0.554924 + 0.205284i
\(441\) 0 0
\(442\) 18.8610i 0.897127i
\(443\) 0.252220 0.0119833 0.00599167 0.999982i \(-0.498093\pi\)
0.00599167 + 0.999982i \(0.498093\pi\)
\(444\) −1.09501 + 3.82381i −0.0519668 + 0.181470i
\(445\) 1.38088 + 3.73280i 0.0654601 + 0.176952i
\(446\) −6.52871 −0.309144
\(447\) 1.21294 4.23563i 0.0573700 0.200339i
\(448\) 0 0
\(449\) 28.8710i 1.36250i 0.732049 + 0.681252i \(0.238564\pi\)
−0.732049 + 0.681252i \(0.761436\pi\)
\(450\) −22.4624 + 3.41407i −1.05889 + 0.160941i
\(451\) 25.4971i 1.20061i
\(452\) −2.75516 −0.129592
\(453\) 9.35652 + 2.67938i 0.439607 + 0.125888i
\(454\) 16.8300i 0.789873i
\(455\) 0 0
\(456\) −1.50588 + 5.25859i −0.0705193 + 0.246256i
\(457\) 24.0735i 1.12611i 0.826419 + 0.563056i \(0.190375\pi\)
−0.826419 + 0.563056i \(0.809625\pi\)
\(458\) 15.1075i 0.705927i
\(459\) 13.8002 12.4521i 0.644136 0.581213i
\(460\) 0.345812 + 0.934799i 0.0161235 + 0.0435852i
\(461\) 39.8709 1.85697 0.928486 0.371367i \(-0.121111\pi\)
0.928486 + 0.371367i \(0.121111\pi\)
\(462\) 0 0
\(463\) 29.8417i 1.38686i −0.720524 0.693430i \(-0.756099\pi\)
0.720524 0.693430i \(-0.243901\pi\)
\(464\) 26.8157i 1.24489i
\(465\) −12.2678 + 0.926973i −0.568905 + 0.0429873i
\(466\) −31.2461 −1.44745
\(467\) 4.18164i 0.193503i 0.995309 + 0.0967515i \(0.0308452\pi\)
−0.995309 + 0.0967515i \(0.969155\pi\)
\(468\) −2.60732 1.62669i −0.120523 0.0751937i
\(469\) 0 0
\(470\) 19.3823 7.17013i 0.894039 0.330733i
\(471\) 23.1850 + 6.63937i 1.06831 + 0.305926i
\(472\) −5.60480 −0.257982
\(473\) 6.42973 0.295640
\(474\) 4.74879 + 1.35989i 0.218119 + 0.0624618i
\(475\) −3.97751 4.64030i −0.182501 0.212912i
\(476\) 0 0
\(477\) −28.5731 17.8266i −1.30827 0.816223i
\(478\) 4.35250i 0.199079i
\(479\) 27.9352 1.27639 0.638196 0.769874i \(-0.279681\pi\)
0.638196 + 0.769874i \(0.279681\pi\)
\(480\) −0.482022 6.37920i −0.0220012 0.291169i
\(481\) 27.1638i 1.23856i
\(482\) 39.4912i 1.79878i
\(483\) 0 0
\(484\) 1.87892 0.0854055
\(485\) −1.02860 2.78050i −0.0467062 0.126256i
\(486\) −4.14094 23.2457i −0.187837 1.05445i
\(487\) 37.2432i 1.68765i 0.536618 + 0.843826i \(0.319702\pi\)
−0.536618 + 0.843826i \(0.680298\pi\)
\(488\) 8.78105i 0.397500i
\(489\) 1.94104 6.77821i 0.0877770 0.306521i
\(490\) 0 0
\(491\) 5.90572i 0.266522i 0.991081 + 0.133261i \(0.0425448\pi\)
−0.991081 + 0.133261i \(0.957455\pi\)
\(492\) 5.81571 + 1.66542i 0.262192 + 0.0750828i
\(493\) −21.3073 −0.959632
\(494\) 6.44490i 0.289970i
\(495\) 14.1139 + 2.91225i 0.634374 + 0.130896i
\(496\) 14.3007i 0.642122i
\(497\) 0 0
\(498\) −6.57602 + 22.9637i −0.294678 + 1.02903i
\(499\) −18.7402 −0.838926 −0.419463 0.907772i \(-0.637782\pi\)
−0.419463 + 0.907772i \(0.637782\pi\)
\(500\) 2.87493 + 1.59996i 0.128571 + 0.0715526i
\(501\) 6.66242 23.2655i 0.297655 1.03942i
\(502\) 0.244046 0.0108923
\(503\) 32.0398i 1.42858i 0.699849 + 0.714291i \(0.253251\pi\)
−0.699849 + 0.714291i \(0.746749\pi\)
\(504\) 0 0
\(505\) 10.4114 + 28.1442i 0.463303 + 1.25240i
\(506\) 4.92881i 0.219112i
\(507\) 1.47004 + 0.420968i 0.0652867 + 0.0186958i
\(508\) 2.81855i 0.125053i
\(509\) −19.1493 −0.848778 −0.424389 0.905480i \(-0.639511\pi\)
−0.424389 + 0.905480i \(0.639511\pi\)
\(510\) −20.9254 + 1.58116i −0.926592 + 0.0700147i
\(511\) 0 0
\(512\) −15.8265 −0.699439
\(513\) 4.71559 4.25494i 0.208198 0.187860i
\(514\) 19.8883i 0.877235i
\(515\) −4.48948 12.1360i −0.197830 0.534775i
