Properties

Label 735.2.d
Level $735$
Weight $2$
Character orbit 735.d
Rep. character $\chi_{735}(589,\cdot)$
Character field $\Q$
Dimension $40$
Newform subspaces $6$
Sturm bound $224$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 735 = 3 \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 735.d (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 5 \)
Character field: \(\Q\)
Newform subspaces: \( 6 \)
Sturm bound: \(224\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(2\), \(19\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(735, [\chi])\).

Total New Old
Modular forms 128 40 88
Cusp forms 96 40 56
Eisenstein series 32 0 32

Trace form

\( 40 q - 40 q^{4} - 4 q^{5} + 4 q^{6} - 40 q^{9} + 8 q^{10} - 4 q^{15} + 24 q^{16} + 28 q^{20} - 12 q^{24} + 8 q^{25} - 24 q^{26} - 8 q^{29} + 8 q^{30} + 16 q^{31} - 32 q^{34} + 40 q^{36} + 8 q^{39} - 16 q^{40}+ \cdots + 68 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(735, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
735.2.d.a 735.d 5.b $2$ $5.869$ \(\Q(\sqrt{-1}) \) None 105.2.d.a \(0\) \(0\) \(-2\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+i q^{2}-i q^{3}+q^{4}+(2 i-1)q^{5}+\cdots\)
735.2.d.b 735.d 5.b $6$ $5.869$ 6.0.350464.1 None 105.2.d.b \(0\) \(0\) \(-2\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{1}q^{2}-\beta _{4}q^{3}+(-1+\beta _{3}+\beta _{5})q^{4}+\cdots\)
735.2.d.c 735.d 5.b $8$ $5.869$ 8.0.309760000.3 None 735.2.d.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{5}q^{2}-\beta _{4}q^{3}+(-2+\beta _{6}-\beta _{7})q^{4}+\cdots\)
735.2.d.d 735.d 5.b $8$ $5.869$ 8.0.2058981376.2 None 105.2.q.a \(0\) \(0\) \(-2\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{6}q^{2}-\beta _{4}q^{3}+(-1+\beta _{1}+\beta _{3}+\cdots)q^{4}+\cdots\)
735.2.d.e 735.d 5.b $8$ $5.869$ 8.0.2058981376.2 None 105.2.q.a \(0\) \(0\) \(2\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{6}q^{2}+\beta _{4}q^{3}+(-1+\beta _{1}+\beta _{3}+\cdots)q^{4}+\cdots\)
735.2.d.f 735.d 5.b $8$ $5.869$ \(\Q(\zeta_{24})\) None 735.2.d.f \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta_{4} q^{2}+\beta_1 q^{3}+\beta_{3} q^{4}+(\beta_{6}+\beta_{5}-\beta_{2})q^{5}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(735, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(735, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(35, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(105, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(245, [\chi])\)\(^{\oplus 2}\)