Properties

Label 735.2.d.b
Level $735$
Weight $2$
Character orbit 735.d
Analytic conductor $5.869$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 735 = 3 \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 735.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(5.86900454856\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.350464.1
Defining polynomial: \(x^{6} - 2 x^{5} + 2 x^{4} + 2 x^{3} + 4 x^{2} - 4 x + 2\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 105)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q -\beta_{1} q^{2} -\beta_{4} q^{3} + ( -1 + \beta_{3} + \beta_{5} ) q^{4} + ( \beta_{1} + \beta_{5} ) q^{5} -\beta_{2} q^{6} + ( \beta_{1} + \beta_{3} - 2 \beta_{4} - \beta_{5} ) q^{8} - q^{9} +O(q^{10})\) \( q -\beta_{1} q^{2} -\beta_{4} q^{3} + ( -1 + \beta_{3} + \beta_{5} ) q^{4} + ( \beta_{1} + \beta_{5} ) q^{5} -\beta_{2} q^{6} + ( \beta_{1} + \beta_{3} - 2 \beta_{4} - \beta_{5} ) q^{8} - q^{9} + ( 2 + \beta_{1} + \beta_{2} - \beta_{4} - \beta_{5} ) q^{10} + 2 q^{11} + ( -\beta_{3} + \beta_{4} + \beta_{5} ) q^{12} + ( -2 \beta_{1} + \beta_{3} - 2 \beta_{4} - \beta_{5} ) q^{13} + ( \beta_{2} - \beta_{3} ) q^{15} + ( 3 - 4 \beta_{2} ) q^{16} + ( -2 \beta_{1} + \beta_{3} - \beta_{5} ) q^{17} + \beta_{1} q^{18} + ( 2 - 2 \beta_{2} + \beta_{3} + \beta_{5} ) q^{19} + ( 4 - \beta_{1} - 2 \beta_{2} - \beta_{3} - 2 \beta_{4} ) q^{20} -2 \beta_{1} q^{22} + ( -\beta_{3} - 2 \beta_{4} + \beta_{5} ) q^{23} + ( -2 + \beta_{2} + \beta_{3} + \beta_{5} ) q^{24} + ( -1 - 2 \beta_{2} - \beta_{3} - 2 \beta_{4} + \beta_{5} ) q^{25} + ( -4 - 4 \beta_{2} + \beta_{3} + \beta_{5} ) q^{26} + \beta_{4} q^{27} + ( -2 - 2 \beta_{3} - 2 \beta_{5} ) q^{29} + ( -1 - \beta_{1} + \beta_{2} + \beta_{3} - 2 \beta_{4} ) q^{30} + ( -2 - 2 \beta_{2} - \beta_{3} - \beta_{5} ) q^{31} + ( -\beta_{1} - 2 \beta_{3} + 8 \beta_{4} + 2 \beta_{5} ) q^{32} -2 \beta_{4} q^{33} + ( -4 - 2 \beta_{2} + \beta_{3} + \beta_{5} ) q^{34} + ( 1 - \beta_{3} - \beta_{5} ) q^{36} + 4 \beta_{1} q^{37} + ( -\beta_{3} + 4 \beta_{4} + \beta_{5} ) q^{38} + ( -2 - 2 \beta_{2} + \beta_{3} + \beta_{5} ) q^{39} + ( -3 \beta_{1} + \beta_{2} - \beta_{3} + 5 \beta_{4} + 2 \beta_{5} ) q^{40} + ( 4 \beta_{2} - \beta_{3} - \beta_{5} ) q^{41} + ( -4 \beta_{1} + 4 \beta_{3} - 4 \beta_{5} ) q^{43} + ( -2 + 2 \beta_{3} + 2 \beta_{5} ) q^{44} + ( -\beta_{1} - \beta_{5} ) q^{45} + ( -2 + \beta_{3} + \beta_{5} ) q^{46} + ( -2 \beta_{3} - 4 \beta_{4} + 2 \beta_{5} ) q^{47} + ( 4 \beta_{1} - 3 \beta_{4} ) q^{48} + ( -2 + \beta_{1} - \beta_{3} + 