\(516\) −0.419977 + 1.46658i −0.0184885 + 0.0645625i
\(517\) −13.1082 −0.576499
\(518\) 0 0
\(519\) 4.76960 16.6557i 0.209362 0.731102i
\(520\) −6.97728 18.8610i −0.305974 0.827110i
\(521\) −3.88209 −0.170077 −0.0850387 0.996378i \(-0.527101\pi\)
−0.0850387 + 0.996378i \(0.527101\pi\)
\(522\) −14.3269 + 22.9637i −0.627072 + 1.00510i
\(523\) 2.12383 0.0928687 0.0464343 0.998921i \(-0.485214\pi\)
0.0464343 + 0.998921i \(0.485214\pi\)
\(524\) 2.78100 0.121488
\(525\) 0 0
\(526\) −26.8562 −1.17099
\(527\) −11.3631 −0.494986
\(528\) −4.61172 + 16.1043i −0.200700 + 0.700851i
\(529\) −20.7057 −0.900249
\(530\) 13.1918 + 35.6601i 0.573015 + 1.54898i
\(531\) 5.52156 + 3.44486i 0.239615 + 0.149494i
\(532\) 0 0
\(533\) 41.3138 1.78950
\(534\) 4.48922 + 1.28556i 0.194267 + 0.0556315i
\(535\) 3.01514 + 8.15055i 0.130356 + 0.352379i
\(536\) 26.6570i 1.15141i
\(537\) 7.72922 26.9908i 0.333541 1.16474i
\(538\) −6.67354 −0.287717
\(539\) 0 0
\(540\) −1.58616 + 3.02906i −0.0682573 + 0.130350i
\(541\) −15.1810 −0.652684 −0.326342 0.945252i \(-0.605816\pi\)
−0.326342 + 0.945252i \(0.605816\pi\)
\(542\) 35.7300i 1.53473i
\(543\) −9.25641 + 32.3238i −0.397231 + 1.38715i
\(544\) 5.90879i 0.253337i
\(545\) −4.04017 10.9214i −0.173062 0.467821i
\(546\) 0 0
\(547\) 11.7540i 0.502566i 0.967914 + 0.251283i \(0.0808525\pi\)
−0.967914 + 0.251283i \(0.919148\pi\)
\(548\) −3.15042 −0.134579
\(549\) −5.39707 + 8.65063i −0.230341 + 0.369200i
\(550\) −10.5886 12.3530i −0.451498 0.526733i
\(551\) −7.28081 −0.310173
\(552\) −6.51629 1.86604i −0.277352 0.0794239i
\(553\) 0 0
\(554\) 19.4362i 0.825763i
\(555\) 30.1369 2.27719i 1.27924 0.0966614i
\(556\) 1.20989i 0.0513108i
\(557\) 9.40270 0.398405 0.199203 0.979958i \(-0.436165\pi\)
0.199203 + 0.979958i \(0.436165\pi\)
\(558\) −7.64051 + 12.2465i −0.323449 + 0.518436i
\(559\) 10.4183i 0.440649i
\(560\) 0 0
\(561\) 12.7962 + 3.66440i 0.540258 + 0.154711i
\(562\) 32.1716i 1.35708i
\(563\) 19.5266i 0.822949i 0.911421 + 0.411475i \(0.134986\pi\)
−0.911421 + 0.411475i \(0.865014\pi\)
\(564\) 0.856203 2.98990i 0.0360526 0.125897i
\(565\) 7.26340 + 19.6344i 0.305573 + 0.826027i
\(566\) −9.92744 −0.417281
\(567\) 0 0
\(568\) 26.8615i 1.12708i
\(569\) 12.8982i 0.540722i 0.962759 + 0.270361i \(0.0871430\pi\)
−0.962759 + 0.270361i \(0.912857\pi\)
\(570\) −7.15032 + 0.540289i −0.299494 + 0.0226302i
\(571\) −41.6642 −1.74359 −0.871796 0.489869i \(-0.837045\pi\)
−0.871796 + 0.489869i \(0.837045\pi\)
\(572\) 2.20068i 0.0920151i
\(573\) −6.05758 + 21.1533i −0.253059 + 0.883692i
\(574\) 0 0
\(575\) 5.75012 4.92881i 0.239797 0.205545i
\(576\) 16.5492 + 10.3249i 0.689549 + 0.430205i
\(577\) −7.48978 −0.311804 −0.155902 0.987773i \(-0.549828\pi\)
−0.155902 + 0.987773i \(0.549828\pi\)
\(578\) 6.36739 0.264848
\(579\) 9.92744 34.6670i 0.412570 1.44071i
\(580\) 3.67605 1.35989i 0.152640 0.0564663i
\(581\) 0 0
\(582\) −3.34395 0.957590i −0.138611 0.0396934i
\(583\) 24.1169i 0.998819i
\(584\) −17.7123 −0.732939
\(585\) −4.71883 + 22.8693i −0.195100 + 0.945529i
\(586\) 5.63369i 0.232726i
\(587\) 22.1920i 0.915961i −0.888962 0.457981i \(-0.848573\pi\)
0.888962 0.457981i \(-0.151427\pi\)
\(588\) 0 0
\(589\) −3.88284 −0.159990
\(590\) −2.54922 6.89106i −0.104950 0.283701i
\(591\) −3.72097 1.06556i −0.153060 0.0438311i
\(592\) 35.1310i 1.44388i
\(593\) 6.31375i 0.259275i −0.991561 0.129637i \(-0.958619\pi\)
