Properties

Label 735.2.a.f
Level $735$
Weight $2$
Character orbit 735.a
Self dual yes
Analytic conductor $5.869$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [735,2,Mod(1,735)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(735, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("735.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 735 = 3 \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 735.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(5.86900454856\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 105)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + q^{2} - q^{3} - q^{4} - q^{5} - q^{6} - 3 q^{8} + q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + q^{2} - q^{3} - q^{4} - q^{5} - q^{6} - 3 q^{8} + q^{9} - q^{10} + q^{12} + 6 q^{13} + q^{15} - q^{16} - 2 q^{17} + q^{18} + 8 q^{19} + q^{20} + 8 q^{23} + 3 q^{24} + q^{25} + 6 q^{26} - q^{27} - 2 q^{29} + q^{30} - 4 q^{31} + 5 q^{32} - 2 q^{34} - q^{36} - 2 q^{37} + 8 q^{38} - 6 q^{39} + 3 q^{40} + 6 q^{41} + 4 q^{43} - q^{45} + 8 q^{46} - 8 q^{47} + q^{48} + q^{50} + 2 q^{51} - 6 q^{52} + 10 q^{53} - q^{54} - 8 q^{57} - 2 q^{58} - 4 q^{59} - q^{60} + 2 q^{61} - 4 q^{62} + 7 q^{64} - 6 q^{65} + 4 q^{67} + 2 q^{68} - 8 q^{69} - 12 q^{71} - 3 q^{72} + 2 q^{73} - 2 q^{74} - q^{75} - 8 q^{76} - 6 q^{78} + 8 q^{79} + q^{80} + q^{81} + 6 q^{82} + 4 q^{83} + 2 q^{85} + 4 q^{86} + 2 q^{87} + 6 q^{89} - q^{90} - 8 q^{92} + 4 q^{93} - 8 q^{94} - 8 q^{95} - 5 q^{96} + 18 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
1.00000 −1.00000 −1.00000 −1.00000 −1.00000 0 −3.00000 1.00000 −1.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)
\(5\) \( +1 \)
\(7\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 735.2.a.f 1
3.b odd 2 1 2205.2.a.b 1
5.b even 2 1 3675.2.a.f 1
7.b odd 2 1 105.2.a.a 1
7.c even 3 2 735.2.i.b 2
7.d odd 6 2 735.2.i.a 2
21.c even 2 1 315.2.a.a 1
28.d even 2 1 1680.2.a.f 1
35.c odd 2 1 525.2.a.a 1
35.f even 4 2 525.2.d.b 2
56.e even 2 1 6720.2.a.bk 1
56.h odd 2 1 6720.2.a.p 1
84.h odd 2 1 5040.2.a.d 1
105.g even 2 1 1575.2.a.h 1
105.k odd 4 2 1575.2.d.b 2
140.c even 2 1 8400.2.a.co 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
105.2.a.a 1 7.b odd 2 1
315.2.a.a 1 21.c even 2 1
525.2.a.a 1 35.c odd 2 1
525.2.d.b 2 35.f even 4 2
735.2.a.f 1 1.a even 1 1 trivial
735.2.i.a 2 7.d odd 6 2
735.2.i.b 2 7.c even 3 2
1575.2.a.h 1 105.g even 2 1
1575.2.d.b 2 105.k odd 4 2
1680.2.a.f 1 28.d even 2 1
2205.2.a.b 1 3.b odd 2 1
3675.2.a.f 1 5.b even 2 1
5040.2.a.d 1 84.h odd 2 1
6720.2.a.p 1 56.h odd 2 1
6720.2.a.bk 1 56.e even 2 1
8400.2.a.co 1 140.c even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(735))\):

\( T_{2} - 1 \) Copy content Toggle raw display
\( T_{13} - 6 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T - 1 \) Copy content Toggle raw display
$3$ \( T + 1 \) Copy content Toggle raw display
$5$ \( T + 1 \) Copy content Toggle raw display
$7$ \( T \) Copy content Toggle raw display
$11$ \( T \) Copy content Toggle raw display
$13$ \( T - 6 \) Copy content Toggle raw display
$17$ \( T + 2 \) Copy content Toggle raw display
$19$ \( T - 8 \) Copy content Toggle raw display
$23$ \( T - 8 \) Copy content Toggle raw display
$29$ \( T + 2 \) Copy content Toggle raw display
$31$ \( T + 4 \) Copy content Toggle raw display
$37$ \( T + 2 \) Copy content Toggle raw display
$41$ \( T - 6 \) Copy content Toggle raw display
$43$ \( T - 4 \) Copy content Toggle raw display
$47$ \( T + 8 \) Copy content Toggle raw display
$53$ \( T - 10 \) Copy content Toggle raw display
$59$ \( T + 4 \) Copy content Toggle raw display
$61$ \( T - 2 \) Copy content Toggle raw display
$67$ \( T - 4 \) Copy content Toggle raw display
$71$ \( T + 12 \) Copy content Toggle raw display
$73$ \( T - 2 \) Copy content Toggle raw display
$79$ \( T - 8 \) Copy content Toggle raw display
$83$ \( T - 4 \) Copy content Toggle raw display
$89$ \( T - 6 \) Copy content Toggle raw display
$97$ \( T - 18 \) Copy content Toggle raw display
show more
show less