6 \beta_{4} + 3 \beta_{5} ) q^{50} + ( -2 \beta_{2} + \beta_{3} + \beta_{5} ) q^{51} + ( 2 \beta_{1} - \beta_{3} + 6 \beta_{4} + \beta_{5} ) q^{52} + ( -2 \beta_{1} - \beta_{3} - 6 \beta_{4} + \beta_{5} ) q^{53} + \beta_{2} q^{54} + ( 2 \beta_{1} + 2 \beta_{5} ) q^{55} + ( 2 \beta_{1} - \beta_{3} - 2 \beta_{4} + \beta_{5} ) q^{57} + ( -2 \beta_{1} - 2 \beta_{3} + 4 \beta_{4} + 2 \beta_{5} ) q^{58} + ( 4 + 4 \beta_{2} - 4 \beta_{3} - 4 \beta_{5} ) q^{59} + ( -2 + 2 \beta_{1} - \beta_{2} - 4 \beta_{4} - \beta_{5} ) q^{60} + ( 2 - 4 \beta_{2} + 2 \beta_{3} + 2 \beta_{5} ) q^{61} + ( -3 \beta_{3} + 8 \beta_{4} + 3 \beta_{5} ) q^{62} + ( -1 + 4 \beta_{2} + 3 \beta_{3} + 3 \beta_{5} ) q^{64} + ( 6 + 4 \beta_{2} - \beta_{3} + 2 \beta_{4} - \beta_{5} ) q^{65} -2 \beta_{2} q^{66} + ( 2 \beta_{3} + 4 \beta_{4} - 2 \beta_{5} ) q^{67} + ( 2 \beta_{1} + \beta_{3} + 4 \beta_{4} - \beta_{5} ) q^{68} + ( -2 - \beta_{3} - \beta_{5} ) q^{69} + 2 q^{71} + ( -\beta_{1} - \beta_{3} + 2 \beta_{4} + \beta_{5} ) q^{72} + ( 2 \beta_{1} - \beta_{3} - 6 \beta_{4} + \beta_{5} ) q^{73} + ( 12 - 4 \beta_{3} - 4 \beta_{5} ) q^{74} + ( -2 + 2 \beta_{1} - \beta_{3} + \beta_{4} - \beta_{5} ) q^{75} + ( 2 + 2 \beta_{2} + 3 \beta_{3} + 3 \beta_{5} ) q^{76} + ( 4 \beta_{1} - \beta_{3} + 4 \beta_{4} + \beta_{5} ) q^{78} + ( -4 + 4 \beta_{2} - 2 \beta_{3} - 2 \beta_{5} ) q^{79} + ( -4 - \beta_{1} + 4 \beta_{2} + 4 \beta_{3} - 8 \beta_{4} + 3 \beta_{5} ) q^{80} + q^{81} + ( -2 \beta_{1} + 3 \beta_{3} - 10 \beta_{4} - 3 \beta_{5} ) q^{82} + ( 4 \beta_{1} + 4 \beta_{4} ) q^{83} + ( 6 + 2 \beta_{2} + \beta_{3} + 2 \beta_{4} - \beta_{5} ) q^{85} + ( -4 - 8 \beta_{2} ) q^{86} + ( 2 \beta_{3} + 2 \beta_{4} - 2 \beta_{5} ) q^{87} + ( 2 \beta_{1} + 2 \beta_{3} - 4 \beta_{4} - 2 \beta_{5} ) q^{88} + ( 4 - \beta_{3} - \beta_{5} ) q^{89} + ( -2 - \beta_{1} - \beta_{2} + \beta_{4} + \beta_{5} ) q^{90} + ( 4 \beta_{1} - \beta_{3} - 6 \beta_{4} + \beta_{5} ) q^{92} + ( 2 \beta_{1} + \beta_{3} + 2 \beta_{4} - \beta_{5} ) q^{93} + ( -4 + 2 \beta_{3} + 2 \beta_{5} ) q^{94} + ( 2 + \beta_{3} - 6 \beta_{4} + 3 \beta_{5} ) q^{95} + ( 8 - \beta_{2} - 2 \beta_{3} - 2 \beta_{5} ) q^{96} + ( 2 \beta_{1} + 3 \beta_{3} + 10 \beta_{4} - 3 \beta_{5} ) q^{97} -2 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 10 q^{4} - 2 q^{5} + 2 q^{6} - 6 q^{9} + O(q^{10}) \) \( 6 q - 10 q^{4} - 2 q^{5} + 2 q^{6} - 6 q^{9} + 12 q^{10} + 12 q^{11} + 26 q^{16} + 12 q^{19} + 30 q^{20} - 18 q^{24} - 2 q^{25} - 20 q^{26} - 4 q^{29} - 10 q^{30} - 4 q^{31} - 24 q^{34} + 10 q^{36} - 