0.991561 0.129637i \(-0.0413813\pi\)
\(594\) 12.5534 11.3271i 0.515072 0.464757i
\(595\) 0 0
\(596\) 0.748572i 0.0306627i
\(597\) −11.8836 + 41.4982i −0.486365 + 1.69841i
\(598\) 7.98632 0.326585
\(599\) 20.6648i 0.844339i −0.906517 0.422170i \(-0.861269\pi\)
0.906517 0.422170i \(-0.138731\pi\)
\(600\) −20.3405 + 9.32212i −0.830397 + 0.380574i
\(601\) 12.5956i 0.513785i −0.966440 0.256892i \(-0.917301\pi\)
0.966440 0.256892i \(-0.0826986\pi\)
\(602\) 0 0
\(603\) 16.3841 26.2611i 0.667213 1.06943i
\(604\) −1.65360 −0.0672839
\(605\) −4.95339 13.3900i −0.201384 0.544381i
\(606\) 33.8474 + 9.69272i 1.37496 + 0.393740i
\(607\) 42.6766 1.73219 0.866095 0.499879i \(-0.166622\pi\)
0.866095 + 0.499879i \(0.166622\pi\)
\(608\) 2.01906i 0.0818838i
\(609\) 0 0
\(610\) 10.7962 3.99387i 0.437127 0.161707i
\(611\) 21.2397i 0.859268i
\(612\) −1.67165 + 2.67938i −0.0675724 + 0.108308i
\(613\) 5.32284i 0.214988i 0.994206 + 0.107494i \(0.0342826\pi\)
−0.994206 + 0.107494i \(0.965717\pi\)
\(614\) 16.9800 0.685255
\(615\) −3.46342 45.8358i −0.139659 1.84828i
\(616\) 0 0
\(617\) 30.1002 1.21179 0.605895 0.795545i \(-0.292815\pi\)
0.605895 + 0.795545i \(0.292815\pi\)
\(618\) −14.5952 4.17956i −0.587105 0.168127i
\(619\) 12.7323i 0.511753i 0.966710 + 0.255876i \(0.0823640\pi\)
−0.966710 + 0.255876i \(0.917636\pi\)
\(620\) 1.96043 0.725225i 0.0787328 0.0291258i
\(621\) 5.27259 + 5.84341i 0.211582 + 0.234488i
\(622\) 28.6594 1.14914
\(623\) 0 0
\(624\) −26.0944 7.47254i −1.04461 0.299141i
\(625\) 3.82288 24.7060i 0.152915 0.988239i
\(626\) −24.8113 −0.991659
\(627\) 4.37254 + 1.25214i 0.174623 + 0.0500058i
\(628\) −4.09753 −0.163509
\(629\) 27.9145 1.11303
\(630\) 0 0
\(631\) −17.4114 −0.693138 −0.346569 0.938024i \(-0.612653\pi\)
−0.346569 + 0.938024i \(0.612653\pi\)
\(632\) 4.86457 0.193502
\(633\) 11.0151 + 3.15435i 0.437811 + 0.125374i
\(634\) 15.3237 0.608581
\(635\) 20.0862 7.43053i 0.797098 0.294872i
\(636\) 5.50089 + 1.57526i 0.218125 + 0.0624633i
\(637\) 0 0
\(638\) −19.3823 −0.767353
\(639\) 16.5098 26.4625i 0.653118 1.04684i
\(640\) −10.2035 27.5821i −0.403328 1.09028i
\(641\) 1.31513i 0.0519444i −0.999663 0.0259722i \(-0.991732\pi\)
0.999663 0.0259722i \(-0.00826814\pi\)
\(642\) 9.80217 + 2.80700i 0.386861 + 0.110784i
\(643\) −39.2223 −1.54678 −0.773389 0.633932i \(-0.781440\pi\)
−0.773389 + 0.633932i \(0.781440\pi\)
\(644\) 0 0
\(645\) 11.5587 0.873390i 0.455121 0.0343897i
\(646\) −6.62304 −0.260580
\(647\) 6.23116i 0.244972i 0.992470 + 0.122486i \(0.0390867\pi\)
−0.992470 + 0.122486i \(0.960913\pi\)
\(648\) −10.2227 20.8850i −0.401584 0.820442i
\(649\) 4.66042i 0.182937i
\(650\) 20.0160 17.1570i 0.785092 0.672954i
\(651\) 0 0
\(652\) 1.19793i 0.0469144i
\(653\) −18.8618 −0.738120 −0.369060 0.929406i \(-0.620320\pi\)
−0.369060 + 0.929406i \(0.620320\pi\)
\(654\) −13.1345 3.76127i −0.513599 0.147077i
\(655\) −7.33152 19.8186i −0.286466 0.774377i
\(656\) 53.4314 2.08615
\(657\) 17.4492 + 10.8864i 0.680759 + 0.424721i
\(658\) 0 0
\(659\) 41.6170i 1.62117i −0.585622 0.810584i \(-0.699150\pi\)
0.585622 0.810584i \(-0.300850\pi\)
\(660\) −2.44155 + 0.184487i −0.0950373 + 0.00718116i
\(661\) 3.77854i 0.146968i 0.997296 + 0.0734842i \(0.0234118\pi\)
−0.997296 + 0.0734842i \(0.976588\pi\)
\(662\) 29.1963 1.13475
\(663\) −5.93756 + 20.7342i −0.230596 + 0.805250i
\(664\) 23.5236i 0.912894i
\(665\) 0 0
\(666\) 18.7696 30.0846i 0.727307 1.16576i
\(667\) 9.02216i 0.349339i
\(668\) 4.11175i 0.159088i
\(669\) 7.17712 + 2.05528i 0.277484 + 0.0794617i
\(670\) −32.7746 + 12.1244i −1.26619 + 0.468405i
\(671\) −7.30148 −0.281871
\(672\) 0 0
\(673\) 31.2573i 1.20488i −0.798163 0.602441i \(-0.794195\pi\)
0.798163 0.602441i \(-0.205805\pi\)
\(674\) 35.8043i 1.37913i
\(675\) 25.7680 + 3.31814i 0.991811 + 0.127715i
\(676\) −0.259803 −0.00999242
\(677\) 8.73789i 0.335824i −0.985802 0.167912i \(-0.946297\pi\)
0.985802 0.167912i \(-0.0537025\pi\)
\(678\) 23.6132 + 6.76199i 0.906858 + 0.259693i
\(679\) 0 0
\(680\) −19.3823 + 7.17013i −0.743278 + 0.274962i
\(681\) 5.29820 18.5015i 0.203027 0.708981i
\(682\) −10.3365 −0.395807
\(683\) 21.8692 0.836801 0.418401 0.908263i \(-0.362591\pi\)
0.418401 + 0.908263i \(0.362591\pi\)
\(684\) −0.571211 + 0.915559i −0.0218408 + 0.0350073i
\(685\) 8.30544 + 22.4513i 0.317334 + 0.857819i
\(686\) 0 0
\(687\) −4.75594 + 16.6079i −0.181450 + 0.633632i
\(688\) 13.4741i 0.513695i
\(689\) 39.0774 1.48873
\(690\) −0.669509 8.86045i −0.0254878 0.337312i
\(691\) 22.5359i 0.857306i −0.903469 0.428653i \(-0.858988\pi\)
0.903469 0.428653i \(-0.141012\pi\)
\(692\) 2.94359i 0.111898i
\(693\) 0 0
\(694\) 24.0944 0.914612
\(695\) −8.62221 + 3.18963i −0.327059 + 0.120989i
\(696\) −7.33811 + 25.6250i −0.278151 + 0.971313i
\(697\) 42.4557i 1.60813i
\(698\) 0.0291421i 0.00110305i
\(699\) 34.3493 + 9.83646i 1.29921 + 0.372049i
\(700\) 0 0
\(701\) 35.5019i 1.34089i −0.741960 0.670444i \(-0.766104\pi\)
0.741960 0.670444i \(-0.233896\pi\)
\(702\) 18.3537 + 20.3407i 0.692716 + 0.767711i
\(703\) 9.53855 0.359753
\(704\) 13.9682i 0.526445i
\(705\) −23.5645 + 1.78057i −0.887490 + 0.0670601i
\(706\) 38.5033i 1.44909i
\(707\) 0 0
\(708\) −1.06301 0.304409i −0.0399503 0.0114404i
\(709\) 4.06780 0.152769 0.0763847 0.997078i \(-0.475662\pi\)
0.0763847 + 0.997078i \(0.475662\pi\)
\(710\) −33.0260 + 12.2174i −1.23944 + 0.458510i
\(711\) −4.79232 2.98990i −0.179726 0.112130i
\(712\) 4.59867 0.172342
\(713\) 4.81149i 0.180192i
\(714\) 0 0
\(715\) −15.6830 + 5.80164i −0.586511 + 0.216969i
\(716\) 4.77014i 0.178268i
\(717\) 1.37019 4.78477i 0.0511708 0.178691i
\(718\) 36.6235i 1.36678i
\(719\) 30.5405 1.13897 0.569484 0.822002i \(-0.307143\pi\)
0.569484 + 0.822002i \(0.307143\pi\)
\(720\) −6.10289 + 29.5770i −0.227441 + 1.10227i
\(721\) 0 0
\(722\) 26.5159 0.986821
\(723\) 12.4321 43.4133i 0.462354 1.61456i
\(724\) 5.71265i 0.212309i
\(725\) −19.3823 22.6121i −0.719841 0.839792i
\(726\) −16.1034 4.61145i −0.597652 0.171147i
\(727\) 23.4181 0.868528 0.434264 0.900786i \(-0.357008\pi\)
0.434264 + 0.900786i \(0.357008\pi\)
\(728\) 0 0
\(729\) −2.76568 + 26.8580i −0.102433 + 0.994740i
\(730\) −8.05604 21.7771i −0.298168 0.806007i
\(731\) 10.7063 0.395986
\(732\) 0.476918 1.66542i 0.0176274 0.0615556i
\(733\) −16.8907 −0.623871 −0.311935 0.950103i \(-0.600977\pi\)
−0.311935 + 0.950103i \(0.600977\pi\)
\(734\) 13.7423 0.507239
\(735\) 0 0
\(736\) 2.50196 0.0922235
\(737\) 22.1654 0.816473
\(738\) −45.7563 28.5470i −1.68431 1.05083i
\(739\) 27.6642 1.01764 0.508822 0.860872i \(-0.330081\pi\)
0.508822 + 0.860872i \(0.330081\pi\)
\(740\) −4.81597 + 1.78158i −0.177039 + 0.0654922i
\(741\) −2.02890 + 7.08499i −0.0745333 + 0.260274i
\(742\) 0 0
\(743\) −40.1701 −1.47370 −0.736850 0.676056i \(-0.763688\pi\)