12 q^{39} - 4 q^{40} - 4 q^{41} - 20 q^{44} + 2 q^{45} - 16 q^{46} - 16 q^{50} - 2 q^{54} - 4 q^{55} + 32 q^{59} - 8 q^{60} + 12 q^{61} - 26 q^{64} + 32 q^{65} + 4 q^{66} - 8 q^{69} + 12 q^{71} + 88 q^{74} - 8 q^{75} - 4 q^{76} - 24 q^{79} - 46 q^{80} + 6 q^{81} + 32 q^{85} - 8 q^{86} + 28 q^{89} - 12 q^{90} - 32 q^{94} + 4 q^{95} + 58 q^{96} - 12 q^{99} + O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{6} - 2 x^{5} + 2 x^{4} + 2 x^{3} + 4 x^{2} - 4 x + 2\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\((\)\( -3 \nu^{5} + \nu^{4} + 11 \nu^{3} - 26 \nu^{2} + 6 \nu - 1 \)\()/23\)
\(\beta_{2}\)\(=\)\((\)\( -4 \nu^{5} + 9 \nu^{4} - 16 \nu^{3} - 4 \nu^{2} + 8 \nu - 9 \)\()/23\)
\(\beta_{3}\)\(=\)\((\)\( 6 \nu^{5} - 2 \nu^{4} + \nu^{3} + 6 \nu^{2} + 80 \nu + 2 \)\()/23\)
\(\beta_{4}\)\(=\)\((\)\( 7 \nu^{5} - 10 \nu^{4} + 5 \nu^{3} + 30 \nu^{2} + 32 \nu - 13 \)\()/23\)
\(\beta_{5}\)\(=\)\((\)\( -16 \nu^{5} + 36 \nu^{4} - 41 \nu^{3} - 16 \nu^{2} - 60 \nu + 56 \)\()/23\)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\((\)\(\beta_{4} + \beta_{2} + \beta_{1} + 1\)\()/2\)
\(\nu^{2}\)\(=\)\((\)\(\beta_{5} + 4 \beta_{4} - \beta_{3} + 2 \beta_{1}\)\()/2\)
\(\nu^{3}\)\(=\)\(\beta_{5} + 2 \beta_{4} - 2 \beta_{2} + 2 \beta_{1} - 2\)
\(\nu^{4}\)\(=\)\(2 \beta_{5} + 2 \beta_{3} - 5 \beta_{2} - 7\)
\(\nu^{5}\)\(=\)\(-9 \beta_{4} + 5 \beta_{3} - 8 \beta_{2} - 8 \beta_{1} - 9\)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/735\mathbb{Z}\right)^\times\).

\(n\) \(346\) \(442\) \(491\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
589.1
−0.854638 + 0.854638i
1.45161 + 1.45161i
0.403032 0.403032i
0.403032 + 0.403032i
1.45161 1.45161i
−0.854638 0.854638i
2.70928i 1.00000i −5.34017 −2.17009 + 0.539189i 2.70928 0 9.04945i −1.00000 1.46081 + 5.87936i
589.2 1.90321i 1.00000i −1.62222 −0.311108 + 2.21432i −1.90321 0 0.719004i −1.00000 4.21432 + 0.592104i
589.3 0.193937i 1.00000i 1.96239 1.48119 + 1.67513i 0.193937 0 0.768452i −1.00000 0.324869 0.287258i
589.4 0.193937i 1.00000i 1.96239 1.48119 1.67513i 0.193937 0 0.768452i −1.00000 0.324869 + 0.287258i
589.5 1.90321i 1.00000i −1.62222 −0.311108 2.21432i −1.90321 0 0.719004i −1.00000 4.21432 0.592104i
589.6 2.70928i 1.00000i −5.34017 −2.17009 0.539189i 2.70928 0 9.04945i −1.00000 1.46081 5.87936i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 589.6
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 735.2.d.b 6
3.b odd 2 1 2205.2.d.l 6
5.b even 2 1 inner 735.2.d.b 6
5.c odd 4 1 3675.2.a.bi 3
5.c odd 4 1 3675.2.a.bj 3
7.b odd 2 1 105.2.d.b 6