−0.736850 + 0.676056i \(0.763688\pi\)
\(744\) −3.91340 + 13.6658i −0.143472 + 0.501011i
\(745\) 5.33465 1.97346i 0.195446 0.0723018i
\(746\) 23.5741i 0.863109i
\(747\) 14.4583 23.1742i 0.529000 0.847901i
\(748\) −2.26151 −0.0826888
\(749\) 0 0
\(750\) −20.7129 20.7685i −0.756328 0.758359i
\(751\) −49.6376 −1.81130 −0.905650 0.424026i \(-0.860617\pi\)
−0.905650 + 0.424026i \(0.860617\pi\)
\(752\) 27.4695i 1.00171i
\(753\) −0.268284 0.0768272i −0.00977680 0.00279974i
\(754\) 31.4059i 1.14373i
\(755\) 4.35936 + 11.7842i 0.158654 + 0.428873i
\(756\) 0 0
\(757\) 47.7116i 1.73411i −0.498214 0.867054i \(-0.666011\pi\)
0.498214 0.867054i \(-0.333989\pi\)
\(758\) 51.6484 1.87595
\(759\) −1.55162 + 5.41832i −0.0563202 + 0.196672i
\(760\) −6.62304 + 2.45007i −0.240243 + 0.0888734i
\(761\) −19.8342 −0.718990 −0.359495 0.933147i \(-0.617051\pi\)
−0.359495 + 0.933147i \(0.617051\pi\)
\(762\) 6.91759 24.1565i 0.250598 0.875098i
\(763\) 0 0
\(764\) 3.73847i 0.135253i
\(765\) 23.5014 + 4.84925i 0.849695 + 0.175325i
\(766\) 16.0203i 0.578838i
\(767\) −7.55144 −0.272667
\(768\) −11.5182 3.29841i −0.415626 0.119021i
\(769\) 10.6337i 0.383461i −0.981448 0.191731i \(-0.938590\pi\)
0.981448 0.191731i \(-0.0614100\pi\)
\(770\) 0 0
\(771\) 6.26096 21.8635i 0.225483 0.787396i
\(772\) 6.12678i 0.220508i
\(773\) 14.3228i 0.515154i −0.966258 0.257577i \(-0.917076\pi\)
0.966258 0.257577i \(-0.0829240\pi\)
\(774\) 7.19886 11.5386i 0.258758 0.414747i
\(775\) −10.3365 12.0590i −0.371300 0.433171i
\(776\) −3.42548 −0.122967
\(777\) 0 0
\(778\) 25.6508i 0.919626i
\(779\) 14.5074i 0.519780i
\(780\) −0.298932 3.95613i −0.0107035 0.141652i
\(781\) 22.3354 0.799225
\(782\) 8.20706i 0.293484i
\(783\) 22.9789 20.7342i 0.821200 0.740980i
\(784\) 0 0
\(785\) 10.8023 + 29.2007i 0.385550 + 1.04222i
\(786\) −23.8346 6.82541i −0.850153 0.243454i
\(787\) 36.9341 1.31656 0.658280 0.752773i \(-0.271284\pi\)
0.658280 + 0.752773i \(0.271284\pi\)
\(788\) 0.657614 0.0234265
\(789\) 29.5235 + 8.45450i 1.05106 + 0.300988i
\(790\) 2.21254 + 5.98095i 0.0787188 + 0.212793i
\(791\) 0 0
\(792\) 8.81391 14.1273i 0.313189 0.501991i
\(793\) 11.8309i 0.420126i
\(794\) −0.617730 −0.0219224
\(795\) −3.27594 43.3546i −0.116186 1.53763i
\(796\) 7.33405i 0.259949i
\(797\) 37.4862i 1.32783i 0.747809 + 0.663914i \(0.231106\pi\)
−0.747809 + 0.663914i \(0.768894\pi\)
\(798\) 0 0
\(799\) −21.8268 −0.772177
\(800\) 6.27062 5.37496i 0.221700 0.190034i
\(801\) −4.53037 2.82647i −0.160073 0.0998683i
\(802\) 42.3789i 1.49645i
\(803\) 14.7278i 0.519734i
\(804\) −1.44780 + 5.05578i −0.0510599 + 0.178303i
\(805\) 0 0
\(806\) 16.7487i 0.589947i
\(807\) 7.33633 + 2.10087i 0.258251 + 0.0739542i
\(808\) 34.6726 1.21978
\(809\) 25.5786i 0.899297i −0.893206 0.449649i \(-0.851549\pi\)
0.893206 0.449649i \(-0.148451\pi\)
\(810\) 21.0285 22.0678i 0.738865 0.775383i
\(811\) 7.28791i 0.255913i 0.991780 + 0.127957i \(0.0408418\pi\)
−0.991780 + 0.127957i \(0.959158\pi\)
\(812\) 0 0
\(813\) −11.2480 + 39.2786i −0.394485 + 1.37756i
\(814\) 25.3926 0.890012
\(815\) 8.53694 3.15808i 0.299036 0.110623i
\(816\) −7.67908 + 26.8157i −0.268822 + 0.938736i
\(817\) 3.65840 0.127991
\(818\) 3.96956i 0.138792i
\(819\) 0 0
\(820\) 2.70964 + 7.32470i 0.0946247 + 0.255790i
\(821\) 0.00842044i 0.000293875i 1.00000 0.000146938i \(4.67717e-5\pi\)
−1.00000 0.000146938i \(0.999953\pi\)
\(822\) 27.0008 + 7.73210i 0.941761 + 0.269688i
\(823\) 31.2239i 1.08840i −0.838957 0.544198i \(-0.816834\pi\)
0.838957 0.544198i \(-0.183166\pi\)
\(824\) −14.9511 −0.520845
\(825\) 7.75138 + 16.9132i 0.269868 + 0.588842i
\(826\) 0 0
\(827\) −38.3189 −1.33248 −0.666239 0.745738i \(-0.732097\pi\)
−0.666239 + 0.745738i \(0.732097\pi\)
\(828\) −1.13453 0.707827i −0.0394277 0.0245987i
\(829\) 2.24176i 0.0778595i −0.999242 0.0389298i \(-0.987605\pi\)
0.999242 0.0389298i \(-0.0123949\pi\)
\(830\) −28.9221 + 10.6992i −1.00390 + 0.371375i
\(831\) −6.11862 + 21.3665i −0.212253 + 0.741195i
\(832\) −22.6331 −0.784663
\(833\) 0 0
\(834\) −2.96944 + 10.3694i −0.102823 + 0.359064i
\(835\) 29.3021 10.8398i 1.01404 0.375126i
\(836\) −0.772768 −0.0267268
\(837\) 12.2546 11.0575i 0.423581 0.382203i
\(838\) −12.7181 −0.439338
\(839\) 20.6544 0.713069 0.356535 0.934282i \(-0.383958\pi\)
0.356535 + 0.934282i \(0.383958\pi\)
\(840\) 0 0
\(841\) −6.47924 −0.223422
\(842\) −11.8896 −0.409742
\(843\) 10.1278 35.3668i 0.348820 1.21810i
\(844\) −1.94672 −0.0670090
\(845\) 0.684916 + 1.85147i 0.0235618 + 0.0636924i
\(846\) −14.6762 + 23.5236i −0.504579 + 0.808759i
\(847\) 0 0
\(848\) 50.5391 1.73552
\(849\) 10.9134 + 3.12522i 0.374547 + 0.107257i
\(850\) −17.6312 20.5692i −0.604747 0.705519i
\(851\) 11.8199i 0.405180i
\(852\) −1.45891 + 5.09456i −0.0499813 + 0.174537i
\(853\) 7.06831 0.242014 0.121007 0.992652i \(-0.461388\pi\)
0.121007 + 0.992652i \(0.461388\pi\)
\(854\) 0 0
\(855\) 8.03055 + 1.65702i 0.274639 + 0.0566687i
\(856\) 10.0412 0.343200
\(857\) 16.8332i 0.575012i 0.957779 + 0.287506i \(0.0928261\pi\)
−0.957779 + 0.287506i \(0.907174\pi\)
\(858\) −5.40114 + 18.8610i −0.184392 + 0.643904i
\(859\) 35.1835i 1.20045i 0.799832 + 0.600223i \(0.204922\pi\)
−0.799832 + 0.600223i \(0.795078\pi\)
\(860\) −1.84711 + 0.683304i −0.0629859 + 0.0233005i
\(861\) 0 0
\(862\) 18.5665i 0.632376i
\(863\) −37.9758 −1.29271 −0.646356 0.763036i \(-0.723708\pi\)
−0.646356 + 0.763036i \(0.723708\pi\)
\(864\) 5.74986 + 6.37236i 0.195614 + 0.216792i
\(865\) 20.9773 7.76016i 0.713249 0.263853i
\(866\) −7.78484 −0.264540
\(867\) −6.99977 2.00449i −0.237725 0.0680761i
\(868\) 0 0
\(869\) 4.04491i 0.137214i
\(870\) −34.8433 + 2.63282i −1.18130 + 0.0892608i
\(871\) 35.9154i 1.21695i
\(872\) −13.4547 −0.455635
\(873\) 3.37460 + 2.10539i 0.114213 + 0.0712566i
\(874\) 2.80440i 0.0948601i
\(875\) 0 0
\(876\) −3.35932 0.961992i −0.113501 0.0325027i
\(877\) 11.4496i 0.386626i 0.981137 + 0.193313i \(0.0619233\pi\)
−0.981137 + 0.193313i \(0.938077\pi\)
\(878\) 25.2942i 0.853638i
\(879\) −1.77352 + 6.19321i −0.0598194 + 0.208892i
\(880\) −20.2829 + 7.50329i −0.683737 + 0.252936i
\(881\) −23.6698 −0.797455 −0.398728 0.917069i \(-0.630548\pi\)
−0.398728 + 0.917069i \(0.630548\pi\)
\(882\) 0 0
\(883\) 16.8355i 0.566560i 0.959037 + 0.283280i \(0.0914226\pi\)
−0.959037 + 0.283280i \(0.908577\pi\)
\(884\) 3.66440i 0.123247i
\(885\) 0.633052 + 8.37797i 0.0212798 + 0.281622i
\(886\) 0.382035 0.0128347
\(887\) 52.5834i 1.76558i 0.469770 + 0.882789i \(0.344337\pi\)
−0.469770 + 0.882789i \(0.655663\pi\)
\(888\) 9.61362 33.5712i 0.322612 1.12657i
\(889\) 0 0
\(890\) 2.09160 + 5.65403i 0.0701107 + 0.189524i
\(891\) −17.3660 + 8.50018i −0.581783 + 0.284767i
\(892\) −1.26843 −0.0424701
\(893\) −7.45833 −0.249584
\(894\) 1.83722 6.41566i 0.0614460 0.214572i
\(895\) 33.9941 12.5755i 1.13630 0.420352i