7.c even 3 2 735.2.q.f 12
7.d odd 6 2 735.2.q.e 12
15.d odd 2 1 2205.2.d.l 6
21.c even 2 1 315.2.d.e 6
28.d even 2 1 1680.2.t.k 6
35.c odd 2 1 105.2.d.b 6
35.f even 4 1 525.2.a.j 3
35.f even 4 1 525.2.a.k 3
35.i odd 6 2 735.2.q.e 12
35.j even 6 2 735.2.q.f 12
84.h odd 2 1 5040.2.t.v 6
105.g even 2 1 315.2.d.e 6
105.k odd 4 1 1575.2.a.w 3
105.k odd 4 1 1575.2.a.x 3
140.c even 2 1 1680.2.t.k 6
140.j odd 4 1 8400.2.a.dg 3
140.j odd 4 1 8400.2.a.dj 3
420.o odd 2 1 5040.2.t.v 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
105.2.d.b 6 7.b odd 2 1
105.2.d.b 6 35.c odd 2 1
315.2.d.e 6 21.c even 2 1
315.2.d.e 6 105.g even 2 1
525.2.a.j 3 35.f even 4 1
525.2.a.k 3 35.f even 4 1
735.2.d.b 6 1.a even 1 1 trivial
735.2.d.b 6 5.b even 2 1 inner
735.2.q.e 12 7.d odd 6 2
735.2.q.e 12 35.i odd 6 2
735.2.q.f 12 7.c even 3 2
735.2.q.f 12 35.j even 6 2
1575.2.a.w 3 105.k odd 4 1
1575.2.a.x 3 105.k odd 4 1
1680.2.t.k 6 28.d even 2 1
1680.2.t.k 6 140.c even 2 1
2205.2.d.l 6 3.b odd 2 1
2205.2.d.l 6 15.d odd 2 1
3675.2.a.bi 3 5.c odd 4 1
3675.2.a.bj 3 5.c odd 4 1
5040.2.t.v 6 84.h odd 2 1
5040.2.t.v 6 420.o odd 2 1
8400.2.a.dg 3 140.j odd 4 1
8400.2.a.dj 3 140.j odd 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(735, [\chi])\):

\( T_{2}^{6} + 11 T_{2}^{4} + 27 T_{2}^{2} + 1 \)
\( T_{19}^{3} - 6 T_{19}^{2} - 4 T_{19} + 40 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( 1 + 27 T^{2} + 11 T^{4} + T^{6} \)
$3$ \( ( 1 + T^{2} )^{3} \)
$5$ \( 125 + 50 T + 15 T^{2} + 12 T^{3} + 3 T^{4} + 2 T^{5} + T^{6} \)
$7$ \( T^{6} \)
$11$ \( ( -2 + T )^{6} \)
$13$ \( 64 + 112 T^{2} + 44 T^{4} + T^{6} \)
$17$ \( 256 + 256 T^{2} + 32 T^{4} + T^{6} \)
$19$ \( ( 40 - 4 T - 6 T^{2} + T^{3} )^{2} \)
$23$ \( 256 + 192 T^{2} + 32 T^{4} + T^{6} \)
$29$ \( ( -40 - 52 T + 2 T^{2} + T^{3} )^{2} \)
$31$ \( ( -184 - 52 T + 2 T^{2} + T^{3} )^{2} \)
$37$ \( 4096 + 6912 T^{2} + 176 T^{4} + T^{6} \)
$41$ \( ( -200 - 60 T + 2 T^{2} + T^{3} )^{2} \)
$43$ \( 692224 + 27392 T^{2} + 304 T^{4} + T^{6} \)
$47$ \( 16384 + 3072 T^{2} + 128 T^{4} + T^{6} \)
$53$ \( 87616 + 8432 T^{2} + 172 T^{4} + T^{6} \)
$59$ \( ( 1280 - 64 T - 16 T^{2} + T^{3} )^{2} \)
$61$ \( ( 248 - 52 T - 6 T^{2} + T^{3} )^{2} \)
$67$ \( 16384 + 3072 T^{2} + 128 T^{4} + T^{6} \)
$71$ \( ( -2 + T )^{6} \)
$73$ \( 10816 + 4720 T^{2} + 140 T^{4} + T^{6} \)
$79$ \( ( -320 - 16 T + 12 T^{2} + T^{3} )^{2} \)
$83$ \( 65536 + 8192 T^{2} + 192 T^{4} + T^{6} \)
$89$ \( ( -40 + 52 T - 14 T^{2} + T^{3} )^{2} \)
$97$ \( 3474496 + 83312 T^{2} + 556 T^{4} + T^{6} \)
show more
show less