\(896\) 0 0
\(897\) −8.77950 2.51414i −0.293139 0.0839448i
\(898\) 43.7305i 1.45931i
\(899\) −18.9210 −0.631050
\(900\) −4.36409 + 0.663301i −0.145470 + 0.0221100i
\(901\) 40.1575i 1.33784i
\(902\) 38.6201i 1.28591i
\(903\) 0 0
\(904\) 24.1889 0.804510
\(905\) −40.7108 + 15.0602i −1.35327 + 0.500619i
\(906\) 14.1722 + 4.05843i 0.470840 + 0.134832i
\(907\) 50.7715i 1.68584i 0.538038 + 0.842920i \(0.319166\pi\)
−0.538038 + 0.842920i \(0.680834\pi\)
\(908\) 3.26981i 0.108513i
\(909\) −34.1577 21.3107i −1.13294 0.706832i
\(910\) 0 0
\(911\) 16.1165i 0.533963i −0.963702 0.266981i \(-0.913974\pi\)
0.963702 0.266981i \(-0.0860262\pi\)
\(912\) −2.62398 + 9.16306i −0.0868887 + 0.303419i
\(913\) 19.5600 0.647341
\(914\) 36.4639i 1.20612i
\(915\) −13.1258 + 0.991804i −0.433925 + 0.0327880i
\(916\) 2.93515i 0.0969802i
\(917\) 0 0
\(918\) 20.9029 18.8610i 0.689900 0.622506i
\(919\) 39.7441 1.31104 0.655519 0.755179i \(-0.272450\pi\)
0.655519 + 0.755179i \(0.272450\pi\)
\(920\) −3.03605 8.20706i −0.100096 0.270579i
\(921\) −18.6663 5.34539i −0.615077 0.176137i
\(922\) 60.3920 1.98890
\(923\) 36.1909i 1.19124i
\(924\) 0 0
\(925\) 25.3926 + 29.6240i 0.834905 + 0.974030i
\(926\) 45.2008i 1.48539i
\(927\) 14.7290 + 9.18932i 0.483764 + 0.301817i
\(928\) 9.83885i 0.322976i
\(929\) −36.5187 −1.19814 −0.599069 0.800697i \(-0.704463\pi\)
−0.599069 + 0.800697i \(0.704463\pi\)
\(930\) −18.5819 + 1.40407i −0.609323 + 0.0460414i
\(931\) 0 0
\(932\) −6.07063 −0.198850
\(933\) −31.5058 9.02216i −1.03145 0.295372i
\(934\) 6.33388i 0.207251i
\(935\) 5.96199 + 16.1165i 0.194978 + 0.527065i
\(936\) 22.8909 + 14.2815i 0.748214 + 0.466805i
\(937\) 7.60980 0.248601 0.124301 0.992245i \(-0.460331\pi\)
0.124301 + 0.992245i \(0.460331\pi\)
\(938\) 0 0
\(939\) 27.2755 + 7.81075i 0.890102 + 0.254894i
\(940\) 3.76568 1.39304i 0.122823 0.0454361i
\(941\) −22.0242 −0.717969 −0.358985 0.933343i \(-0.616877\pi\)
−0.358985 + 0.933343i \(0.616877\pi\)
\(942\) 35.1180 + 10.0566i 1.14421 + 0.327661i
\(943\) 17.9771 0.585413
\(944\) −9.76632 −0.317867
\(945\) 0 0
\(946\) 9.73904 0.316644
\(947\) 49.2583 1.60068 0.800339 0.599547i \(-0.204653\pi\)
0.800339 + 0.599547i \(0.204653\pi\)
\(948\) 0.922616 + 0.264205i 0.0299652 + 0.00858099i
\(949\) −23.8640 −0.774660
\(950\) −6.02469 7.02861i −0.195467 0.228038i
\(951\) −16.8456 4.82399i −0.546255 0.156429i
\(952\) 0 0
\(953\) 10.2538 0.332154 0.166077 0.986113i \(-0.446890\pi\)
0.166077 + 0.986113i \(0.446890\pi\)
\(954\) −43.2794 27.0017i −1.40122 0.874213i
\(955\) −26.6419 + 9.85570i −0.862113 + 0.318923i
\(956\) 0.845623i 0.0273494i
\(957\) 21.3073 + 6.10167i 0.688767 + 0.197239i
\(958\) 42.3131 1.36708
\(959\) 0 0
\(960\) 1.89738 + 25.1104i 0.0612377 + 0.810435i
\(961\) 20.9095 0.674499
\(962\) 41.1446i 1.32656i
\(963\) −9.89203 6.17157i −0.318766 0.198876i
\(964\) 7.67253i 0.247115i
\(965\) 43.6621 16.1520i 1.40553 0.519951i
\(966\) 0 0
\(967\) 4.62632i 0.148772i −0.997230 0.0743862i \(-0.976300\pi\)
0.997230 0.0743862i \(-0.0236998\pi\)
\(968\) −16.4960 −0.530201
\(969\) 7.28081 + 2.08497i 0.233893 + 0.0669790i
\(970\) −1.55800 4.21160i −0.0500245 0.135226i
\(971\) −25.2886 −0.811549 −0.405775 0.913973i \(-0.632998\pi\)
−0.405775 + 0.913973i \(0.632998\pi\)
\(972\) −0.804521 4.51628i −0.0258050 0.144860i
\(973\) 0 0
\(974\) 56.4119i 1.80755i
\(975\) −27.4051 + 12.5598i −0.877664 + 0.402237i
\(976\) 15.3009i 0.489770i
\(977\) −24.1098 −0.771340 −0.385670 0.922637i \(-0.626030\pi\)
−0.385670 + 0.922637i \(0.626030\pi\)
\(978\) 2.94008 10.2669i 0.0940133 0.328298i
\(979\) 3.82381i 0.122210i
\(980\) 0 0
\(981\) 13.2549 + 8.26964i 0.423196 + 0.264029i
\(982\) 8.94533i 0.285457i
\(983\) 48.0882i 1.53378i 0.641781 + 0.766888i \(0.278196\pi\)
−0.641781 + 0.766888i \(0.721804\pi\)
\(984\) −51.0590 14.6215i −1.62770 0.466117i
\(985\) −1.73366 4.68644i −0.0552391 0.149323i
\(986\) −32.2739 −1.02781
\(987\) 0 0
\(988\) 1.25214i 0.0398360i
\(989\) 4.53337i 0.144153i
\(990\) 21.3782 + 4.41115i 0.679443 + 0.140196i
\(991\) 29.7175 0.944007 0.472003 0.881597i \(-0.343531\pi\)
0.472003 + 0.881597i \(0.343531\pi\)
\(992\) 5.24703i 0.166593i
\(993\) −32.0960 9.19119i −1.01854 0.291674i
\(994\) 0 0
\(995\) −52.2656 + 19.3347i −1.65693 + 0.612952i
\(996\) −1.27762 + 4.46150i −0.0404829 + 0.141368i
\(997\) −26.7483 −0.847128 −0.423564 0.905866i \(-0.639221\pi\)
−0.423564 + 0.905866i \(0.639221\pi\)
\(998\) −28.3856 −0.898529
\(999\) −30.1046 + 27.1638i −0.952466 + 0.859423i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 735.2.g.b.734.17 24
3.2 odd 2 inner 735.2.g.b.734.6 24
5.4 even 2 inner 735.2.g.b.734.8 24
7.2 even 3 735.2.p.f.374.4 24
7.3 odd 6 735.2.p.f.509.3 24
7.4 even 3 105.2.p.a.89.4 yes 24
7.5 odd 6 105.2.p.a.59.3 24
7.6 odd 2 inner 735.2.g.b.734.20 24
15.14 odd 2 inner 735.2.g.b.734.19 24
21.2 odd 6 735.2.p.f.374.10 24
21.5 even 6 105.2.p.a.59.9 yes 24
21.11 odd 6 105.2.p.a.89.10 yes 24
21.17 even 6 735.2.p.f.509.9 24
21.20 even 2 inner 735.2.g.b.734.7 24
35.4 even 6 105.2.p.a.89.9 yes 24
35.9 even 6 735.2.p.f.374.9 24
35.12 even 12 525.2.t.j.101.10 24
35.18 odd 12 525.2.t.j.26.9 24
35.19 odd 6 105.2.p.a.59.10 yes 24
35.24 odd 6 735.2.p.f.509.10 24
35.32 odd 12 525.2.t.j.26.4 24
35.33 even 12 525.2.t.j.101.3 24
35.34 odd 2 inner 735.2.g.b.734.5 24
105.32 even 12 525.2.t.j.26.10 24
105.44 odd 6 735.2.p.f.374.3 24
105.47 odd 12 525.2.t.j.101.4 24
105.53 even 12 525.2.t.j.26.3 24
105.59 even 6 735.2.p.f.509.4 24
105.68 odd 12 525.2.t.j.101.9 24
105.74 odd 6 105.2.p.a.89.3 yes 24
105.89 even 6 105.2.p.a.59.4 yes 24
105.104 even 2 inner 735.2.g.b.734.18 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
105.2.p.a.59.3 24 7.5 odd 6
105.2.p.a.59.4 yes 24 105.89 even 6
105.2.p.a.59.9 yes 24 21.5 even 6
105.2.p.a.59.10 yes 24 35.19 odd 6
105.2.p.a.89.3 yes 24 105.74 odd 6
105.2.p.a.89.4 yes 24 7.4 even 3
105.2.p.a.89.9 yes 24 35.4 even 6
105.2.p.a.89.10 yes 24 21.11 odd 6
525.2.t.j.26.3 24 105.53 even 12
525.2.t.j.26.4 24 35.32 odd 12
525.2.t.j.26.9 24 35.18 odd 12
525.2.t.j.26.10 24 105.32 even 12
525.2.t.j.101.3 24 35.33 even 12
525.2.t.j.101.4 24 105.47 odd 12
525.2.t.j.101.9 24 105.68 odd 12
525.2.t.j.101.10 24 35.12 even 12
735.2.g.b.734.5 24 35.34 odd 2 inner
735.2.g.b.734.6 24 3.2 odd 2 inner
735.2.g.b.734.7 24 21.20 even 2 inner
735.2.g.b.734.8 24 5.4 even 2 inner
735.2.g.b.734.17 24 1.1 even 1 trivial
735.2.g.b.734.18 24 105.104 even 2 inner
735.2.g.b.734.19 24 15.14 odd 2 inner
735.2.g.b.734.20 24 7.6 odd 2 inner
735.2.p.f.374.3 24 105.44 odd 6
735.2.p.f.374.4 24 7.2 even 3
735.2.p.f.374.9 24 35.9 even 6
735.2.p.f.374.10 24 21.2 odd 6
735.2.p.f.509.3 24 7.3 odd 6
735.2.p.f.509.4 24 105.59 even 6
735.2.p.f.509.9 24 21.17 even 6
735.2.p.f.509.10 24 35.24 odd 6